Статья Солянокислотное растворение металлооксидных пленок, осажденных на углеродной поверхности
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Солянокислотное растворение металлооксидных пленок, осажденных на углеродной поверхности
А.А. Цибулько, Г.И. Раздьяконова, В.Ф. Суровикин, Конструкторско-технологический институт технического углерода СО РАН
Использование углеродных сорбентов для извлечения растворимых в воде неорганических веществ относится к дорогостоящим, сложным, но уже традиционным технологиям очистки питьевой и сточных вод. Определенное затруднение вызывает тот факт, что технологические разработки по их регенерации практически отсутствуют. В то же время проблема регенерации и возможности повторного (многократного) использования углеродных сорбентов является важнейшей, так как стадия регенерации является наиболее экономоемкой и составляет до 85 % общей стоимости затрат на водоочистку [1].
В последние годы ассортимент углеродных сорбентов для очистки питьевой воды от растворенных неорганических веществ, в частности, тяжелых металлов, значительно дополнился синтетическими, прочными на износ и ударные нагрузки, сферическими углеродными материалами марки Техносорб [2], но технология их регенерации практически не изучена, что существенно ограничивает их применение [3].
Отличительными особенностями сорбента Техносорб является химическая чистота, графитоподобная организация материала и умеренно щелочной pH его изоэлектрического состояния (10-11 ед.). Последнее обусловило коагуляционный механизм извлечения растворенных металлов в форме их гидроксидов.
Настоящая работа является первым сообщением, в котором обсуждены условия регенерации углеродного сорбента Техносорб от оксидных слоев алюминия, железа и марганца.
Методика эксперимента. Оксидные слои алюминия, железа и марганца на углеродном сорбенте получены при контакте сорбента с нейтральными водными растворами сернокислых солей Al(III), Fe (III) и Mn (II), в ходе которого в адсорбционном слое, обогащенном OH- ионами, происходит коагуляция гидратов окислов. При высушивании сорбента при 125oС имеет место их дегидратация с образованием окислов Al2O3, Fe2O3 и MnO. Оксидные пленки растворяли соляной кислотой. Продукты нейтрализации избытков соляной кислоты гидроокисью натрия экологически безопасны, что и определило ее выбор в качестве регенерирующего раствора. Сорбент с металлооксидным покрытием контактировали с водным раствором HCI при соотношении фаз 1:10 соответственно в течение заданного времени в термостате.
Концентрацию Fе(III) и Mn(II) в солянокислотном растворе определяли по ГОСТ 4011 и ГОСТ 4974. Использование стандартной методики определения алюминия по ГОСТ 18165 без критического учета влияния кислотного фона приводит к возникновению значительных систематических погрешностей, а в большинстве случаев делает определение невозможным вследствие разрушения окрашенного комплексного соединения алюминия с алюминоном и соляной кислотой. Указанные недостатки стандартной методики были устранены путем модифицирования методики фотометрического определения алюминия в солянокислых средах, заключающемся в предварительной нейтрализации исследуемой пробы раствором аммиака, добавлении в раствор сульфата аммония, глицерина, ацетатного буфера и проведении фотометрической реакции с алюминоном. Введение в систему глицерина способствует переводу образующегося комплексного соединения в истинно растворенную форму, что приводит к улучшению воспроизводимости метода. Для обеспечения постоянства состава кислотного фона отбираемые на анализ аликвоты испытуемого и эталонных растворов перед нейтрализацией доводили до постоянного объема раствором соляной кислоты концентрацией 0,1 М. Определение содержания алюминия производили по градуировочному графику. Эталонные растворы содержали от 1 до 14 мкг алюминия в пробе. Их доводили до постоянного объема также раствором соляной кислоты.
Степень регенерации рассчитывали как отношение разности между начальным содержанием металла и количеством оставшегося после регенерации к начальному содержанию металла на сорбенте.
Обработка результатов осуществлялась с помощью метода наименьших квадратов.
Результаты и их обсуждение. В табл. 1 представлены экспериментальные результаты кинетики растворения оксидных пленок алюминия, железа и марганца 0,1 н соляной кислотой при температуре (70 10)oC и оптимальном эквивалентном соотношении HCl/Ме (10, 100 и 300 соответственно).
Полученные результаты удовлетворительно описываются кинетическим уравнением первого порядка:
= k ln , | (1) |
где - степень регенерации, %;
- время достижения предельной величины степени регенерации, мин;
k - эмпирический коэффициент, характеризующий удельную скорость процесса, численно равный 20, 15 и 12 для оксидных пленок Al, Fe и Mn соответственно.
Влияние расхода регенерирующего раствора на степень регенерации сорбента показано в
табл. 2.
Судя по приведенным в табл. 1 и табл. 2 результатам, активность оксидных пленок на углеродной поверхности сорбента Техносорб к солянокислотному растворению заметно различается как по отношению к расходу регенерирующего раствора и его температуре, так и относительно природы металла. При сравнительном анализе полученных данных установили, что степень регенерации изменяется симбатно с коэффициентом скорости регенерации и антибатно ионному радиусу металла: 0,057 нм (Al3+); 0,067 нм (Fe3+) и 0,092 нм (Mn2+) [4].
