Статья Строгое притяжение к нормальному закону для стационарных последовательностей с равномерно сильны
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Строгое притяжение к нормальному закону для стационарных последовательностей с равномерно сильным перемешиванием
С.А. Клоков, Омский государственный университет, кафедра математического анализа
1. Введение. Обозначения. Постановка задачи
Пусть
стремится к нулю при
Как обычно, через
Будем считать известными определения правильно меняющихся и медленно меняющихся функций (см., например, [5]).
Говорят, что последовательность с.в.
Первые предельные теоремы для слабо зависимых величин были доказаны И.А. Ибрагимовым в начале 60-х годов. Условие РСП дает возможность доказывать результаты о сходимости к нормальному закону без каких-либо предположений о скорости перемешивания (стремления
Теорема 1. Пусть
Для последовательности независимых одинаково распределенных с.в. ЦПТ справедлива, если потребовать существование лишь вторых моментов. Исходя из этого, в [1] высказана
Гипотеза (Ибрагимов, 1965).
Пусть
Пусть
Гипотеза (Ибрагимов-Иосифеску).
Пусть
Гипотезы Ибрагимова и Ибрагимова-Иосифеску не доказаны и не опровергнуты до сих пор.
Хорошо известны два достаточных условия для медленного изменения H(x): существование конечного второго момента (
Теорема 2. Пусть
где h(x) - ММФ. Тогда
В настоящей работе показано, что теорема 2 остается справедливой, если на функцию h(x) из (1) наложить более слабое ограничение, чем медленное изменение. В монографии Е.Сенеты предложено обобщение понятия ММФ. Функция h(x) называется SO-меняющейся [3], если существуют такие положительные постоянные C1 и C2, что для всех
Очевидно, что ММФ h(x) удовлетворяет (2), но не наоборот. Примерами SO-меняющихся функций могут служить любые функции, отделенные от нуля и от бесконечности. Таким образом, введенное расширение класса ММФ является нетривиальным.
Основным результатом работы является обобщение теоремы 2:
Теорема 3. Пусть
где h(x) - SO-меняющаяся функция. Тогда
Обобщение результата M. Пелиграда стало возможным благодаря уточнению доказательства теоремы 2, данного в работе [4].
2. Вспомогательные результаты
Из (2) очевидным образом следует
Лемма 1. Пусть h(x) - SO-меняющаяся функция. Тогда
Определим последовательность
Лемма 2. Пусть выполнено (3). Тогда
а)
б) если целое число k фиксировано или целочисленная последовательность
Доказательство. Из определения an легко выводится, что
Из (4) и леммы 1 следует, что
Пункт а) доказан. Теперь докажем б). Пусть D0 - некоторая константа. Из (4) и леммы 1, аналогично (5), выводим для любого фиксированного k или
Выбором достаточно большой константы
Лемма 3. Пусть
Доказательство. Первое неравенство в (6) доказано в предложении 3.3 из [4], а второе выведено в [3, лемма3.3].
Лемма 4. Для любого фиксированного k или
Доказательство. Схема доказательства приведена в [?, теорема 18.2.3].
Лемма 5. Пусть k = k(n) - целочисленная последовательность, достаточно медленно стремящаяся к бесконечности, и имеет место (3). Тогда
где
Доказательство. Для проведения оценки (7) используются идеи M. Пелиграда, предложенные в [4]. В силу пункта б) леммы 2 существует такая константа C0, что
| (8) |
Из (8) выводим
|
где 0 - некоторая константа. Пользуясь пунктом а) леммы 2, нетрудно вычислить, что
3 Доказательство основного результата
В работе А.Г. Гриня [?] введено понятие универсальной нормирующей последовательности (УНП)
4. Пусть
| (9) |
Вместе с определением УНП (9) означает, что
|
при
Список литературы
Ибрагимов И.А., Линник Ю.В. Независимые и стационарно связанные величины. М.: Наука, 1965. 524 с.
Гринь А.Г. Об областях притяжения для сумм зависимых величин // Теория вероятн. и ее применен. 1990. Т. 35. N2. С. 255-270.
Peligrad M. An invariance principle for
Peligrad M. On Ibragimov-Iosifescu conjecture for
Сенета Е. Правильно меняющиеся функции. М.: Наука, 1985. 142 с.
Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/