Статья Флюидодинамическая концепция формирования месторождений полезных ископаемых металлических и угле
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Флюидодинамическая концепция формирования месторождений полезных ископаемых (металлических и углеводородных)
Б.А. Соколов, В.И. Старостин
Красивые теории, как и красивые женщины, могут оказаться неверными.
(А.Б. Кондратьев. Природа, 1997, №6, с. 120)
Введение
Одной из удивительных особенностей геологической науки является автономное развитие вот уже более 100 лет двух ее, казалось бы, взаимосвязанных ветвей - рудной и нефтегазовой. Оперируя одной и той же или близкой по смыслу специальной терминологией (бассейны, стадии, растворы-флюиды, температуры, давления, рН и Eh среды, законы фильтрации), а также исследуя объекты, расположенные часто в пределах одних и тех же региональных структур, геологи-рудники и геологи-нефтяники тем не менее шли своими обособленными путями.
Достижения наук о Земле, особенно во второй половине XX века, настолько расширили наши представления о процессах концентрации и рассеивания минеральных веществ в земной коре, что стало очевидным единство многих фундаментальных законов, контролирующих генерацию, миграцию и аккумуляцию промышленных объектов металлического, неметаллического и углеводородного сырья.
История развития взглядов на рудо- и нефтеобразование
Более 90% фундаментальных научных достижений приходится на вторую половину нашего столетия. Одним из обстоятельных примеров анализа развития учения о рудных месторождениях является последняя книга академика В.И. Смирнова <Плутонизм и нептунизм ...> (1987). Подробно эти же вопросы рассматривались А.М. Сечевицей (1976). Применительно к нефти и газу следует отметить работы И.О. Брода (1965), Н.Б.Вассоевича (1967) и ряда других. В них на основании новых материалов исследована эволюция представлений о природе процессов, приводящих к появлению крупных скоплений минерального вещества.
Осмысливание особенностей истории развития взглядов пройденного и разработка новых гипотез, концепций и парадигм - несущая потребность любой науки, в том числе такой фундаментальной, как геология. Итоговые обобщения возникают обычно в двух случаях: при появлении принципиально новых фактических данных, которые следует увязать как между собой, так и с опытом прошлого, или в связи с такими рубежами, как окончание столетия или юбилеем отдельных корифеев науки.
Сейчас, на пороге XXI века, опять появилась потребность осознать результаты развития различных разделов геологических наук, что мы и собираемся сделать в сравнительном плане применительно к направлениям, связанным с рудными и нефтегазовыми полезными ископаемыми. Эти два направления обособились в важные разделы геологии и в силу своего огромного экономического значения превратились в фундаментальные <учение о нефти> и <учение о рудах>.
Возникновение геологии полезных ископаемых приходится на вторую половину XVIII века и связано, в первую очередь, с такими именами, как М.В. Ломоносов (1750, 1763) и Д. Геттон (1795). Уже эти ученые высказывали идеи об общности механизмов рудо- и нефтеобразования, связанных с взаимодействием эндогенных (<жар Земли>) и экзогенных сил и процессов.
Однако развитие взглядов на формирование и размещение рудных и углеводородных полезных ископаемых пошло по двум независимым и практически не пересекающимся путям. Это первый парадокс параллельности их развития, который обусловлен тремя обстоятельствами: различиями в физическом состоянии (флюидное - нефти и газа, твердое - у рудных полезных ископаемых); характером залегания, а также методическими приемами, используемыми при их разведке: (глубокое бурение и сейсморазведка на нефть и газ, геокартирование, мелкое бурение и горные выработки на рудные полезные ископаемые).
Еще один парадокс развития рассматриваемых разделов геологии связан с общностью развития науки, заключающийся в борьбе двух как бы взаимоисключающих, противостоящих друг другу подходов. В рудной геологии это борьба плутонистов и нептунистов, прекрасно описанная в книге В.И. Смирнова (1987). В геологии нефти и газа - это противоборство, так называемых, органиков и неоргаников (Вассоевич, 1986). Другими словами, как в рудной, так и нефтегазовой геологии стремление познать истину проходило в противопоставлении двух начал, в основе которых был положен примат или эндогенный энергии, или внешней - экзогенной.
Третий парадокс развития учений о нефти и рудах заключен в терминологической общности описания процессов рудо- и нефтеобразования, возникшей вне какой-либо зависимости друг от друга. Так, в рудном ряду используются такие понятия, как <рудный расплав>, <рудная магма>, <инфильтрационные растворы>, <магматический очаг>, <постмагматические и магматические флюиды>, <металлоносный очаг>, <газовожидкий раствор>, <магматическая сфера>, <рудосфера>.
В нефтегазовой геологии употребляются: <углеводородный раствор>, <углеводородные флюиды>, <очаг углеводородобразования>, <нефтегазовый очаг>, <углеводородная сфера>.
И в том, и в другом направлениях используются понятия <генерации полезного ископаемого>, его <миграция и аккумуляция>, <конденсация>, <пульсация>. Для характеристики процессов рудообразования и нефтегазообразования применяются одни и те же словосочетания: эти процессы полихронны, полигенны и полистадийны (Вассоевич, Смирнов), а также термины <многофакторность> и <многоликость>.
Все эти обстоятельства не случайны и свидетельствуют о генетической общности процессов, приводящих к созданию месторождений руд, нефти и газа.
Нельзя сказать, что вопрос об общности процессов рудо- и нефтеобразования в литературе не затрагивался. Его в 20-е годы XX-го столетия ставил И.В. Вернадский, в
Понятие природного породного раствора или расплава (ППРР)
Сегодня можно утверждать, что рудо- и нефтеобразование - это единый закономерно развивающийся процесс, обусловленный объективными природными законами. С общефилософских позиций этот процесс протекает в определенном направлении и заключается: в переводе исходного твердого вещества, содержащего в рассеянном состоянии рудные и углеводородные компоненты, во флюидное состояние; в миграции этого природного породного раствора или расплава преимущественно вверх по разрезу из зон с высоким давлением с температурой в зоны с низким давлением и температурой; в последовательном выщелачивании полезного компонента, его концентрации (аккумуляция) в виде залежей и месторождений различных полезных ископаемых в определенной вертикальной последовательности, отвечающей условиям перехода конкретных рудных и углеводородных компонентов из рассеянного флюидного состояния в концентрированное твердое, жидкое или газовое. Весь этот процесс перевода вещества из рассеянного твердого состояния через промежуточный флюидный этап с последующей конденсацией в промышленные скопления есть не что иное, как механизм превращения хаоса (беспорядочное распределение) в космос (упорядоченное).
Идея общности механизма рудо- и нефтеобразования в последние годы получила убедительное подтверждение благодаря двум открытиям общего характера. Первое связано с признанием нелинейности развития отдельных природных процессов. Второе является иллюстрацией первого и заключается в установлении тектоно-петрологической расслоенности литосферы и верхней (возможно и средней) мантии, выражающейся в чередовании зон уплотнения и разуплотнения. Это открытие имеет чрезвычайно важное значение. Дело в том, что зона разуплотнения представляет собой вместилища ППРР. Флюиды, насыщающие разуплотненные зоны, при нагреве значительно повышают внутреннее давление и за счет этого увеличивают свой объем, т.е. стремятся расшириться. Это обстоятельство приводит к созданию своеобразной гидравлической подушки (мантийного диапира), приподнимающей вышележащие слои, а также их прорывающей.
В результате возникает неравновесная и неустойчивая система, позволяющая, с одной стороны, перемещаться отдельным блокам земных оболочек относительно друг друга в вертикальном и горизонтальном направлениях, а с другой - за счет прорыва флюидов (магматических, гидротермальных, углеводородных и т.д.) осуществлять тепломассоперенос из глубоких недр Земли в ее верхние горизонты и тем самым усиливать процесс конвективного прогрева.
Представление о ППРР зон разуплотнения дает возможность понять и объяснить такие широко распространенные явления, как сейсмичность, покровообразование, соляно-купольный и глиняный диапиризм, грязевой вулканизм, гидротермальная деятельность, а также гидротермальное рудообразование, ассоциированное с вулканической и магматической деятельностью, алмазоносные трубки взрыва. Этим же объясняется нефтегазообразование и общность данного процесса с процессом рудообразования. Различия связаны с тем, что нефтегазообразование идет при сравнительно низких (100-150(С) температурах на первых километрах глубины, а рудообразование связано с глубинами рудоносных очагов в десятки и сотни километров, где температура достигает многих сотен градусов.
Общепризнанной теории возникновения зон разуплотнения в земной коре в верхней мантии пока не существует. Наиболее популярна концепция дефлюидизации. При погружении и нарастании температуры происходит трансформация физических свойств минералов и горных пород. Одни минералы переходят в другие. При этом их наименее связанные компоненты вытесняются из структуры минералов. Другими словами, происходит потеря летучих компонентов, которые включают прежде всего воду, а также газы. Происходит, так называемая, дегидратация или дефлюидизация пород, за счет которой создаются зоны разуплотнения, насыщения растворами и расплавами. Новообразованные флюиды и, в первую очередь, вода, переходя из связанного состояния в свободную фазу, переводят в раствор не только легко растворимые соли, но и такие парообразующие минералы, как кварц, кальцит, алюмосиликаты и другие.
ППРР, соучаствующие в создании зон разуплотнения, возникают и при плавлении горных пород в условиях погружения на большие глубины в зоны высоких температур. Так, пласты каменной соли трансформируются в горизонты жидкой раппы, которая при дальнейшем прогреве приобретает высокую внутреннюю энергию и прорывает вышележащие слои, образуя соляные диапиры и купола. Примерами этого же явления могут служить магматические и вулканические купольные образования.
