Статья Matroid maps
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Matroid maps
A.V. Borovik, Department of Mathematics, UMIST
1. Notation
This paper continues the works [1,2] and uses, with some modification, their terminology and notation. Throughout the paper W is a Coxeter group (possibly infinite) and P a finite standard parabolic subgroup of W. We identify the Coxeter group W with its Coxeter complex and refer to elements of W as chambers, to cosets with respect to a parabolic subgroup as residues, etc. We shall use the calligraphic letter
We refer to Tits [6] or Ronan [5] for definitions of chamber systems, galleries, geodesic galleries, residues, panels, walls, half-complexes. A short review of these concepts can be also found in [1,2].
2. Coxeter matroids
If W is a finite Coxeter group, a subset
In the case of infinite groups W we need to slightly modify the definition. In this situation the primary notion is that of a matroid map
i.e. a map satisfying the matroid inequality
The image
So we shall call a subset
We can assign to every Coxeter matroid
Теорема 1. [2, Lemma 5.15] A map
is a matroid map if and only if the map
defined by
Recall that
In
3. Characterisation of matroid maps
Two subsets A and B in
Лемма 1. If A and B are two adjacent convex subsets of
We say in this situation that
For further development of our theory we need some structural results on Coxeter matroids.
Теорема 2. A map
(1) All the fibres
(2) If two fibres
Доказательство. If
Assume now that
First we introduce, for any two adjacent fibbers
Now take two arbitrary residues
Consider a geodesic gallery
connecting the chambers u and v. Let now the chamber x moves along
Список
литературы
Borovik A.V., Gelfand I.M. WP-matroids and thin Schubert cells on Tits systems // Advances Math. 1994. V.103. N.1. P.162-179.
Borovik A.V., Roberts K.S. Coxeter groups and matroids, in Groups of Lie Type and Geometries, W. M. Kantor and L. Di Martino, eds. Cambridge University Press. Cambridge, 1995 (London Math. Soc. Lect. Notes Ser. V.207) P.13-34.
Gale D., Optimal assignments in an ordered set: an application of matroid theory // J. Combinatorial Theory. 1968. V.4. P.1073-1082.
Gelfand I.M., Serganova V.V. Combinatorial geometries and torus strata on homogeneous compact manifolds // Russian Math. Surveys. 1987. V.42. P.133-168.
Ronan M. Lectures on Buildings - Academic Press. Boston. 1989.
Tits J. A local approach to buildings, in The Geometric Vein (Coxeter Festschrift) Springer-Verlag, New York a.o., 1981. P.317-322.
Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/