Статья

Статья Папп Александрийский. Теоремы Паппа-Гульдена

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 4.6.2025



Папп Александрийский. Теоремы Паппа-Гульдена

Ткаченко А.Е., студент, Казакова Е.И., д.т.н., проф.

Донецкий национальный технический университет

В данной работе мы рассмотрим то немногое из биографии Паппа Алекасндрийского, что было нам приоткрыто из-за завесы веков и докажем одну из важнейших теорем интегрального исчисления – теорему Паппа-Гульдена.

Благодаря счастливой случайности мы узнали, когда жил Папп : 18 октября 320 н. э. он наблюдал солнечное затмение и поведал об этом в своем комментарии к «Альмагесту».

Его главным произведением является « Математическое собрание» - восьмитомное произведение. В этом сочинении Папп собрал все, что он нашел интересного в трудах своих предшественников: касательно высших кривых, о квадратуре круга, об удвоении куба и трисекции угла, методе анализа и т.д. Когда он считал необходимым что-нибудь пояснить или добавить к трудам великих геометров он излагал это в виде лемм (содержание утраченных произведений Евклида и Аполлония).

Но, кроме этого, Папп в некоторых случаях дополнил и расширил труды своих предшественников.Так, например, в своей третьей книге он дает новое построение для пяти правильных многогранников, вписанных в шар.Помимо этого она содержит историю задачи по удвоению куба и делению угла на три равные части, причем Папп привел весьма оригинальное решение первой из них. Там же Папп приводит построение треугольников и параллелограммов со сторонами большими, чем стороны данных фигур, но меньшими по площади.

Первая и вторая книги «Математического собрания» (обе утеряны) были посвящены греческой арифметике.

Четвертая книга содержит интересное обобщение теоремы Пифагора и ряд изящных предложений относительно кругов, вписанных в «арбелос» Архимеда. В той же книге Папп определяет некоторую спираль на поверхности шара и находит площадь поверхности, ограниченной этой спиралью и дугой круга (метод заимствован у Архимеда). Он показывает, каким образом, построение для neusis, примененное Архимедом в книге «О спиралях», может быть сведено к пересечению двух конических сечений.

В пятой книге излагается работа Зенодора об изопериметрических фигурах (т.е. фигурах с равными периметрами) с дополнением нескольких предложений, найденных самим Паппом .Так Папп утверждает, что из всех фигур на плоскости имеющих равные периметры, наибольшей площадью обладают фигуры с наибольшим числом углов, причем из всех фигур, наибольшее число углов вписанного многоугольника и наибольшую площадь имеет круг. В той же книге Папп отмечает, что мир по форме является шаром, «великолепнейшим» и наибольшим телом с равновеликой площадью, но философам еще не удалось доказать, что объем шара всегда больше объема любого многогранника с равновеликой площадью сторон.

В шестой книге Папп определяет центр эллипса, заданного как перспективное преобразование круга . Эта книга содержит комментарии Паппа к так называемому «Малому астроному» – сочинениям, которые читались после «Начал» Евклида и до «Альмагеста» Птоломея. Это были труды Аристарха , Автолика и «Сферика» Феодосия триполийского.

Седьмая книга имеет очень важное историческое значение, так как в ней дается обзор содержания довольно большого числа сочинений о геометрическом анализе и геометрических местах, которые почти все утеряны. Много места отведено обсуждению методов (анализу и синтезу) применявшихся древними учеными при исследованиях. В качестве собственного открытия Папп формулирует теорему относительно объемов тел вращения, которая, в сущности, есть не что иное как известная теперь «терема Паппа – Гульдена». Там же содержаться комментарии к работам Аполлония Пергского, в частности к его «Коническим сечениям».

Восьмая книга посвящена в большей своей части механике, но содержит, кроме того, и построение конического сечения, проходящего через пять данных точек . Поводом для этого послужила задача: определить диаметр цилиндрической колонны по произвольному ее обломку . Затем книга дает способ построения главных осей эллипса по двум сопряженным диаметрам.

Помимо того Папп написал и ряд других трудов, в частности, трактат «Хронография математики», в котором положил начало алгебраическим знакам, что было немаловажным достижением, если учитывать те трудности, которые возникали при письменной передаче математических достижений. К сожалению труды эти были безвозвратно утеряны.

Высокий уровень произведений обусловил интерес к их автору . Многие леммы Паппа содержат идеи уже настоящей проективной геометрии . И когда спустя много веков люди это осознали, Папп был назван последним великим геометром древности.

Но помимо достижений в геометрии Папп Александрийский достиг достаточно высокого уровня и в разработке практического применения интегрального исчисления . Одни из важнейших теорем высшей математики были сформулированы им, а через много веков над ними работал Гульден. Теперь она известны как 1-я и 2-я теоремы Паппа-Гульдена.

1-я теорема Паппа-Гульдена

Ордината центра тяжести дуги плоской кривой:



где - длина дуги кривой.

Преобразуем:

, (1)

Площадь поверхности тела вращения:

или, (2)

Сравнивая уравнения (1) и (2) получаем ( если правые части уравнений равны, то равны и левые части):

, (3)

Полученное выражение (3) составляет содержание 1-й Теоремы Паппа-Гульдена:

Площадь поверхности тела вращения равна произведению длины окружности, описываемой центром тяжести кривой, на длину этой кривой.

2-я теорема Паппа-Гульдена

Ордината центра тяжести плоской фигуры:



где - площадь фигуры

или

, (4)

Объем тела вращения:



или

, (5)

Сравнивая уравнения (4) и (5) получаем:



или

, (6)

Полученное выражение (6) составляет содержание 2-й Теоремы Паппа-Гульдена:

Объем тела вращения равен произведению длины окружности, описываемой центром тяжести фигуры на ее площадь.

Эти теоремы используют в инженерной практике, особенно, если кривая или фигура сложной формы. При этом центр тяжести кривой или фигуры (точнее, их моделей, выполненных из однородного материала) определяют экспериментально с помощью двух подвесов: модель подвешивают за две разные точки ее периметра и находят пересечение двух вертикальных линий, проходящих через точки подвеса. Это и есть центр тяжести. Длина дуги или площадь фигуры определяется путем взвешивания моделей и сравнивания их массы с массой эталона.

Список литературы

Ван-дер-Варден Б.Л. Пробуждающаяся наука: математика древнего Египта, Вавилона и Греции: - М.: Госиздат, 1959. – 459 с.

Крыситский В. Шеренга великих математиков: - Варшава: Наша Ксенгарня, 1981.- с.31-34.

Казакова Е.И. Интегрирование. Учебное пособие. – Донецк,: ДГТУ, 1999.-58 с.

Пак В.В., Носенко Ю.Л.Высшая математика: Учебник.-Д.:Сталкер, 2997.-560с.

Для подготовки данной работы были использованы материалы с сайта http://masters.donntu.edu.ua/



1. Реферат на тему Hebrews Essay Research Paper The Hebrews started
2. Реферат Вербальное и невербальное общение 2
3. Реферат на тему Teenagers Smoking Essay Research Paper Teenagers SmokingIntroductionSmoking
4. Изложение Осип Эмильевич Мандельштам. Четвёртая проза
5. Реферат на тему Aspects Of The Perfect Female Essay Research
6. Реферат на тему Mountain Biking Essay Research Paper If you
7. Реферат на тему Why Pancho Villa Attacked The Us Essay
8. Курсовая на тему Оценка эффективности инвестиционного проекта по производству черепицы
9. Кодекс и Законы Формы и методы государственного регулирование инвестиционной деятельности
10. Статья Принципы построения систем сбора и передачи информации для объектов электроэнгергетики