Применительно к нефти и газу все это позволяет сделать два основополагающих вывода. Первый - нефть и газ, объединяемые понятием углеводородного раствора (УВР), есть не что иное, как тривиальный вариант сравнительно низкотемпературной дефлюидизации осадочных пород, обогащенных органическим веществом (ОВ). Второй - саморазвитие осадочного бассейна, испытывающего интенсивное погружение, приводит к созданию мощной системы восходящих тепловых потоков, активизирующих процессы нефтегазообразования во всем бассейне. Чем интенсивнее прогибание, тем выше уровень реализации нефтегазоматеринского потенциала, накопленного данным бассейном (рис. 5).
Другими словами, реализация нефтегазома-теринского потенциала в осадочном бассейне напрямую зависит от условий его прогрева. Эти условия на первом этапе связаны с внешними тепловыми потоками, источником которых являются тепловые потоки, образующиеся за счет дефлюидизации мантийных диапиров, а на втором этапе основная роль принадлежит тепломассоносителям из нижних частей осадочного разреза нефтегазоносного бассейна.
Как уже отмечалось, погружение осадочных пород сопровождается возникновением флюидонасыщенных зон разуплотнения. В верхней части осадочного разреза флюиды представлены водно-углеводородными компонентами, в нижней - водно-углекислыми, эвапоритовыми, рудными. Под действием возрастающей с глубиной температуры флюиды разогреваются и внутрипластовое давление аномально увеличивается. Это приводит к тому, что периодически разогретые флюиды прорываются в более высокие части осадочного разреза. Мигрирующие вверх флюиды, в свою очередь, являются мощными тепломассоносителями. Они реализуют конвекционный механизм весьма значительного дополнительного прогрева вышележащих осадочных толщ, тем самым резко ускоряя их катагенетическое преобразование. Здесь имеет место взаимодействие двух разнонаправленных вещественно-энергетических потоков. Один из них связан с погружением и катагенетическим преобразованием пород и содержащегося в них ОВ-продуктов жизнедеятельности бактериосферы, а с другой - с подъемом конвективного теплового потока, осуществляющего тепломассоперенос из нижних частей бассейна к его поверхности.
Вместе с тем, здесь следует иметь в виду, что составной частью вертикальных флюидных потоков закономерно являются нефть и природный газ, генерируемые очагами углеводородообразования. Очаги представляют собой погруженные части нефтегазоматеринских отложений, попавшие в зоны нефте- и газообразования, имеющие температуры 100(С и больше.
Углеводородные потоки, поднимаясь по трещинам и порам вверх по разрезу, пересекают коллекторские горизонты, где температура и давление ниже соответствующих показателей в очагах генерации. Это приводит к насыщению данных горизонтов нефтью и газом. Если процесс погружения бассейна достаточно длителен, то в его разрезе появляется несколько уровней расположения очагов генерации, а над ними несколько этажей размещения залежей углеводородов.
Применительно к процессу рудообразования, дело обстоит сложнее. Это связано с процессами расплавления пород на больших глубинах, но принципиального различия, по-видимому, нет. Разогрев приводит к появлению астеносферы, мантийных диапиров, очагов магматизма и вулканизма, которые под высоким давлением прорывают земную кору и попадают путем многоступенчатой сепаратизации в верхние слои литосферы, где они в условиях низкой температуры и давления образуют рудные скопления.
Таким образом, земная кора и мантия представляют собой многоэтажную суперсистему сложного строения и обмена тепловой энергией. В этой системе имеет место перевод пород из твердого состояния в расплав-раствор.
Под влиянием возрастающего внутреннего давления ППРР флюиды прорываются вверх, осуществляя вертикальную миграцию насыщенных полезными компонентами рудных или углеводородных растворов. Эти растворы, попадая в зоны более низких температур и давлений, последовательно теряют те или иные полезные компоненты, осуществляя тем самым ступенчатую конденсацию руд, нефти и газа.
Еще одно следствие из теории ППРР заключается в том, что можно говорить о возникновении нового направления геологической науки - флюидодинамической геологии месторождений рудных и нефтегазовых полезных ископаемых. XX век разрешил и еще одну фундаментальную проблему - роль экзогенных и эндогенных факторов в рудо- и нефтеобразовании. В природе существует вся гамма переходов от чисто эндогенных систем к экзогенным. Намечена иерархическая связь глобальных, региональных и локальных факторов, влиявших на разномасштабные процессы концентрации минерального вещества.
Подводя итоги уходящего ХХ века, можно утверждать, что одним из важнейших результатов в области геологии полезных ископаемых может служить разработка единой теории рудо- и нефтеобразования.
Флюидодинамические системы (ФДС)
Глобальные факторы, определившие большое разнообразие флюидодинамических систем, обусловлены процессами, протекающими в верхней мантии и нижних горизонтах земной коры. Выделяются тектонически активные зоны и области, где отмечается аномально высокий тепловой поток и выход мантийного материала в поверхностные части коры (срединно-океанические хребты, зоны субдукции, рифтовые системы, активные границы литосферных плит), и стабильные платформы. Для последних характерны медленные и длительные (до 300-1500 млн. лет) поднятия и погружения коры (Е.В. Артюшков, 1993). Прогибания вызваны уплотнением нижней коры за счет фазового перехода габбро в гранатовые гранулиты. Поднятия происходят при попадании в структурные ловушки в подошве литосферы аномальной магмы, из которой выплавляются дополнительные порции бальзатов.
Наиболее мощно процессы массопереноса во флюидных потоках осуществляются в зонах долгоживущих глубинных разломов, маркирующих борта региональных континентальных прогибов и поднятий и рифтогенных структур. В последние годы выявляется все большая роль флюидных систем в образовании и преобразовании земной коры и локализации в ее пределах разнообразных типов полезных ископаемых. Области функционирования таких систем образуют сферические зоны в составе земной коры, различающиеся по термодинамическим параметрам. Наиболее продуктивна верхняя флюидосфера, которую часто называют рудосферой, имеющая мощность 5-
В непрерывных геологических структурных комплексах рудо- и нефтегазоносные образования занимают дискретное, вполне закономерное положение. Они являются структурно-вещественными аномалиями, возникающими при следующих условиях:
активное участие минерализованных флюидных фаз в структурообразующих процессах;
существование оптимального режима деформирования (скорость деформирования 10-10 - 100 с-1, девиатор напряжений 30-60 Мпа, общие РТ-условия: Р=0, 1-50 Мпа, Т=10-5000С) в течение короткого приода времени (103-105 лет);
возникновение и развитие флюидных систем и локализация в них месторождений, которая сопровождается широкой гаммой динамических эффектов (сейсмоэлектрических, сейсмомагнитных, термоакустических, вибромиграционных и др.);
наличие высокоградиентного поля напряжений, которое направляет, фокусирует флюидные минерализованные потоки и создает геодинамические барьеры рудоотложения.
Чем ближе к дневной поверхности, тем более высока скорость формирования продуктивных структур, тем короче жизнь структурообразующих систем, тем выше девиатор напряжений и ниже общие РТ-условия. По мере перехода от мезозональных к эпизональным уровням структурообразования возрастает роль хрупких деформаций, а пластические деформации осуществляются с помощью особого механизма - гидропластического течения.
Рудо- и нефтегазоносные структуры, более чем какой-либо другой параметр геологической системы, участвуют в процессе перемещения и отложения минерального вещества. Их формирование сопряжено во времени и пространстве с анизотропной высокоградиентной системой массопереноса флюидных компонентов в тектонически активных зонах и центрах (рудно-магматических, вулканогенно-рудных, гидротермальной деятельности, очагах нефтегазообразования в осадочных бассейнах и т.д.), где сопряженно развиваются тектонические деформации, формируется минерализованная флюидная система и активно проявляются динамические эффекты.
Скорость деформирования пропорциональна величине девиаторного напряжения и связана с наличием или отсутствием флюидной фазы. В процессе деформирования создается система флюидопроводников. Наличие высокого градиента давления способствует повышению скорости фильтрации (вынужденная конвекция).
Таким образом, важнейшими условиями возникновения эндогенных месторождений являются: проницаемость среды, наличие термальной флюидной фазы, существование анизотропного поля напряжений и высокий градиент падения главных тангенциальных напряжений. В полной мере такие условия реализуются в обстановке регионального сжатия, при сдвиговых деформациях. Области растяжения являются локальными зонами, где происходит падение напряжений и разгрузка минерального вещества. Продуктивные структурные парагенезисы формируются при участии интенсивных динамических эффектов, которые проявляются только в жестких контактных системах при наличии прочных связей, в зонах сжатия и уплотнения.
Гидравлическая (диапировая) геодинамика
Роль флюидных систем в структурообразовании настолько велика, что выделилось специальное направление в геологии - гидравлическая (диапировая) тектоника (геодинамика). Она рассматривает формы, пространственное положение и происхождение структурных парагенезисов, объединяющих пластические и хрупкие деформационные элементы, которые возникли под воздействием давления на горные породы жидкости, газа, магматического расплава или их смесей (Старостин, Иванчук, Сандомирский, 1979).
Миграция минерализованных растворов в толщах пород контролируется общими и локальными полями напряжений, которые создают на отдельных участках избыточное давление поровой жидкости, что ведет к двустадийной деформации. В течение первой стадии происходит расширение трещин, расположенных под небольшим углом к направлению давления, и закрытие разрывов, ориентированных перпендикулярно. Во вторую стадию продолжают расширяться и удлиняться отдельные трещины по благоприятным направлениям и закрывается масса сопутствующих им мелких нарушений.
