Статья Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат.
М.И. Векслер, Г.Г. Зегря
Уравнения Максвелла для электростатики имеют вид:
| = | ρ | |
| = | | |
При этом
| (4) |
В вакууме ε = 1, так что
| (5) |
Потенциал φ считается равным нулю на бесконечности, если не оговорено иное.
Векторные операторы (grad, div, rot), фигурирующие в уравнениях Максвелла, по-разному записываются в различных системах координат:
| = | | (6) |
| | | (7) |
| | | (8) |
| = | | (9) |
| | | (10) |
| | | (11) |
Δ φ | = | | (12) |
| | | (13) |
| | | (14) |
Для цилиндрической и сферической систем выписана лишь радиальная часть соответствующих операторов. Этого достаточно для решения задач, в которых электрические величины зависят только от r.
| = | | (15) |
Задача. Электрическое поле зависит только от координаты x согласно формуле
Решение: Распределение заряда находится непосредственно из уравнения Максвелла:
ρ | = | | |
ρ | = | | |
Для нахождения потенциала φ(x) необходимо интегрирование уравнения (4), причем с обоснованно взятыми пределами, а именно от точки x = x*, в которой φ(x*) = 0 до точки x, в которой ищется потенциал:
| | | |
В условии сказано, что φ(0) = 0 - это и диктует выбор нижнего предела:
| | | |
В качестве переменной интегрирования мы используем
φ(x) | = | | |
| = | | |
Задача. В некоторой области распределение потенциала является цилиндрически-симметричным и подчиняется закону φ = α r5, где r - расстояние от оси. Найти Er(r) и ρ(r) для этой области.
Ответ: Er(r) = –5α r4, ρ(r) = –25ε0α r3
Задача. Потенциал внутри шара зависит от координаты r как φ(r) = ar2+b (a, b - константы). Найти ρ(r).
Решение Мы имеем дело со сферической системой и должны работать в ней. Ввиду симметрии, электрическое поле направлено от центра шара (или, вообще говоря, к нему - это зависит от знака a). Поле находим как градиент потенциала:
| | | |
После этого сразу записывается
| | | |
Далее используем уравнение Максвелла для нахождения заряда:
| | | |
Задача. В цилиндрической системе имеется электрическое поле
Ответ: ρ(r) = Aε0exp(–α r)(2–α r),
Задача. Проверить, выполняется ли критерий потенциальности (
Ответ: Для первого поля - да, для второго - нет.
Список литературы
1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.
2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.
Для подготовки данной работы были использованы материалы с сайта http://edu.ioffe.ru/r