Статья

Статья Замкнутые инвариантные пространства функций на кватернионных сферах

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024



Замкнутые инвариантные пространства функций на кватернионных сферах

И.А. Латыпов, Омский государственный университет, кафедра математического анализа,

Кватернионную сферу S4n-1 естественно рассматривать как однородное пространство группы Sp(n), действие задается левыми сдвигами. В связи с этим возникает задача описания замкнутых Sp(n)-инвариантных подпространств L p при и пространства непрерывных функций на сфере S4n-1, решенная в данной работе.

1. Предварительные сведения из теории алгебр Ли.

Группу Sp(n,C) зададим как множество матриц, удовлетворяющих условию StJS=J, где , 1n - единичная матрица размером . Дифференцированием получим соотношение XtJ+JX=0 для элементов алгебры Ли sp(n,C), а в блочном виде B=Bt, C=Ct. Выберем базис :

Подалгебра диагональных матриц будет картановской, - корневая система, где . Неприводимое представление алгебры Ли характеризуется своим старшим весом, лежащим в доминантной камере Вейля и имеющим целочисленные координаты. Размерность неприводимого представления, соответствующего старшему весу , вычисляется по формуле



где - полусумма положительных корней. Порядок будем считать лексикографическим. Более подробную информацию об алгебрах Ли можно найти в [2].

2. Представления алгебры Ли sp(n,C) в пространствах H(p,q).

Введем обозначения: Ok- пространство однородных полиномов степени однородности k, O(p,q) - пространство однородных полиномов степени однородности p и q по переменным z и соответственно (однородность понимается в вещественном смысле), Hk - пространство гармонических полиномов из Ok, H(p,q) - пространство гармонических полиномов из O(p,q).

Рассмотрим сначала алгебру u(n). Выберем ее базис над R в виде

Пусть - представление группы U(n) в Ok левыми сдвигами, . Дифференцированием функции s(exp(-tX)z) по t при t=0 получаем представление алгебры Ли u(n): где , , умножение - скалярное.

Задавая в u(n)C базис , получаем



Применим полученные формулы для представления алгебры sp(n,C)=sp(n)C:







где wi=zn+i.

H(p,q) - неприводимые компоненты представления u(n) и u(n)C, см. [4]. Значит, неприводимыми компонентами представления sp(n) и sp(n,C) будут некоторые подпространства H(p,q). Введем операторы ,

Проверка на базисных элементах дает

Предложение 1. Операторы L1 и L2 являются сплетающими для некоторых пар неприводимых представлений.

Найдем теперь старшие векторы из H(p,q), соответствующие неприводимым представлениям sp(n,C), они должны зануляться положительными операторами Dbij для всех i и j и Daij при i>j. Прямой проверкой получается

Предложение 2. При n>1 многочлен - старший вектор неприводимого представления sp(n,C) со старшим весом

Теорема 1. При n=1 H(p,q) неприводимо, а при n>1 .

Доказательство . Размерность H(p,q) равна



идею доказательства см. в [1].

Если n=1, вектор порождает неприводимое подпространство в H(p,q). Поскольку Da11S=(p+q)S, этот вектор соответствует старшему весу . Тогда 2x1 - единственный положительный корень, то есть H(p,q) неприводимо.

Пусть n>1. Осталось теперь показать, что



Эту формулу можно доказать по индукции, индуктивный переход делается от пары (p,q) к паре (p+1,q-1), а , что доказывает теорему.

Обозначим через инвариантную относительно вращений положительную борелевскую меру на S4n-1, для которой .

Следствие 1. Пространство является прямой суммой попарно ортогональных пространств P(p,q,r).

Следствие 2. Справедливы утверждения: a) В P(p1,q1,r1) и P(p2,q2,r2) при n>1 реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2 и r1=r2.

b) При n=1 в H(p1,q2) и H(p2,q2) реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2.

Пусть Ws,r и Ws - пространства линейных комбинаций векторов и соответственно с комплексными коэффициентами, . Введем также пространства и при n>1.

Следствие 3. Ws,r и Ws - пространства старших векторов неприводимых представлений со старшим весом и s соответственно. Сплетающие операторы неприводимых представлений можно выразить как многочлены от операторов L1 и L2.

Более подробные сведения из теории представлений можно найти, например, в [3].

3. Инвариантные пространства функций на S4n-1.

Пространство Y на сфере S4n-1 назовем инвариантным, если для всех f из Y и всех g из Sp(n) f*g лежит в Y. Неприводимость представления группы Ли Sp(n) эквивалентна неприводимости представления комплексификации ее алгебры Ли sp(n,C), поэтому пространства P(p,q,r) и H(p,q) при n=1 инвариантны.

Если Y - инвариантное замкнутое подпространство , то также инвариантно и ортогональная проекция коммутирует с Sp(n). Это верно также для ортогональных проекций и .