Гидравлические структуры широко распространены на месторождениях эндогенных руд, в частности, на месторождениях типа Миссисипийской долины, на вулканогенно-осадочных колчеданно-полиметаллических месторождениях в областях сжатия и растяжения и на медно-порфировых месторождениях.
На колчеданных месторождениях Рудного Алтая к таким структурам приурочены кварц-карбонат-барит-полиметаллические рудные тела, для каждого из которых характерны автономная минеральная, геохимическая и петрофизическая зональности. Состав залежей формировался за счет ремобилизации и переотложения компонентов ранних руд и, частично, за счет привнесенных из более глубинных источников.
Важная роль в перераспределении и отложении рудного вещества принадлежит гидравлическим процессам, она заключается в реализации благоприятного сочетания тектонофизических и гидродинамических явлений, приведших на ранних стадиях к возникновению магистральных трещин гидроразрывов и флюидных камер, а на поздних - к формированию в этих камерах полистадийных рудных тел. Данные структуры выполняют роль концентратов оруденения.
Причиной и стартовым моментом начала функционирования процессов гидравлической тектоники, наиболее вероятно, служили вертикальные тектонические движения и сопряженные с ними сдвиговые деформации. Они являются важнейшим компонентом единого цикла создания и деструкции земной коры. Особенно энергично подобные движения происходят в орогенных областях. Быстрый подъем огромных масс горных пород и их разрушение в горных сооружениях вызывает в приповерхностной зоне явления литостатической разгрузки. Скорости подъема блоков пород, согласно современным измерениям в Скандинавии, на Кавказе и в других регионах, по данным Н.И. Николаева (1988), П.Н. Николаева (1978) и В.К. Кучая (1983), колеблются в широких пределах: от 0,1 до 1-2 и даже более 10 мм/год.
Из анализа литературных данных и расчетов, выполненных А.А. Пэком (1990), следует, что длительность орогенного этапа в орогенных областях составляет 30-40 млн. лет, скорости подъема варьируют в пределах 0,07-4,5 мм/год, составляя в среднем около 1 мм/год. Амплитуды подъема достигают нескольких десятков километров.
В орогенных областях сопряженно развиваются два процесса: подъем к поверхности тектонически напряженных блоков пород и формирование вдавленных блоков (рамповые грабены). В первом случае происходит не только общее падение напряжения, но и более быстрое сокращение вертикальной составляющей тензора напряжений, возникает девиатор напряжений с вертикально направленными растягивающими усилиями. В результате мы имеем деформацию вертикального сдвигания при дополнительном горизонтальном сжатии. Это приводит к образованию трещин: горизонтальных - отрыва и сколовых - под различными углами к поверхности. По мере подъема массива и релаксации напряжения система <разваливается>: в поднятых блоках трещины отрыва становятся сначала наклонными, а затем вертикальными.
Во втором случае имеет место зонный орогенез (по В.К. Кучаю). В литосфере орогенов формируются астенолинзы. Под хребтами-поднятиями давление на астенолинзы больше, чем в соседних депрессиях. Вещество линз перетекает из поднятий в кору депрессий. Гранитные и базальтовые литопластины (а только они передают горизонтальное сжатие) под поднятиями более мощные, чем под депрессиями. На границах этих структур сплющиваются и утолщаются края литопластин, в результате здесь имеют место аномально высокие скорости движения. Происходит процесс приращения поднятий за счет предгорий.
Деформационные процессы в коре орогенов наиболее удачно можно объяснить с позиции модели всестороннего сжатия, разработанной В.К. Кучаем. Во вдавленных блоках на границах поднятий и депрессий накапливается большая плотность упругой энергии. В перенапряженных породах в результате всестороннего сжатия при образовании поверхности разрыва начинается процесс самопроизвольного хрупкого разрушения. Из самых общих представлений теории поля следует, что в перенапряженных сжатием породах достаточно возникновения незначительных добавочных девиаторных напряжений, чтобы осуществился переход энергии объемной деформации в энергию изменений формы или переход потенциальной энергии в кинетическую. Формируется очаг множества лавинообразно развивающихся хрупких трещин. Положение таких очагов совпадает с позицией центров разномасштабных землетрясений. Чем более прочные и упругие комплексы пород, чем больше их объем, и чем больше в них накопилось упругой энергии, тем более значительные массы пород будут брекчированы. Вертикальный диапазон образования таких брекчий в зависимости от конкретных геологических условий в орогенах колеблется от 5 до 25-
Подобные представления согласуются с геологическими данными. Находят объяснение образование мощных тел и зон объемных брекчий с <висячими>, без признаков смещения, обломками и разрушение прежде всего наиболее прочных, упругих, малопористых пород на плутоногенных гидротермальных, скарновых, меднопорфировых, некоторых магматогенных и других эндогенных классах и типах месторождений.
Высказанные нами представления несколько дополняют идею о тектоно-кессонном геодинамическом эффекте, развиваемую П.М. Горяиновым и И.В. Давиденко (1979). Они объясняют все многообразие не только брекчиевых образований, но и бескорневых тел гранитов, пегматитов явлениями либо резкого, либо постепенного падения давления при подъеме блоков пород к поверхности. Вероятно, этот механизм образования геологических структур и деформации пород существует, но он не универсален и ограничен масштабами скоростей подъема, физико-механическими свойствами пород, типами и интенсивностями региональных полей напряжения и рядом других менее значимых факторов.
Таким образом, на границах вдавленных и поднимающихся блоков пород в упругоперенапряженных зонах с большим запасом энергии на глубинах 5-
Системы этого типа распространены во всех глобальных структурах земной коры. Среди них наиболее изученными и уникальными по масштабам накопления рудного вещества выделяются: гипербазито-базитовые медно-никелевые, гранитоидные полиэтапные оловорудные, кимберлитовые и лампроитовые алмазоносные, базальтоидные субмаринные колчеданные и ряд других (рис. 7, 8).
Гипербазит-базитовые медно-никелевые системы. К этому типу относятся крупнейшие в мире рудные узлы, ассоциированные с расслоенными ультраосновными - основными комплексами (Садбери в Канаде, Бушвельд в Южной Африке, Норильск на Северо-Западе Сибирской платформы и др.). Все они приурочены к региональным глубинным разломам, ограничивающим крупные стабильные жесткие мегаблоки земной коры; развиваются на коре континентального типа; масштабы оруденения коррелируются со степенью дифференциации мантийных расплавов; процессы формирования рудоносных плутонов протекают в обстановке растяжения и с высокой скоростью; рудные районы характеризуются полиэтапностью развития и многоярусностью строения.
Норильская рудно-магматическая система, изученная О.А. Дюжиковым, В.В. Дистлером и др. (1986), приурочена к Приенисейскому мегаблоку, ограниченному крупнейшими мезозойскими внутриконтинентальными рифтами Земли - Енисейско-Хатангским и Западно-Сибирским. Главной магморудноконтролирующей структурой района служит Норильско-Хараелахский глубинный разлом (рис. 9).
Рудно-магматическая система формировалась в процессе миграции гипербазит-базитового расплава в южном направлении на расстояние в десятки - первые сотни километров. Вкрапленные и массивные руды приурочены к полнодифференцированным сульфидным гипербазит-базитовыми интрузивам, локализованным в подошве платформенного чехла.
Вулканогенно-рудные системы
Вулканогенно-рудные системы (центры) представляют собой долгоживущие (миллионы - десятки млн. лет) обычно изометричные в плане (диаметр 1-
Вулканические открытые системы представлены тремя подтипами: молибденпорфировым, колчеданным субмаринным и карбонатитовым (рис. 7).
Медно-молибденпорфировые вулканические и вулкано-плутонические системы обычно располагаются в пределах вулкано-плутонических дуг активных окраин континентов (Митчелл, Гарсон, 1984). Они пространственно и генетически связаны с гипабиссальными интрузиями монцонитового, диоритового и гранодиоритового составов. В глубинных частях систем развита собственно медномолибденовая минерализация. В слабоэродированных структурах сохранились и верхние вулканические (жерла, некки, кальдеры) элементы магматических систем с присущими им проявлениями ртути, свинца, цинка и редких земель. Примерами таких систем могут служить рудные районы в западной части синклинория Янцзы (Китай). Одно из них - Туншанькоу, детально изученное Чжэн Ланьчжэ (1995), относится к медно-молибденпорфировому типу. Здесь рудные тела приурочены к эндо- и экзоконтактам юрско-мелового склоняющегося в восточном направлении штока гранодиоритпорфирового и кварц-монцонитового состава, прорывающего толщу триасовых карбонатных пород (доломитов, известняков, мраморов).
Особенностью формирования месторождения является тесное сочетание скарновых и высокотемпературных плутоногенных гидротермальных процессов. В эндоконтактах штока преобладает медно-порфировое, а в экзоконтактах - типичное медное магнезиально-скарново-жильное оруденение. Основная масса руд образует почти сплошное тело в форме усеченного конуса на контакте интрузивных пород с доломитовыми мраморами. Кроме того, внутри штока выделяются многочисленные мелкие линзо-, пласто- и штокообразные тела вкрапленных медных и молибденовых руд, а во вмещающих мраморах - как метасоматические залежи, так и одельные жилы и жильные штокверковые зоны.
В истории формирования месторождения выделяются два главных этапа - прототектонический и постмагматический. С первым этапом связано внедрение интрузивного комплекса в Яншаньскую эпоху (153 -127 млн. лет) в триасовые отложения, испытавшие четыре фазы складчатости, образование прототектонических структур внутри интрузивного штока и сопутствующих дизъюнктивов во вмещающих мраморах. Второй этап протекал в режиме литостатической разгрузки, сопровождался полистадийной флюидной постмагматической деятельностью и формированием метасоматической зональности (филлизититовые кварц-серицитовые и пропилитовые зоны) и рудообразованием.
