Статья Исследование решений одной системы интегро-дифференциальных уравнений, возникающей в моделях дин
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Исследование решений одной системы интегро-дифференциальных уравнений, возникающей в моделях динамики популяций
Н.В. Перцев, Омский государственный педагогический университет, кафедра математического анализа
1. Введение
В работе автора [1] предложена математическая модель, описывающая динамику численности некоторых популяций с ограниченным временем жизни особей. Модель представляет собой систему интегро-дифференциальных уравнений
с начальным условием
где
В настоящей работе приводятся результаты изучения вопросов существования, единственности, неотрицательности и ограниченности решений системы уравнений (1) с начальным условием (2). Рассмотрены также достаточные условия экспоненциальной устойчивости нулевого решения, которые применяются к исследованию вопроса о вырождении популяций. Для изучения поведения решений используются принцип сжимающих отображений, монотонный метод [2, с. 43] и свойства М - матриц [3, с. 132].
2. Основные результаты
Введем некоторые обозначения.Пусть
От системы уравнений (1) с начальным условием (2) перейдем к эквивалентной системе интегральных уравнений вида
где (Fx)(t) =
Здесь
H) элементы матрицы
Пусть M1 и M2 такие постоянные, что
(Lx)(t) =
где
Теорема 1. Пусть предположение H) выполняется на множестве D = Rm+. Тогда система уравнений (3) имеет единственное непрерывное решение x=x(t), определенное на
Теорема 2. Пусть предположение H) выполняется на некотором прямоугольнике
Теорема 3. Пусть предположение H) выполняется либо на множестве D = Rm+, либо на некотором прямоугольнике D = D0. Пусть, кроме того, f(0) = 0 и Q является невырожденной М - матрицей. Тогда система уравнений (1) имеет нулевое решение x(t) = 0, которое является экспоненциально устойчивым, иначе для всех
Приведем краткую схему доказательства этих теорем. В условиях теоремы 1 будем искать функцию w(t), удовлетворяющую неравенствам
Для доказательства теоремы 3 строится оценка на решение
3. Заключение
Установленные выше результаты указывают на корректность применения представленной модели в целях описания динамики численности популяций. Это связано с тем, что решения модели обладают такими важными свойствами, как существование, единственность, неотрицательность и ограниченность, которые соответствуют смыслу моделируемых процессов.
Важным следствием теоремы 3 являются достаточные условия, при которых популяция вырождается, т.е. ее численность x(t) такова, что
Нетрудно показать, что матрица Q будет невырожденной М - матрицей для малых
В завершение рассмотрим пример. Одной из классических моделей динамики популяций является так называемая логистическая модель или модель Ферхюльста, которая описывается дифференциальным уравнением
с начальным условием
с начальным условием (2). Здесь в качестве множества D можно рассматривать произвольный отрезок [0, d],
В заключение укажем, что система уравнений (1) с начальным условием (2) является обобщением некоторых из моделей, рассмотренных в работе [7].
Список литературы
Перцев Н.В. Применение одного дифференциального уравнения с последействием в моделях динамики популяций // Фундаментальная и прикладная математика / Ред. А.К. Гуц. Омск, 1994. С.119 - 129.
Красносельский М.А. и др. Приближенное решение операторных уравнений. М.: Наука, 1969.
Berman A., Plemmous R.J. Nonnegative Matrices in the Mathematical Sciences. New York, Academic Press, 1979.
Беллман Р. Введение в теорию матриц. М.: Наука, 1976.
Свирежев Ю.М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. М.: Наука, 1987.
Марри Дж. Нелинейные дифференциальные уравнения в биологии. Лекции о моделях. М.: Мир, 1983.
Cooke K., Yorke A. Some equations Modelling Growth Processes and Gonorhea Epidemics // Math. Biosci., 1973. V.16. P.75 - 101.
Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/