Время, мин | Степень регенерации оксидных плёнок , %, | ||
Al | Fe | Mn | |
10 | 50 | 30 | 30 |
20 | 65 | 42 | 38 |
30 | 70 | 50 | 40 |
40 | 75 | 55 | 44 |
60 | 80 | 60 | 45 |
80 | 80 | 67 | 44 |
100 | | 67 | 44 |
120 | | 67 | |
Таблица 1. Кинетические данные растворения металлооксидных пленок на поверхности углеродного сорбента Техносорб-1 при (7010)oC |
Из анализа результатов табл. 2 отчетливо видно, что зависимость степени регенерации сорбента Техсорб от расхода соляной кислоты не линейна. Подобное явление типично для регенерации ионообменников, поэтому на практике целесообразна и экономически эффективна неполная регенерация сорбента Техносорб аналогично регенерации ионообменников [5].
Температура, oC | Q Mn | Q Fe | Q Al |
23 ± 5 | 0,001 4 0,01 13 10 37 200 47 300 38 400 34 700 32 | 40 52 60 60 80 66 100 68 120 68 130 68 | |
70 ± 10 | 300 48 400 44 600 41 | 60 63 80 67 100 72 120 74 130 74 | 1 35 3 62 5 73 10 80 17 80 |
Таблица 2. Зависимость степени регенерации (, %) металлооксидированного сорбента Техносорб-1 от отношения эквивалентa соляной кислоты к эквиваленту металла (Q=ЭHCl/ЭMe) и температуры. |
Солянокислотное растворение марганцевооксидных пленок на углеродном сорбенте является в ряду исследованных наиболее трудным. Так, эмпирическая Аррениусовская энергия активации составляет 8,8 ккал/моль, что типично для реакций, протекающих под диффузионным контролем [5]. Оптимизация регенерации внешними условиями среды (pH регенерирующего раствора на выходе из колонны) описывается уравнением регрессии с относительной погрешностью 4%:
Mn = 57 - 8,2 pH . | (2) |
Прямолинейная зависимость от pH среды также указывает на диффузионный контроль процесса солянокислого растворения марганцевооксидных пленок углеродного сорбента. Ослабление диффузионного контроля возможно при смещении системы в иные температурные условия. С целью установления влияния температуры на скорость регенерации изучена кинетика растворения марганцевооксидных пленок, осажденных на углеродном сорбенте Техносорб-1, 0,1 н водным раствором соляной кислоты при температуре 20, 40 и 60oC.
Из кинетических изотерм солянокислотного растворения марганцевооксидных пленок на сорбенте (см.рис.) по уравнению (1) определили удельные скорости процесса растворения в равновесном растворе, которые линейно связаны с температурой процесса (toС):
k(t) = 1,86 - 0,29 ln t. | (3) |
Наибольший практический интерес для оптимизации процесса регенерации углеродного сорбента представляет аналитическое описание восходящей ветви изотермы процесса, ограниченное значениями, где - предельная степень регенерации, определяемая из изотермы. Объединив уравнения (1) и (3) получаем кинетическое уравнение регенерации:
ln = (1,86 - 0,29 ln t) ln t. | (4) |
Использование кинетического уравнения (4) и уравнения среды (2) на практике позволит оптимизировать технологический процесс регенерации углеродного сорбента от труднорастворимых марганцевооксидных пленок.
Таким образом, впервые выполнено исследование солянокислотной регенерации металлооксидных пленок, осажденных на углеродной поверхности:
1. Изучена кинетика взаимодействия металлооксидных пленок алюминия, железа и марганца, осажденных на углеродной поверхности сорбента Техносорб с соляной кислотой.
2. Показано, что скорость и эффективность регенерации оксидированного углеродного сорбента антибатно связаны с ионным радиусом металла.
Рис.1. Кинетические изотермы солянокислотного растворения марганцевооксидных пленок на
углеродном сорбенте Техносорб-1 при температуре 20 (1), 40 (2) и 60 (3) oС
3. Предложена система аналитических описаний оптимизации процесса солянокислотной регенерации углеродного сорбента от металлооксидных пленок.
Список литературы
Сенявин М.М., Рубинштейн Р.Н. и др. Теоретические основы деминерализации пресных вод. М.: Наука, 1975. 326 с.
Суровикин В.Ф. Новые углерод-углеродные материалы для различных областей применения // Адсорбция и хроматография макромолекул: Тр. Междунар. (4-го национ.) симп. по адс. и хроматографии макромолекул. Москва: Изд-во. ПАИМС, 1994. С. 104 - 108.
Грицык А.И., Нацук Н.С., Токарев В.В. Перспективы и проблемы подготовки питьевой воды в Западной Сибири // Омский научный вестник. 1998. Вып. 2. С. 23 - 26.
Лурье Ю.Ю. Справочник по аналитической химии. Изд. 5-е. М.: Химия, 1979. С. 17.
Гордон А., Форд Р. Спутник химика: Пер. с англ. М.: Мир, 1976. С. 160.
Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/