Установлен отчетливый структурно-петрофизический контроль оруденения. Ведущую роль в формировании рудовмещающего структурного парагенезиса играли две резко контрастные по физико-механическим свойствам группы пород: карбонатная (доломиты, известняки, мраморы) и интрузивная (диориты, гранодиориты, кварцевые монцониты и др.). Для карбонатной группы характерны повышенные упруго-прочностные свойства (Е=7,15х104 Мпа, Тв = 163 НВ, ( = 435 К, Кпк = 0,73) по сравнению с породами интрузивной группы (Е = 5,8х104 Мпа, Тв = 135 НВ, ( = 403 К, Кпк = 0,20). Это различие привело к возникновению на границе таких контрастных петрофизических сред трещинно-брекчиевых зон, контролировавших движение рудоносных флюидных потоков. В свою очередь, эти потоки энергично метасоматически перерабатывали как интрузивные, так и осадочные породы. В результате формировались оруденелые блоки, отличающиеся от вмещающих слабоминерализованных пород повышенной плотностью и упругостью (Е = 7,25х104 Мпа, ( = 438 К, Кпк = -0,83). На всех стадиях рудного процесса они были весьма хрупкими (Тв = 115 НВ) и неоднородными (коэфициент неоднородности Кн = 0,28) образованиями.
Практически все рудные тела локализованы в пределах зоны, оконтуренной изолиниями 150 НВ. Для руд характерны минимальные значения твердости (115 НВ) и максимально высокие температуры Дебая (438 К), величины модуля упругости (Е = 7,25х 104 Мпа) и Кпк (-0,83).
Проведенное исследование позволило установить сложную полигенную и полихронную природу месторождения Туншанькоу. Оно формировалось в обстановке воздымающихся орогенических движений в раннемеловую эпоху. Внедрение гранодиоритовой магмы в триасовые карбонатные толщи происходило в региональном поле напряжений, характеризующихся субмеридиональным сжатием и широтным растяжением. Выделены два основных этапа формирования месторождения. В ранний прототектонический этап действовал механизм поперечного изгибания при вертикальной ориентировке оси (3. В этот этап происходили высокотемпературные метасоматические измененения: калишпатизация, ороговикование, раннее сканирование.
Образовались небольшие тела вкрапленных молибденитовых руд. Наиболее интенсивно рудообразование протекало во второй постинтрузивный этап. В это время начал действовать механизм литостатической разгрузки, произошла переориентировка поля напряжений. Наибольшее растяжение отчетливо стало действовать в субвертикальном направлении. Возникли пологие трещины отрыва и сопряженные с ними трещины скалывания. Активно функционировала гидротермальная система, контролировавшаяся меридиональными контактами гранодиоритового штока. Образовались главные порфировые (в эндоконтакте) и скарновые (в экзоконтакте) рудные тела.
В металлогенической провинции средней и нижней части бассейна реки Янцзы перспективными на обнаружение медных и медномолибденовых месторождений сложного порфирово-скарнового типа являются меридиональные зоны тектонических нарушений, приподнятые блоки триасовых карбонатных пород (горст-антиклинали), западные и восточные контакты интрузивных штоков, участки хрупких метасоматически переработанных как интрузивных, так и осадочных пород.
В связи с тем, что образование месторождений протекало в открытых структурах растяжения промышленный интерес представляют и глубинные корневые части рудно-магматических систем. Не вскрытые эрозией интрузии, их верхний чехол из карбонатных пород перспективен на скарновое медное оруденение.
Колчеданоносные субмаринные системы образовывались непрерывно в течение всей геологической истории, начиная с раннего архея и кончая современным колчеданным рудогенезом. Их ормирование протекало всегда в условиях растяжения. Установлено четыре основные региональные геотектонические обстановки колчеданообразования: островодужная, спрединговая (срединно-океанические хребты), тыловодужная и глубинно-разломная (трансформные системы разломов) (Старостин, Дергачев, 1989). Промышленное оруденение ассоциируется с субмаринной в разной степени дифференцированной липарит-базальтовой формацией.
Мощность и глубинное строение земной коры (неоднородность, расчлененность, магмонасыщенность, соотношение различных геолого-плотностных слоев) определяют особенности формирования магматических очагов, эволюцию вулканизма, петрохимические черты рудоносных комплексов и, в конечном итоге, состав руд месторождений. Кислые члены дифференцированных формаций, образующиеся в результате деятельности синхронных или последовательных периферических очагов разных уровней, более автономны, разнообразны по фациальному составу, представлены обычно локальными вулкано-тектоническими структурами, контролирующими рудные залежи. Неоднородность земной коры, определяющая продолжительность, характер развития вулканических очагов, миграцию вулканизма, в значительной степени обусловливает металлогеническую зональность палеовулканических провинций.
Рудоносные вулкано-тектонические структуры центрального типа весьма характерны для обширной группы месторождений руд цветных и благородных металлов. При этом наибольшее число рудных объектов приурочено к длительно развивающимся многостадийным магматическим центрам, которые, в зависимости от особенностей вулканизма, истории тектонического развития и эрозионного среза, могут быть представлены поверхностной, суб- и гиповулканической зонами.
Ведущий деформационный механизм на различных этапах формирования подобных центров - поперечный изгиб. На его реализацию в конкретных условиях оказывает влияние большое разнообразие геодинамических режимов. Последние обусловлены как формами и размерами отдельных перемещающихся геологических тел, так и сочетаниями их в пространстве. Наиболее простым и многократно исследованным случаем является поле напряжений, существующее в окрестностях круглого жесткого штампа, перемещающегося в вертикальном направлении в однородной среде. Аналоги подобных образований в длительно развивающихся центрах - это отдельные магмовыводящие каналы, экструзивные, субвулканические и гиповулканические тела, гидравлические купола, блоковые складки и другие структурные формы. Примерами подобных центров могут служить медноколчеданные центры в Казахстане: Зырьяновский (Малеевские структуры), Лениногорский (Риддер-Сокольные структуры), Майкаинский; в Болгарии - Челопечский.
Исследования последних 10-15 лет показали, что на протяжении длительной истории образования и преобразования центров колчеданного оруденения активную роль в ремобилизации, переносе и отложении рудного вещества, а также формировании собственно рудолокализующих структур играли процессы гидравлической тектоники (рис. 10, 11). Под их воздействием возникали: 1) грушеобразные в разрезе тела с раздувом в верхней части и тонким проводником в нижней; 2) серии рудных жил, приуроченных к крупным трещинам, сопутствующим конседиментационные разломы; 3) рудные тела, имеющие вертикальное зональное строение. В направлении сверху вниз выделяются зоны: актинолит-тремолит-хлорит-барит-полиметаллические, медноколче-данная и серноколчеданная; 4) полистадийные брекчии; 5) в верхней части рудных тел реликаты газовых пузырей и участки с высокой пористостью; 6) рудные брекчии с обломками пород, развитых на более низких стратиграфических горизонтах; 7) автономная геохимическая и петрофизическая зональность, характерная для каждой гидравлической залежи.
Карбонатитовые рудо-магматические системы. Этот тип систем характерен для платформенных областей и ассоциирован с глубинными полистадийными гипербазитовыми комплексами (рис. 7).
Рудоносные массивы обычно формируются в течение 10-100 млн. лет в два этапа: раннемагматический и позднемагматический. Первый этап разделяется на четыре стадии: гипербазитовую (дуниты, перидотиты), щелочную гипербазитовую (щелочные пироксениты, биотитовые перидотиты); ийолит-мельтейгитовую и нефелиновых сиенитов. Позднемагматический или собственно карбонатитовый этап также разделяется на четыре стадии: кальцитовую, магнезиокальцитовую, доломит-кальцитовую и доломит-анкеритовую. Установлена четкая последовательность минералообразования: кальцит - доломит - анкерит. Наиболее распространенными формами карбонатитовых тел являются системы конических жил, падающих как у центру массива, так и от него; радиальные дайки; линейные жильные зоны и крутопадающие линзовидные штокверки.
Латеральная зональность строения карбонатитовых массивов представлена двумя типами: центростремительным, когда в центре массива располагаются наиболее молодые фации пород; центробежным, характеризующимся обратными соотношениями. С описываемыми интрузивными комплексами связаны ореолы экзо- и эндоконтактового метасоматоза. В экзоконтактах развивается фенитизация, представленная вторичными выделениями ортоклаза, альбита и эгирина, а в эндоконтактах - образованием разнообразных минеральных ассоциаций: нефелин-пироксеновых, пироксен-флогопитовых и пироксен-амфиболовых.
Согласно данным Л.С. Бородина, выделяются четыре петрологические группы карбонатитовых систем:
магматическая (мантийная щелочная ультраосновная и базальтовая). С ней связаны силикатные породы - дифференциаты мантийных магм: дуниты, пироксениты, ийолиты, мельтейгиты и др.;
флюидно-магматическая (комплексная мантийно-коровая);
флюидно-карбонатитовая;
флюидно-анатектическая (мантийно-коровая, нефелин-сиенитовая карбонатитовая).
Флюидно-магматические системы являются закрытыми, что определяет значительные масштабы фенитизации вмещающих пород. В описываемых системах отчетливо выделяются три фации глубинности: поверхностная, гипабиссальная и абиссальная.
