Статья на тему Устойчивость упругих систем
Работа добавлена на сайт bukvasha.net: 2015-05-04Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Устойчивость упругих систем
В работе представлен небольшой обзор некоторых аспектов теории динамической устойчивости упругих систем.Some aspects of the theory of dynamical instability are briefly reviewed.
Статика
Задача устойчивости упругих систем впервые была сформулирована Л. Эйлером совместно с Д. Бернулли, в результате дискуссий о вариационном подходе к решению задач упругих эластик [1]. К тому времени уже была известна формула Я. Бернулли для выражения кривизны упругой линии [2]. Интересно, что различные аспекты этой задачи были притягательны для Эйлера в течение долгого времени, начиная с 1744 года, когда ученому было 37 лет, и до 1778 года. В трактате [2] Эйлер исследовал малые изгибные деформации упругого стержня длиныНа первый взгляд может показаться, что достаточно некоторого тривиального обобщения статической теории Эйлера, например на системы с начальными геометрическими несовершенствами, чтобы ответить на вопрос какие именно изгибные формы должны появиться при заданном произвольном нагружении. Однако, изучение задачи в динамической постановке сразу же приводит к появлению некоторых неожиданных результатов.
Динамика
Оказалось, что изгибная форма, возникающая в стержне при приложении к его торцу внезапной нагрузки, становится "высокочастотной" по отношению к той, которая предсказывается статической теорией Эйлера. Математическая модель, описывающая подобный эффект была впервые предложена в работе [3] в виде следующих уравнений:Физическая интерпретация этого результата может быть такова. Первоначально только небольшой участок стержня,
(1)
где
(2)
Решение этой пары уравнений должно удовлетворять начальным и граничным условиям:
Здесь
Результат установленный в работах [3] и [4], будучи в свое время весьма прогрессивными, тем не менее, не лишен некоторых рудиментарных черт, свойственных статической теории Эйлера. Очевидна попытка обобщения статической теории на динамическую, однако всякая статическая задача должна быть предельным случаем задачи динамики. В связи с этими замечанием, рассматривается задача о стационарных волнах на основе решения нелинейных уравнений (1) и (2) без граничных условий в сопровождающей системе отсчета (
(3)
Здесь
На самом деле, по-видимому, существуют два основных класса задач по проблеме динамической неустойчивости, когда [4]
продольное нагружение медленно меняется во времени и некоторыми или всеми типами волнового движения можно пренебречь;
продольная нагрузка ударная и динамика волн играет принципиальную роль в процессе потери устойчивости упругой системой.
При изучении этих задач неизбежно возникают следующие общие вопросы.
Какие динамические эффекты должны адекватно описываться модельными уравнениями? Известно, что уравнения, вытекающие из теории тонких оболочек применимы в основном лишь в так называемом длинноволновом приближении. Это означает, что характерная длина волны должна быть снизу ограничена, скажем, по меньшей мере, десятью толщинами тонкостенной конструкции. Однако, при ударном нагружении динамический процесс является существенно коротковолновым. В последнем случае, для адекватного описания динамики системы, требуется привлечение основных уравнений теории упругости, которые весьма сложны по своей математической структуре и трудны для аналитических исследований. Поэтому необходим некий разумный компромисс в выборе модельных уравнений и обоснование их применения [6].
Каковы механизмы динамической неустойчивости, и какие формы колебаний должны преобладать на ее начальной стадии развития? Можно предположить, что динамическая неустойчивость появляется в результате нелинейных многоволновых взаимодействий. Очевидно, что на начальной стадии динамика системы может быть адекватно описана в так называемом параметрическом приближении. Это означает, что сначала можно ограничиться моделью, представленной линеаризованными уравнениями движения с переменными в пространстве и времени коэффициентами.
Существует ли динамический процесс, по своим свойствам противоположный динамической неустойчивости, т.е. можно ли стабилизировать форму конструкции с помощью некого управляемого колебательного процесса? Известно, что вынужденные высокочастотные колебания линейных механических системы могут обратить ее неустойчивое/устойчивое состояние равновесия в устойчивое/неустойчивое [7 - 10]. Тем не менее, прогноз динамической устойчивости на больших временных интервалах требует изучения существенно нелинейных динамических моделей.
Параметрическое приближение
Следуя постановке задач, представленных в работах [3] и [4], рассматривается так называемая модель Бернулли-Эйлера, описывающая нелинейные колебания тонкого стержня с помощью следующих уравнений [11](4)
с краевыми условиями
Заметим, что область применимости модели уверенно можно ограничить условием, что характерная скорость волнового процесса не должна превышать скорости распространения продольных волн
В случае исчезающе малых колебаний эта система уравнений представляет собой два линейных уравнения, которые могут быть разрешены независимо.
Пусть
где частоты
Заметим[3], что
В свою очередь, линеаризованное уравнение для изгибных волн принимает вид
(5)
Очевидно, что в правой части уравнения (5) содержится пространственно-временной параметр в форме суперпозиции стоячих волн.
