Статья Единое электродинамическое поле и его распространение в виде плоских волн
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Единое электродинамическое поле и его распространение в виде плоских волн
Сидоренков В.В., МГТУ им. Н.Э. Баумана
Рассматриваются структура и характеристики распространения векторного четырехкомпонентного единого электродинамического поля, реализующего своим существованием функционально связанные между собой составляющие его поля: электромагнитное поле с векторными компонентами электрической и магнитной напряженности, поле электромагнитного векторного потенциала, состоящего из электрической и магнитной компонент, электрическое поле с компонентами электрической напряженности и электрического векторного потенциала, магнитное поле с компонентами магнитной напряженности и магнитного векторного потенциала.
В настоящее время установлено [1, 2], что в отношении полноты охвата явлений электромагнетизма, наряду с системой уравнений электродинамики Максвелла электромагнитного (ЭМ) поля с компонентами электрической
(a)
(c)
существуют и другие системы полевых уравнений, концептуально необходимые для анализа и адекватного физико-математического моделирования электродинамических процессов в материальных средах. Здесь
Уравнения в этих других системах рассматривают области пространства, где присутствуют либо только поле ЭМ векторного потенциала с электрической
(a)
(c)
либо электрическое поле с компонентами
(a)
либо, наконец, магнитное поле с компонентами
(a)
(c)
Основная и отличительная особенность уравнений систем (2) – (4) в сравнении с традиционными уравнениями Максвелла ЭМ поля (1) с физической точки зрения состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать многообразие электродинамических явлений нетепловой природы в материальных средах, определяемых электрической или магнитной поляризацией и передачей среде момента ЭМ импульса, в частности, реализуемых в процессе электрической проводимости [3] .
Принципиально и существенно то, что все эти системы электродинамических уравнений, в том числе, и система (1) для локально электронейтральных сред (
(a)
(c)
Очевидно, что данная система соотношений может служить основой для интерпретации физического смысла поля ЭМ векторного потенциала [4], выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и интересное в них то, что они представляют собой систему дифференциальных уравнений, описывающих свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент
Объективность существования указанного единого поля однозначно иллюстрируется указанными системами уравнений (1) – (4) и получаемыми из них соотношениями баланса:
для потока ЭМ энергии из уравнений системы (1)
для потока момента ЭМ импульса из уравнений системы (2)
для потока электрической энергии из уравнений системы (3)
и для потока магнитной энергии из уравнений системы (4)
Как видим, соотношения (5) действительно фундаментальны и их следует считать уравнениями единого электродинамического поля, базирующегося на исходной своей составляющей - поле ЭМ векторного потенциала, состоящего из двух взаимно ортогональных электрической
Отмеченная здесь структура и взаимосвязь составляющих единого электродинамического поля сохраняется и в статической асимптотике. Логика построения систем полевых уравнений для стационарных составляющих единого поля и анализ физического содержания таких уравнений изложены, например, в работе [5].
Таким образом, имеем очевидное обобщение и серьезное развитие представлений классической электродинамики. В частности, показано, что, так же как и в случае ЭМ поля, в Природе нет электрического, магнитного или другой составляющей единого электродинамического поля с одной полевой компонентой. Структура обсуждаемых составляющих единого электродинамического поля из двух векторных взаимно ортогональных полевых компонент – это объективно необходимый способ их реального существования, принципиальная и единственная возможность распространения конкретной составляющей в виде потока соответствующей физической величины, в случае динамических полей - посредством поперечных волн.
Форма представленных систем уравнений (1) – (4) говорит о существовании волновых уравнений как для компонент ЭМ поля
Здесь, согласно (2c),
Ввиду того, что уравнения систем (1) и (2) математически структурно тождественны, а волновые решения уравнений (1) широко известны [6], то далее анализ характеристик распространения составляющих единого электродинамического поля, например, в виде плоских волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений (3) электрического поля и уравнений (4) магнитного поля. Их необычные структуры между собой также математически тождественны, а волновые решения систем этих уравнений, как будет показано ниже, физически нетривиальны.
Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны, распространяющейся вдоль оси 0X с компонентами
где
Подставляя их в уравнения (3a) и (3c), приходим к соотношениям
В конкретном случае среды идеального диэлектрика (
то есть при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на π/2. Специфика здесь в том, что характер поведения компонент поля такой волны в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, математически данный результат очевидно тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5c) и (5d)). Однако с физической точки зрения этот результат весьма нетривиален и безусловно интересен.
Для проводящей среды (
Для уравнений системы (4) их волновые решения математически тождественны (10) с заменой
Рассмотрим соответствующие рассуждения для аналогичного представленному выше пакету плоской волны теперь для ЭМ поля с компонентами
В этом случае для диэлектрической среды (
где сами волновые решения описывают указанные волны, компоненты поля которых синфазно распространяются в пространстве. При этом, согласно соотношениям (5c) и (5d), волны ЭМ поля отстают по фазе на π/2 от волн ЭМ векторного потенциала.
Для проводящей среды (
Как видим, распространение волн всех четырех составляющих единого электродинамического поля в асимптотике металлов подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [6].
Подводя окончательный итог проведенным исследованиям, следует отметить, что именно уравнения системы (2) поля ЭМ векторного потенциала описывают волны, переносящие в пространстве поток момента ЭМ импульса, которые еще со времен Пойнтинга безуспешно пытаются описать с помощью уравнений ЭМ поля (1) (см., например, результаты анализа в статье [7]). При этом сами по себе волны ЭМ векторного потенциала принципиально не способны переносить энергию, поскольку в уравнениях (2) поля
Обобщая полученные результаты, приходим к выводу о том, что указанные выше составляющие единого поля, распространяющиеся в свободном пространстве посредством поперечных волн, существуют совместно и одновременно, в неразрывном функциональном единстве. Следовательно, с общей точки зрения совокупность полей, определяемых соотношением (5), действительно является четырехкомпонентным векторным электродинамическим полем, распространяющимся в пространстве в виде единого волнового процесса, а потому с концептуальной точки зрения разделение единого электродинамического поля на составляющие его поля в определенной мере условно. Однако с позиций общепринятых физических представлений и реальной практики аналитического описания явлений Природы разделение указанного единого поля на двухкомпонентные векторные составляющие в виде электрического, магнитного, электромагнитного и ЭМ векторного потенциала полей однозначно необходимо и, безусловно, удобно, поскольку диктуется объективным существованием разного рода конкретных электромагнитных явлений и процессов, реализуемых посредством рассматриваемых здесь полей.
Список литературы
1. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37.
2. Сидоренков В.В. // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Т. 1. Секция “Профессиональное физическое образование”. С. 127-129.
3. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 2. С. 35-46.
4. http://www.sciteclibrary.ru/rus/catalog/pages/8781.html.
5. http://www.sciteclibrary.ru/rus/catalog/pages/8834.html.
6. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980. 383 с.
7. Соколов И.В. // УФН. 1991. Т. 161. № 10. С. 175-190.
8. Чирков А.Г., Агеев А.Н. // ФТТ. 2002. Т. 44. Вып. 1. С. 3-5; 2007. Т. 49. Вып. 7. С. 1217-1221.