Поверхностная (0-
Гипабиссальная (субвулканическая и плутоническая) (0,5-
Абиссальная (плутоническая) (5-6 -
Рудно-магматические гранитоидные коровые закрытые системы
Эти системы развиваются на коре континентального типа и формируют тесно взаимосвязанные узлы плутоногенных гидротермальных, грейзеновых и скарновых месторождений.
Яркими примерами таких систем могут служить оловорудная гранитоидная рудно-магматическая система Приморья (Россия) и Тырны-Аузский редкометальный центр на Северном Кавказе (Россия).
Приморская оловорудная система, изученная И.Н.Томсоном, 0.П. Поляковой и В.П.Полоховым (1986), развивалась на континентальной коре и типична для мезозоид Приморья. Ее особенностями являются многоярусное строение и длительное (от верхнего мела до эоцена) развитие. Выделяют три яруса: 1) нижний - верхний мел, грейзенизированные граниты, штокверковые руды; 2) средний - верхний мел - палеоцен, в песчано-сланцевой толще биотитовые роговики и многосульфидные жилы с оловом, серебром и золотом; 3) верхний - эоценовые кварц-хлорит-сульфидные с золотом и серебром жилы в вулканитах основного состава (рис.12).
Тырны-Аузский редкометальный центр формировался в позднеальпийские эпохи тектоно-магматической активизации, с олигоцена до антропогена. Рудоконтролирующие структуры развивались синхронно с проявлением процессов магматизма и метасоматизма в условиях переориентации направлений региональных субгоризонтальных сжимающих напряжений с северо-западного на меридиональное. На раннем этапе превалировали локальные сдвиговые перемещения клиновидных блоков пород в широтном и северо-западном направлениях. Для поздних этапов характерно вертикальное растяжение и частичные взбросо-сдвиговые деформации, обусловленные в приповерхностных частях разреза процессами литостатической разгрузки.
В результате вдоль основной структуры Тырны-Аузской зоны - Центрального разлома образовались кулисные тектонические пластины, перемещения которых создали сложную складчато-разрывную структуру, наиболее четко выраженную в северной части района. Здесь в приповерхностной части вертикальные системы разрывов сменяются покровно-надвиговыми структурами. Вкрапленное и прожилковое оруденение приурочено к узлам пересечения вертикальных рудоподводящих разломов с пологими веерными надвигами и обусловлено наличием петрофизических и геодинамических барьеров динамикой развития автономных гидротермальных систем.
Процессы магматизма и рудообразования контролировались дискретным прерывистым режимом литостатической разгрузки, в результате которого возникли разноэтапные структурные парагенезисы, магматические и руднометасоматические ассоциации. Для структурных парагенезисов каждого этапа характерно возникновение в глубинных частях разреза систем диагональных сколов, а в приповерхностных - чешуйчатых надвигов, взбросов, взбросо-сдвигов, горизонтальных отрывов, куполовидных поднятий структур излома, откольных отрывов и сопряженных с ними мелких дизъюнктивов.
В истории формирования рудного района выделяются три основных этапа, каждый из которых разделяется на ряд стадий: а) дорудный этап, сопровождаемый образованием контактовых роговиков и биметасоматических скарнов; б) этап вольфрам-молибденового оруденения, включающий последовательные стадии: послескарновых метасоматитов с молибдошеелитом, шеелитом и молибденитом; кварц-молибденитовых штокверков; фтор-гидросиликат-шеелитовой мирализации; в) редкометально-полиметаллический этап, состоящий из стадий: магнетит-пирротин-халькопиритовой, шеелит-флюоритовой с медно-висмутовой минерализацией, полиметаллической, сурьмяной и карбонатно-цеолитовой.
Расположенный в центре рудного района крупный Эльджуртинский гранитный массив парагенетически связан с рудными процессами третьего редкометально-полиметаллического этапа. Его формирование протекало в двух геодинамических режимах: раннемагматическом и постмагматическом. В течение первого сначала в обстановке вертикального сжатия и горизонтального растяжения внедрялись гранитоиды всех четырех фаз массива, и только на самых заключительных стадиях становления интрузива произошла смена поля напряжений: сжатие стало горизонтальным, а растяжение - вертикальным. В постмагматический период господствовали тектонические процессы литостатической разгрузки.
Рудообразующие флюиды, согласно данным изотопного состава сульфидов, имеют в основной массе мантийное происхождение. Процессы минералообразования в течение всех стадий протекали в широком температурном интервале с градиентом на участке Главного рудного тела до 150(С/км по вертикали и 100-150(С/0,1 км по горизонтали. Для каждой стадии характерно падение температуры к концу процесса: для скарнов - 650-380(С, для послескарновых метасоматитов - 500-200(С, кварц-молибденитовых жил - 400-180( и т.д. Отложение минералов и молибдена в главную продуктивную стадию происходило на фоне нейтрализации кислых минералообразующих растворов сильными основаниями при замещении скарнов поздними метасоматитами.
Постоянно воспроизводимое на новых гипсометрических уровнях палеотектоническое поле напряжений с отчетливой вертикальной ориентировкой растягивающих усилий создавало устойчивую геодинамическую систему с контрастными и значительными градиентами падения давления. Эта система стимулировала активное движение флюидных потоков вверх и частично по латерали.
Возникающую рудную зональность в самых общих чертах может объяснить следующая генетическая модель.
Общие орогенические движения, причиной которых могут быть неоген-четвертичные коллизионные процессы, привели к тектоническому расчленению на блоки и пластины всего субширотного орогенного пояса Северного и Центрального (Большого) Кавказа. На фоне регионального (III ранга) палеотектонического поля напряжений, представленного меридиональной субгоризонтальной ориентировкой (3, субширотной (также горизонтальной) (2 и наклонной (часто вертикальной) (1, происходили исключительно неравномерные вертикальные перемещения блоков пород. На границах воздымающихся и опускающихся массивов (по границе предгорий) на глубинах 15-
По геолого-структурным данным, определениям абсолютного возраста пород и метасоматитов и проведенным структурно-петрофизическам исследованиям Тырны-Аузское рудное поле развивалось как непрерывно воздымающаяся структура в течение по крайней мере 1,5 млн.лет - это диапазон возраста основных гранитоидных и риолитовых комплексов, с которыми прямо или косвенно ассоциированы процессы окварцевания и рудообразования. Одним из определяющих параметров, создавших современный облик месторождения, является скорость подъема блоков пород, а также пространственно-временная структура градиентов скоростей тектонических движений.
Именно закономерное различие в градиентах скоростей способствовало появлению единой гидротермально-магматической системы, фокусировало отдельные флюидные потоки и создавало уровни, поверхности и зоны пересыщенных рудными компонентами растворов. В связи с этим ритм подъема различных блоков пород способствовал постоянному поступлению в области разгрузки гидротерм новых объемов перенапряженных горных пород.
Крупные субвертикальные, широтные и северо-западные разломы обычно выполняли роль рудоподводящих структур, а системы горизонтальных трещин отрыва и узлов пересечения сопряженных трещин скола, расположенных горизонтально, являлись локализаторами оруденения. Именно в них возникали штокверково-вкрапленные залежи. За время активного развития орогенного процесса при средней скорости 5-10 мм/год за 1 млн. лет амплитуда подъема центральных блоков пород составила 5-
Рудно-метаморфические системы
Наиболее подробно исследована Кти-Тебердинская вольфрамоносная рудно-метаморфическая система, развитая в зоне Главного Кавказского хребта (Вальков, Старостин, 1983; Ткачев, 1989). Эта система локализована в полосе докембрийских (860 млн. лет) кристаллических сланцев макерской серии, соответствующих амфиболитовой фации умеренных глубин. В процессе формирования массива теневых мигматитов происходила ремобилизация вольфрама из анатектических расплавов нижней части рудно-магматической системы и концентрация его в ее верхней части.
Рудогенез протекал в зоне базификации пород, состоящей из слюдистых сланцев и гнейсов с телами амфиболитов. Перемещение рудного тела происходило в области повышенной трещиноватости, в меньшей степени испытавшей процессы гранитизации (рис. 13).
Нефтегазоносные осадочные бассейны как флюидодинамиченые системы
Согласно флюидодинамической модели нефтегазообразования (Соколов, 1960, 1994, 1996), ведущим фактором ее функционирования являются природные породные растворы и расплавы (ППРР). Они возникают в очагах нефтегазообразования на глубинах 2-10 км при температурах 60-120(С и концентрируются в зонах разуплотнения. Образуются неравновесные, неустойчивые системы с высоким внутренним флюидным давлением, приводящим к блоковым перемещениям пород и гидроразрывам пластов.
Саморазвитие осадочного бассейна, испытывающего интенсивное погружение, инициирует появление мощных восходящих тепловых потоков, прорыв флюидами верхней оболочки Земли и активный массоперенос ими минерального вещества (рис. 14). Выделяется три типа бассейнов: полигенный, моногенный и криптогенный.
К полигенному типу относятся все бассейны-гиганты: Персидского и Мексиканского заливов, Западно-Сибирский, Северо-Каспийский и др. Для них характерны: мощный восходящий поток высоконагретых флюидов, высокая степень реализации углеводородного потенциала, наличие нескольких уровней распространения очагов генерации и многоэтажная нефтегазоносность.
Моногенные бассейны возникают в рифтогенных прогибах, в местах прорыва в фундаменте мантийных диапиров, дефлюидизация которых создает продуктивные потоки тепломассоносителей. Возникающие залежи нефти по химическому составу четко коррелируются с геохимическим типом исходного органического вещества нефтематеринских толщ. Выделяют два подтипа подобных бассейнов: гидротермальный и ординарный. К первому можно отнести рифтовые впадины современных срединно-океанических хребтов, где совместно под влиянием интенсивной гидро-термальной деятельности синхронно протекают процессы нефте- и рудообразования (рис. 15). Одинарные бассейны имеют очаги генераций в низах разреза (рифтогенные бассейны Суэцкого залива, Припятский бассейн ?