Когда в пространствах V и W реализуются неприводимые представления, пространство сплетающих операторов из V в W либо одномерно (если представления эквивалентны), либо пусто. Отсюда, из следствия 2 теоремы 1 и предложения 1 вытекает

Предложение 3. Пусть n>1 и линейное отображение коммутирует с Sp(n). Тогда

1) если или , то T=0.

2) если r1=r2 и p1+q1=p2+q2, то найдется константа C, такая что при T=CL2p1-p2, при T=CL1p2-p1.

Обозначим через неприводимое инвариантное пространство со старшим вектором , а через -замыкание пространства Y.

Теорема 2. Если Y - замкнутое инвариантное подпространство , то , .

Доказательство. Пусть n>1 и тройка (p,q,r) такая, что . Так как Y инвариантно и коммутирует с Sp(n), то - нетривиальное инвариантное подпространство P(p,q,r). Значит, Пусть и Y1 - ортогональное дополнение к Y0 в Y. Тогда Y0 инвариантно как ядро оператора, коммутирующего с Sp(n), значит Y1 также инвариантно. Более того, - изоморфизм, обратный к которому обозначим

Выберем другую тройку (p',q',r') и рассмотрим отображение Оно коммутирует с Sp(n) и переводит P(p,q,r) в P(p',q',r'). Значит, по предложению 3, для всех (p',q',r'), таких что

Тогда Y1 - подпространство . Рассмотрим и содержащее его минимальное инвариантное пространство, оно совпадает с Y1.

Пользуясь теоремой 1, получаем нужный результат. Случай n=1 доказывается аналогично.

Пусть далее X обозначает одно из пространств , и C(S4n-1). Как следствие теоремы об общем виде линейного ограниченного функционала на получается

Предложение 4. При n>1 для всех троек (p,q,r) и всех точек z на S4n-1 найдется полином Kz из P(p,q,r) такой, что для любой функции f из

Для всех пар (p,q) и всех точек z на S3 найдется полином Kz из H(p,q) такой, что для любой функции f из

Следствие. Операторы и продолжаются до непрерывных операторов на

Далее потребуются следующие две леммы, которые приводятся без доказательства.

Лемма 1. Если Y - замкнутое инвариантное подпространство X, то плотно в Y.

Лемма 2. Если Y инвариантное подпространство C(S4n-1), непрерывная функция g не лежит в равномерном замыкании Y, то g не лежит и в L2-замыкании Y.

Докажем основной результат данной работы.

Теорема 3. Если Y - инвариантное подпространство X и - из теоремы 2, то .

Доказательство. По следствию из предложения 4 и определены на . Пусть - L2-замыкание Так как -замкнуто, то плотно в Y по лемме 1 и равномерно замкнуто. По лемме 2 Так как и X-непрерывны и L2-непрерывны, то и

Поэтому по теореме 2 Так как лежит в C(S4n-1), то, применяя лемму 2, получаем: = равномерное замыкание

Отсюда и из того, что X-плотно в Y и вытекает утверждение теоремы.

В заключение несколько слов об инвариантных алгебрах на кватернионных сферах. Унитарно-инвариантные алгебры были описаны в [4], их пространства максимальных идеалов были найдены в работе [5]. В симплектическом случае дело существенно усложняется из-за кратности представлений в пространствах однородных полиномов. Однозначного разложения на неприводимые компоненты не получается, и, как следствие, мера Хаара не будет мультипликативной. Уже при n=1 возникает большое число инвариантных алгебр, не инвариантных относительно действия унитарной группы.

Список литературы

Виленкин Н. Я. Специальные функции и теория представлений групп. М.: Наука, 1965.

Гото М., Гроссханс Ф. Полупростые алгебры Ли. М.: Мир, 1981.

Наймарк М. А. Теория представлений групп. М.: Наука, 1976.

Рудин У. Теория функций в единичном шаре из Cn. М.: Мир, 1984.

Kane J. Maximal ideal spaces of U-algebras // Illinois J. Math. V.27. 1983. N.1. P.1-13.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/



1. Реферат на тему Communication Essay Research Paper CommunicationCommunication is very
2. Реферат на тему The Religious Differences Essay Research Paper What
3. Курсовая на тему Расч т электронного автоматического моста
4. Реферат Степеневі ряди Теорема Абеля Область збіжності степеневого ряду
5. Реферат на тему Итальянская инструментальная музыка XVII - начала XVIII века
6. Реферат Двойная запись 2
7. Контрольная работа Анализ свойств САР по ее передаточной функции
8. Реферат на тему Новые методы иммунодиагностики и критерии их оценки
9. Реферат Антропологическая парадигма в философии
10. Сочинение на тему Стендаль - Изображение других персонажей сквозь призму восприятия жюльена сореля1