Криптогенные бассейны располагаются под надвиговыми пластинами. Для них характерно глубинное залегание очагов генерации, тепловая активизация которого происходит за счет как внутренних, так и внешних источников. Примерами могут служить бассейны под Непским и Татарским сводами, под Карпинским, Тиманским и Добруджинским кряжами.
Металлы в нефтях
Исследования последних десятилетий XX века показали, что в процессе восходящей фильтрации вод нефтегазоносных бассейнов происходит энергичное выщелачивание рудных компонентов из осадочных (особенно глинистых) толщ. Этому способствует рассеянное в породах органическое вещество и наличие во многих бассейнах рассолов, активных концентратов многих металлов (Горжевский и др., 1990).
Наиболее тесная и масштабная связь рудных и нефтегазовых месторождений характерна для провинций, приуроченных к переходным зонам между платформами и океанами, к краевым прогибам и подвижным поясам (эпигеосинклинальные и эпиплатформенные орогены). Повышенные рудные концентрации пространственно совпадают с участками повышенных скоплений битумов, которые, в свою очередь, развиты в пределах поднятий в краевых частях зон нефтенакопления. Выявлена металлогеническая зональность нефтегазоносных бассейнов. В карбонатных (доломитовых) толщах, слагающих краевые фации бассейнов, в тесной ассоциации с битумами (керитами, антраксолитами) локализуются крупные стратиформные свинцово-цинковые месторождения (рис. 16). При этом они часто приурочены к рифовым структурами, расположенным за пределами бассейнов.
В подобной структурной позиции, но в связи с флишоидными, аспидными и молассоидными формациями образуются золотосульфидные проявления. Непосредственно на границах бассейнов (часто и внутри) в ассоциации с битумами типа асфальтов и асфальтитов среди известняков и песчаников возникают залежи киновари. Внутри бассейнов в пачках песчаников, алевролитов и мергелей формируются месторождения меди, связанные с рассеянной выраженностью асфальтов и асфальтитов. В этой позиции возникают также осадочные катагенные залежи железа и марганца (рис. 17).
Образование крупных скоплений металлов (свинца, цинка, меди, золота, серебра, ртути и др.) во флюидодинамических системах осадочных нефтегазоносных бассейнов носит пульсационный ступенчатый характер. Флюиды выщелачивают из вмещающих пород, переносят и отлагают в форме залежей обширную гамму рудных компонентов. Чем интенсивнее происходит погружение центральных частей бассейнов, тем более мощный возникает тепловой и флюидный поток и тем активнее концентрируются металлы в растворах. Другая группа факторов (длительность существования флюидной системы, наличие структурных ловушек, гетерогенность строения осадочных толщ, активные проявления вулканизма и магматизма) определяет масштабы рудо- и нефтегазообразования.
Заключение
Достижения наук о Земле и особенно бурное их развитие во второй половине XX века настолько расширили наши представления о процессах концентрации и рассеивания минеральных веществ в земной коре, что стало очевидным единство многих фундаментальных законов, контролировавших образование, перемещение и локализацию промышленных объектов металлического, неметаллического и углеводородного сырья.
Прежде всего на любых гипсометрических уровнях в земной коре для начала развития процессов рудо- и нефтеобразования необходим переход твердых веществ в жидкое и газообразное состояние, т.е. формирование флюида (расплава).
В последние годы выявляется все большая роль флюидных систем, как универсального механизма в образовании и преобразовании земной коры и локализации в ее пределах всей гаммы известных ныне полезных ископаемых. В непрерывных региональных геологических структурах и слагающих их комплексах пород рудо- и нефтеносные скопления занимают дискретное, вполне закономерное положение. Их появление в иерархических флюидных системах обусловлено следующими факторами:
несущие минеральную нагрузку флюидные потоки активно участвуют в структурообразующих процессах. Для большинства продуктивных систем характерны оптимальные условия деформирования (скорость 10-10 - 100 С-1, девиатор напряжений 30-60 Мпа) и широкий диапазон колебаний общих РТ-параметров (Р=0,1-50 МПа, Т=10-500(С) в течение короткого периода ( п ( 103- 105);
развитие флюидных систем сопровождается широкой гаммой динамических эффектов (сейсмоэлектрических, сейомомагнитных, термоакустических, вибромиграционных и др.);
одним из определяющих факторов, способствующих зарождению и функционированию флюидных систем и формированию минеральных скоплений на различных уровнях, является наличие высокоградиентного тектонического поля напряжений. Оно направляет, фокусирует фдюидные минерализованные потоки и создает геодинамические барьеры рудо- и нефтенакопления. Чем ближе к дневной поверхности, тем выше скорость формирования структур, вмещающих минеральное вещество, тем короче период действия флюидодинамических систем.
Самоорганизация проистекает из взаимодействия внутренних и внешних факторов, которое предлагается выделять как принцип взаимной дополнительности. Для рудообразования преобладают внутренние энергетические силы, для нефтеобразования - глубинная энергия, а исходное материнское вещество - биосферное.
Общая схема генерационного процесса состоит из этапов: (1) мобилизация исходных пород и превращение их в природные породные растворы и расплавы; (2) миграция их и аккумуляция полезных ископаемых, имеющая ступенчатый, пульсационный характер.
В верхней части земной коры флюидодинамические системы реализуются в форме двух групп региональных геологических структур: рудно-магматических (вулканогенно-рудных) центров и осадочных нефтегазоворудных бассейнов.
Рудно-магматические, вулканогенно-рудные, рудно-метаморфогеннне центры представляют собой сквозные мантийно-коровые кольцевые системы, генетически и парагенетически связанных магматических, вулканических и рудных комплексов, имеющих отчетливое вертикальное и латеральное зональное строение. Для этих центров характерно длительное (10-100 млн. лет) развитие и многоэтапное и многоярусное строение.
Выделяются четыре типа рудно-магматических центров:
1) вулканогенно-рудный (открытая система);
2)рудно-магматический гранитоидный (закрытая система);
3) рудно-магматический основной, ультра-основной, щелочной магматизм (закрытая система);
4) рудно-метаморфический.
Рудно-магматические центры характеризуются огромными запасами руд различного минерального состава. Каждому вертикальному уровню присущ особый тип руд. Выделение центров позволяет дать прогноз оруденения в уже известных рудных провинциях, значительно увеличив их минеральные ресурсы.
Список литературы
Артюшков Е.В. Физическая тектоника. - М; Наука, 1993, - 456 с.
Генезис редкометальных и свинцово-цинковых стратиформных месторождений: Ред. B.H.Xoлoдoв, - M, Наука, 1986, - 246 с.
Горяинов П.М., Давиденко И.В. Тектоно-кессонный эффект в массивах горных пород и рудных месторождениях - важное явление геодинамики // ДАН СССР - 1979 - Т.247, №5 - с.1212-1214
Дюжиков О.Л., Дистлер В.В., Кавардин Г.И., Голубков В.С., Служеникян С.Ф. Геологическая позиция, глубинное строение и рудно-магматические системы Норильского района. / В кн.: Глубинные условия эндогенного рудоо6разования - М; Наука, 1986, с.204-219.
Кучай В.К. Современная динамика Земли и орогенез Пажро-Тянь-Шаня. - /М., Наука, 1983 - 208 с.
Лисицин А.П., Богданов Ю.А., Гурвич Е.Г. Гидротермы и руды на дне океана. /В кн.: Металлогения современных и древних океанов/ М.; НТК Геоэксперт, 1992 - с. 14-40
Митчелл А., Гарсон М. Глобальная тектоническая позиция минеральных месторождений - М.; Мир, 1984
Николаев Н.И. Новейшая тектоника и геодинамика литосферы - М.; Недра, 1988 - 491 с.
Николаев П.Н. Напряженное состояние и механизм деформации земной коры альпийской складчаттой области // Изв. вузов, геология и разведка - 1978, №11 - с. 65-78
Основы металлогенического анализа при геологическом картировании. Авторы: Г.С. Гусев, В.В. Зайков, Е.В. Зайкова, А.А. Ковалев и др. Научн. ред. Д.В. Рундквист. - М.: Изд. ВСЕГЕИ, 1995 - 468 с.
Павлов Д.И. Связь осадочных месторождений железа и марганца с нефтегазоносными бассейнами // Геол. рудн. местор. - 1989, №2, с. 80-91
Парагенезис металлов и нефти в осадочных толщах нефтегазоносных бассейнов / Сборник под ред. Д.И. Горжевского и Д.И. Павлова - М.; Недра, 1990 - 268 с.
Петров А.И. Импульсно-очаговые структуры и проблемы их рудоносности - Л.; Недра, 1988 - 232 с.
Покалов В.Т. Рудно-магматические системы гидротермальных месторождений - М.; Недра, 1992 - 288 с.
Пономарев В.С. Структуры самопроизвольного разрушения горных пород / В кн.: Изучение тектонических деформаций/ - М.; Изд. ГИН РАН, 1987 - с . 117-133
Пономарев В.С., Ромащов А.Н. Зонная релаксация напряжений и ее значение для тектоники // Бюлл. Моск. об-ва испытателей природы, отдел. геол. - 1986 - Т.61, вып. 2 - с. 64-74
Поспелов Г.Л. Элементы геологического подобия нефтяных и флюидогенных рудных месторождений // Геол. и геофиз. - 1967 - №11 - с. 3-22
Пэк А.А. Орогенез, эрозия и гидротермальное рудообразование: гипотеза тепловой и геодинамической связи процессов. Основные проблемы рудообразования и металлогении - М.; Наука, 1990 - с. 184-200
Сечевица А.М. Природа гидротермальных рудообразующих растворов - М.; Недра, 1976 - 167 с.
Смирнов В.И. Плутонизм и нептунизм в развитии учения о рудных месторождениях - М.; Наука, 1987 - 92 с.
Соколов Б.А. Флюидодинамическая модель нефтегазообразования // Вестн. Моск. Ун-та, сер. 4, геология - 1996, №4 - с. 28-36
Соколов Б.А., Холодов В.Н. Флюидогенез и флюидодинамика осадочных бассейнов - новое направление геологии // Отечественная геология - 1993 - №11 - с. 64-75
Старостин В.И. Геодинамические условия формирования структур рудных полей / В кн.: Эндогенное рудообразование - М.; Наука, 1985
Старостин В.И. Палеотектонические режимы и механизмы формирования структур рудных месторождений. - М.; Недра, 1988 - с. 262
Старостин В.И. Роль расплавов в формировании рудных месторождений / В кн.: Основные проблемы рудообразования и металлогении - М.; Наука, 1990 - с. 137-155
Старостин В.И. Флюидодинамика месторождений полезных ископаемых - новое направление в геологии / В кн.: Новые направления в изучении колчеданных месторождений - Новочеркасск, Изд-во Новочеркасского гос. техн. ун-та, 1997 - с. 135-150
Старостин В.И., Иванчук П.П., Сандомирский С.А. Роль гидравлической тектоники в формировании рудоносных купольных структур // ДАН СССР - 1979 - т. 24, №3 - с. 834-837
Старостин В.И., Назаров В.Н., Трофимов А.П. Гидравлические структуры Малеевского колчеданно-полиметаллического месторождения (Рудный Алтай) // Вестник МГУ, сер. геологическая - 1987 - №1 - с. 44-57
Томсон И.Н., Полякова О.П., Полохов В.П. Глубинное строение оловорудных полей и ярусность оруденения в Приморье / В кн.: Глубинные условия эндогенного рудообразования - М.; Наука, 1986 - с. 258-263
Ткачев М.М. Рудно-магматическая зональность Кти-Тебердинского вольфрамового месторождения // Геол. рудн. месторождений - 1989 - №2 - с. 39-50
Файф У., Прайс Н., Томпсон А. Флюиды в земной коре - М.; Мир, 1981 - 436 с.
Холодов В.Н. Роль регионального катагенезиса в формировании термальных газоводных растворов (к теории стратиформного рудообразования) / В кн.: Генезис редкометальных и свинцово-цинковых стратиформных месторождений - М.; Наука, 1986 - с . 6-29
Чжэн Ланьчжэ Геологическое строение меднопорфирового месторождения Туншанькоу (Восточный Китай): Автореф. кандидатской диссертации - М.; МГУ, 1995 - 24 с.
Щепотьев Ю.М., Вартанян С.С. Металлогения кайнозойских островных дуг / В кн.: Металлогения современных и древних океанов - М.; НТК <Геоэксперт>, 1992 - с. 82-92
Эпштейн Е.М. Геолого-петрологическая модель и генетические особенности рудоносных карбонатитовых комплексов - М.; Недра, 1994 - 256 с.
Яковлев Г.Ф., Авдонин В.В, Старостин В.И. Глубинное строение вулканогенно-рудных центров (на примере колчеданоносных провинций) / В кн.: Глубинные условия эндогенного рудообразования. - М.; Наука, 1986 - с. 91-103
Для подготовки данной работы были использованы материалы с сайта http://geo.web.ru
Наиболее подробно исследована Кти-Тебердинская вольфрамоносная рудно-метаморфическая система, развитая в зоне Главного Кавказского хребта (Вальков, Старостин, 1983; Ткачев, 1989). Эта система локализована в полосе докембрийских (860 млн. лет) кристаллических сланцев макерской серии, соответствующих амфиболитовой фации умеренных глубин. В процессе формирования массива теневых мигматитов происходила ремобилизация вольфрама из анатектических расплавов нижней части рудно-магматической системы и концентрация его в ее верхней части.
Рудогенез протекал в зоне базификации пород, состоящей из слюдистых сланцев и гнейсов с телами амфиболитов. Перемещение рудного тела происходило в области повышенной трещиноватости, в меньшей степени испытавшей процессы гранитизации (рис. 13).
Нефтегазоносные осадочные бассейны как флюидодинамиченые системы
Согласно флюидодинамической модели нефтегазообразования (Соколов, 1960, 1994, 1996), ведущим фактором ее функционирования являются природные породные растворы и расплавы (ППРР). Они возникают в очагах нефтегазообразования на глубинах 2-
Саморазвитие осадочного бассейна, испытывающего интенсивное погружение, инициирует появление мощных восходящих тепловых потоков, прорыв флюидами верхней оболочки Земли и активный массоперенос ими минерального вещества (рис. 14). Выделяется три типа бассейнов: полигенный, моногенный и криптогенный.
К полигенному типу относятся все бассейны-гиганты: Персидского и Мексиканского заливов, Западно-Сибирский, Северо-Каспийский и др. Для них характерны: мощный восходящий поток высоконагретых флюидов, высокая степень реализации углеводородного потенциала, наличие нескольких уровней распространения очагов генерации и многоэтажная нефтегазоносность.
Моногенные бассейны возникают в рифтогенных прогибах, в местах прорыва в фундаменте мантийных диапиров, дефлюидизация которых создает продуктивные потоки тепломассоносителей. Возникающие залежи нефти по химическому составу четко коррелируются с геохимическим типом исходного органического вещества нефтематеринских толщ. Выделяют два подтипа подобных бассейнов: гидротермальный и ординарный. К первому можно отнести рифтовые впадины современных срединно-океанических хребтов, где совместно под влиянием интенсивной гидро-термальной деятельности синхронно протекают процессы нефте- и рудообразования (рис. 15). Одинарные бассейны имеют очаги генераций в низах разреза (рифтогенные бассейны Суэцкого залива, Припятский бассейн ?
Криптогенные бассейны располагаются под надвиговыми пластинами. Для них характерно глубинное залегание очагов генерации, тепловая активизация которого происходит за счет как внутренних, так и внешних источников. Примерами могут служить бассейны под Непским и Татарским сводами, под Карпинским, Тиманским и Добруджинским кряжами.
Металлы в нефтях
Исследования последних десятилетий XX века показали, что в процессе восходящей фильтрации вод нефтегазоносных бассейнов происходит энергичное выщелачивание рудных компонентов из осадочных (особенно глинистых) толщ. Этому способствует рассеянное в породах органическое вещество и наличие во многих бассейнах рассолов, активных концентратов многих металлов (Горжевский и др., 1990).
Наиболее тесная и масштабная связь рудных и нефтегазовых месторождений характерна для провинций, приуроченных к переходным зонам между платформами и океанами, к краевым прогибам и подвижным поясам (эпигеосинклинальные и эпиплатформенные орогены). Повышенные рудные концентрации пространственно совпадают с участками повышенных скоплений битумов, которые, в свою очередь, развиты в пределах поднятий в краевых частях зон нефтенакопления. Выявлена металлогеническая зональность нефтегазоносных бассейнов. В карбонатных (доломитовых) толщах, слагающих краевые фации бассейнов, в тесной ассоциации с битумами (керитами, антраксолитами) локализуются крупные стратиформные свинцово-цинковые месторождения (рис. 16). При этом они часто приурочены к рифовым структурами, расположенным за пределами бассейнов.
В подобной структурной позиции, но в связи с флишоидными, аспидными и молассоидными формациями образуются золотосульфидные проявления. Непосредственно на границах бассейнов (часто и внутри) в ассоциации с битумами типа асфальтов и асфальтитов среди известняков и песчаников возникают залежи киновари. Внутри бассейнов в пачках песчаников, алевролитов и мергелей формируются месторождения меди, связанные с рассеянной выраженностью асфальтов и асфальтитов. В этой позиции возникают также осадочные катагенные залежи железа и марганца (рис. 17).
Образование крупных скоплений металлов (свинца, цинка, меди, золота, серебра, ртути и др.) во флюидодинамических системах осадочных нефтегазоносных бассейнов носит пульсационный ступенчатый характер. Флюиды выщелачивают из вмещающих пород, переносят и отлагают в форме залежей обширную гамму рудных компонентов. Чем интенсивнее происходит погружение центральных частей бассейнов, тем более мощный возникает тепловой и флюидный поток и тем активнее концентрируются металлы в растворах. Другая группа факторов (длительность существования флюидной системы, наличие структурных ловушек, гетерогенность строения осадочных толщ, активные проявления вулканизма и магматизма) определяет масштабы рудо- и нефтегазообразования.
Заключение
Достижения наук о Земле и особенно бурное их развитие во второй половине XX века настолько расширили наши представления о процессах концентрации и рассеивания минеральных веществ в земной коре, что стало очевидным единство многих фундаментальных законов, контролировавших образование, перемещение и локализацию промышленных объектов металлического, неметаллического и углеводородного сырья.
Прежде всего на любых гипсометрических уровнях в земной коре для начала развития процессов рудо- и нефтеобразования необходим переход твердых веществ в жидкое и газообразное состояние, т.е. формирование флюида (расплава).
В последние годы выявляется все большая роль флюидных систем, как универсального механизма в образовании и преобразовании земной коры и локализации в ее пределах всей гаммы известных ныне полезных ископаемых. В непрерывных региональных геологических структурах и слагающих их комплексах пород рудо- и нефтеносные скопления занимают дискретное, вполне закономерное положение. Их появление в иерархических флюидных системах обусловлено следующими факторами:
несущие минеральную нагрузку флюидные потоки активно участвуют в структурообразующих процессах. Для большинства продуктивных систем характерны оптимальные условия деформирования (скорость 10-10 - 100 С-1, девиатор напряжений 30-60 Мпа) и широкий диапазон колебаний общих РТ-параметров (Р=0,1-50 МПа, Т=10-500(С) в течение короткого периода ( п ( 103- 105);
развитие флюидных систем сопровождается широкой гаммой динамических эффектов (сейсмоэлектрических, сейомомагнитных, термоакустических, вибромиграционных и др.);
одним из определяющих факторов, способствующих зарождению и функционированию флюидных систем и формированию минеральных скоплений на различных уровнях, является наличие высокоградиентного тектонического поля напряжений. Оно направляет, фокусирует фдюидные минерализованные потоки и создает геодинамические барьеры рудо- и нефтенакопления. Чем ближе к дневной поверхности, тем выше скорость формирования структур, вмещающих минеральное вещество, тем короче период действия флюидодинамических систем.
Самоорганизация проистекает из взаимодействия внутренних и внешних факторов, которое предлагается выделять как принцип взаимной дополнительности. Для рудообразования преобладают внутренние энергетические силы, для нефтеобразования - глубинная энергия, а исходное материнское вещество - биосферное.
Общая схема генерационного процесса состоит из этапов: (1) мобилизация исходных пород и превращение их в природные породные растворы и расплавы; (2) миграция их и аккумуляция полезных ископаемых, имеющая ступенчатый, пульсационный характер.
В верхней части земной коры флюидодинамические системы реализуются в форме двух групп региональных геологических структур: рудно-магматических (вулканогенно-рудных) центров и осадочных нефтегазоворудных бассейнов.
Рудно-магматические, вулканогенно-рудные, рудно-метаморфогеннне центры представляют собой сквозные мантийно-коровые кольцевые системы, генетически и парагенетически связанных магматических, вулканических и рудных комплексов, имеющих отчетливое вертикальное и латеральное зональное строение. Для этих центров характерно длительное (10-100 млн. лет) развитие и многоэтапное и многоярусное строение.
Выделяются четыре типа рудно-магматических центров:
1) вулканогенно-рудный (открытая система);
2)рудно-магматический гранитоидный (закрытая система);
3) рудно-магматический основной, ультра-основной, щелочной магматизм (закрытая система);
4) рудно-метаморфический.
Рудно-магматические центры характеризуются огромными запасами руд различного минерального состава. Каждому вертикальному уровню присущ особый тип руд. Выделение центров позволяет дать прогноз оруденения в уже известных рудных провинциях, значительно увеличив их минеральные ресурсы.
Список литературы
Артюшков Е.В. Физическая тектоника. - М; Наука, 1993, - 456 с.
Генезис редкометальных и свинцово-цинковых стратиформных месторождений: Ред. B.H.Xoлoдoв, - M, Наука, 1986, - 246 с.
Горяинов П.М., Давиденко И.В. Тектоно-кессонный эффект в массивах горных пород и рудных месторождениях - важное явление геодинамики // ДАН СССР - 1979 - Т.247, №5 - с.1212-1214
Дюжиков О.Л., Дистлер В.В., Кавардин Г.И., Голубков В.С., Служеникян С.Ф. Геологическая позиция, глубинное строение и рудно-магматические системы Норильского района. / В кн.: Глубинные условия эндогенного рудоо6разования - М; Наука, 1986, с.204-219.
Кучай В.К. Современная динамика Земли и орогенез Пажро-Тянь-Шаня. - /М., Наука, 1983 - 208 с.
Лисицин А.П., Богданов Ю.А., Гурвич Е.Г. Гидротермы и руды на дне океана. /В кн.: Металлогения современных и древних океанов/ М.; НТК Геоэксперт, 1992 - с. 14-40
Митчелл А., Гарсон М. Глобальная тектоническая позиция минеральных месторождений - М.; Мир, 1984
Николаев Н.И. Новейшая тектоника и геодинамика литосферы - М.; Недра, 1988 - 491 с.
Николаев П.Н. Напряженное состояние и механизм деформации земной коры альпийской складчаттой области // Изв. вузов, геология и разведка - 1978, №11 - с. 65-78
Основы металлогенического анализа при геологическом картировании. Авторы: Г.С. Гусев, В.В. Зайков, Е.В. Зайкова, А.А. Ковалев и др. Научн. ред. Д.В. Рундквист. - М.: Изд. ВСЕГЕИ, 1995 - 468 с.
Павлов Д.И. Связь осадочных месторождений железа и марганца с нефтегазоносными бассейнами // Геол. рудн. местор. - 1989, №2, с. 80-91
Парагенезис металлов и нефти в осадочных толщах нефтегазоносных бассейнов / Сборник под ред. Д.И. Горжевского и Д.И. Павлова - М.; Недра, 1990 - 268 с.
Петров А.И. Импульсно-очаговые структуры и проблемы их рудоносности - Л.; Недра, 1988 - 232 с.
Покалов В.Т. Рудно-магматические системы гидротермальных месторождений - М.; Недра, 1992 - 288 с.
Пономарев В.С. Структуры самопроизвольного разрушения горных пород / В кн.: Изучение тектонических деформаций/ - М.; Изд. ГИН РАН, 1987 - с . 117-133
Пономарев В.С., Ромащов А.Н. Зонная релаксация напряжений и ее значение для тектоники // Бюлл. Моск. об-ва испытателей природы, отдел. геол. - 1986 - Т.61, вып. 2 - с. 64-74
Поспелов Г.Л. Элементы геологического подобия нефтяных и флюидогенных рудных месторождений // Геол. и геофиз. - 1967 - №11 - с. 3-22
Пэк А.А. Орогенез, эрозия и гидротермальное рудообразование: гипотеза тепловой и геодинамической связи процессов. Основные проблемы рудообразования и металлогении - М.; Наука, 1990 - с. 184-200
Сечевица А.М. Природа гидротермальных рудообразующих растворов - М.; Недра, 1976 - 167 с.
Смирнов В.И. Плутонизм и нептунизм в развитии учения о рудных месторождениях - М.; Наука, 1987 - 92 с.
Соколов Б.А. Флюидодинамическая модель нефтегазообразования // Вестн. Моск. Ун-та, сер. 4, геология - 1996, №4 - с. 28-36
Соколов Б.А., Холодов В.Н. Флюидогенез и флюидодинамика осадочных бассейнов - новое направление геологии // Отечественная геология - 1993 - №11 - с. 64-75
Старостин В.И. Геодинамические условия формирования структур рудных полей / В кн.: Эндогенное рудообразование - М.; Наука, 1985
Старостин В.И. Палеотектонические режимы и механизмы формирования структур рудных месторождений. - М.; Недра, 1988 - с. 262
Старостин В.И. Роль расплавов в формировании рудных месторождений / В кн.: Основные проблемы рудообразования и металлогении - М.; Наука, 1990 - с. 137-155
Старостин В.И. Флюидодинамика месторождений полезных ископаемых - новое направление в геологии / В кн.: Новые направления в изучении колчеданных месторождений - Новочеркасск, Изд-во Новочеркасского гос. техн. ун-та, 1997 - с. 135-150
Старостин В.И., Иванчук П.П., Сандомирский С.А. Роль гидравлической тектоники в формировании рудоносных купольных структур // ДАН СССР - 1979 - т. 24, №3 - с. 834-837
Старостин В.И., Назаров В.Н., Трофимов А.П. Гидравлические структуры Малеевского колчеданно-полиметаллического месторождения (Рудный Алтай) // Вестник МГУ, сер. геологическая - 1987 - №1 - с. 44-57
Томсон И.Н., Полякова О.П., Полохов В.П. Глубинное строение оловорудных полей и ярусность оруденения в Приморье / В кн.: Глубинные условия эндогенного рудообразования - М.; Наука, 1986 - с. 258-263
Ткачев М.М. Рудно-магматическая зональность Кти-Тебердинского вольфрамового месторождения // Геол. рудн. месторождений - 1989 - №2 - с. 39-50
Файф У., Прайс Н., Томпсон А. Флюиды в земной коре - М.; Мир, 1981 - 436 с.
Холодов В.Н. Роль регионального катагенезиса в формировании термальных газоводных растворов (к теории стратиформного рудообразования) / В кн.: Генезис редкометальных и свинцово-цинковых стратиформных месторождений - М.; Наука, 1986 - с . 6-29
Чжэн Ланьчжэ Геологическое строение меднопорфирового месторождения Туншанькоу (Восточный Китай): Автореф. кандидатской диссертации - М.; МГУ, 1995 - 24 с.
Щепотьев Ю.М., Вартанян С.С. Металлогения кайнозойских островных дуг / В кн.: Металлогения современных и древних океанов - М.; НТК <Геоэксперт>, 1992 - с. 82-92
Эпштейн Е.М. Геолого-петрологическая модель и генетические особенности рудоносных карбонатитовых комплексов - М.; Недра, 1994 - 256 с.
Яковлев Г.Ф., Авдонин В.В, Старостин В.И. Глубинное строение вулканогенно-рудных центров (на примере колчеданоносных провинций) / В кн.: Глубинные условия эндогенного рудообразования. - М.; Наука, 1986 - с. 91-103
Для подготовки данной работы были использованы материалы с сайта http://geo.web.ru