Учет "волны параметра" становится принципиальным, если типичная скорость продольных волн оказывается сравнимой с групповыми скоростями изгибных волн.
В противном случае можно, формально полагая, что
(6)
которая описывает лишь только параметрическое возбуждение системы во времени. Решение уравнения (5) можно построить с помощью метода Бубнова-Галеркина:
(7)
Здесь
коэффициент, содержащий параметры расстройки по волновым числам,
Уравнения (7) описывают раннюю стадию эволюции волн за счет многомодовых параметрических взаимодействий. Возникает ключевой вопрос о сопоставимости возмущенных орбит системы (7) и траекторий соответствующей невозмущенной подсистемы
(8)
которая получается из уравнений (7) при
В нерезонансном случае можно продолжить асимптотическую процедуру нахождения решения, т.е.
(9)
при условии, что пара изгибных волн с волновыми числами
Заметим, что в случае упрощенной модели (6), соответствующая система амплитудных уравнений сводится к единственному уравнению типа уравнения Матье, широко применяемому во многих прикладных задачах:
Известно, что это уравнение обладает неустойчивыми решениями при малых расстойках
(10)
где
Подставляя это выражение в (9), получаем уравнения первого приближения:
(11)
где
С физической точки зрения можно утверждать, что параметрическое возбуждение изгибных волн проявляется как вырожденный случай нелинейных многоволновых взаимодействий. Это означает, что изучение резонансных свойств нелинейных свободно осциллирующих упругих систем весьма принципиально для понимания природы динамической неустойчивости.
Трехволновые резонансные взаимодействия
Свободные многочастотные нелинейные колебания бесконечно длинного тонкого прямолинейного стержня впервые изучались в работе [13], на основе уравнений модели Бернулли-Эйлера. В отличие от стандартного подхода к подобным задачам, авторы при формулировке проблемы первично выдвинули предположение о существовании фазового синхронизма между волнами:(12)
где
(13)
где
(14)
с помощью которых ограниченные решения эволюционных уравнений (13) всегда выражается через эллиптические функции Якоби. Из соотношений Менли-Роу (14) следует, что полная энергия волн триплета сохраняется. Кроме того, высокочастотная волна
Этот существенный результат можно просто проиллюстрировать, рассматривая условия фазового синхронизма (12) как законы сохранения в терминах квазичастиц, поскольку всякая пара
Литература
1. Euler L. (1728), Solutio problematis de invenienda curva quam format lamina utcunque elastica in singulis punctis a potentiis quibuscunque sollicitata, Comment Acad. Sci. Petrop., 3, Opera II-10, 70-84.2. Euler L. (1744), Methodus inveniendi lineas curvas maximi proprietate gaudentes, Lausanne, Geneve, Opera I-24.
3. Лаврентьев М.А., Ишлинский А.Ю. (1949), Динамические формы потери устойчивости в упругих системах, Докл. АН СССР, 64 (6), 779-782.
4. Вольмир А.С. (1972), Нелинейная динамика пластинок и оболочек, М.: Наука.
5. Березовский А.А., Жерновой Ю.В. (1981), Нелинейные продольно-поперечные стационарные волны в упругих стержнях, В сб.: Мат. Физика, Киев, Наукова думка, 30, 41-48.
6. Болотин В.В. (1956), Динамическая устойчивость упругих систем, М.: Гостехиздат.
7. Беляев Н.М. (1924), Устойчивость призматических стержней под действием периодических нагрузок, В сб.: Инженерная и Строительная Механика, Ленинградский ун-т, 25-27.
8. Капица Л.П. (1951), Динамическая устойчивость маятника на вибрирующей точке подвеса, ЖЭTФ, 21 (5), 110-116.
9. Челомей В.Н. (1956), О возможности стабилизации упругих систем с помощью вибраций, Докл. АН СССР, 110 (3), 345-347.
10. Болотин В.В. (1951), О поперечных вибрациях стержней, вызванных периодическими продольными нагрузками, В сб.: Поперечные Колебания и Критические Скорости, 1, 46-77.
11. Kauderer H (1958), Nichtlineare Mechanik, Springer, Berlin.
12. Haken H. (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.
13. Ерофеев В.И., Потапов А.И. (1985), Трехчастотные резонансные взаимодействия продольных и изгибных волн в стержне, В сб.: Динамика систем, Горьковский ун-т, 75-84.
14. Новиков В.В. (1988), О неустойчивости упругих оболочек как проявлении внутреннего резонанса, ПММ, 52, 1022-1029.
[1] Кубическая нелинейность в этом уравнении в работе [4] не принималась в расчет.
[2] Нелинейность волнового уравнения также не учитывалась при численных расчетах в работе [4].
[3] В системе возникает резонанс, как только , что соответствует целому числу четвертей волн укладывающихся по длине стержня. В этом случае система не допускает стационарного решения в форме стоячих волн, хотя резонансное решение для продольных волн можно легко получить с помощью метода Даламбера.
[4] Вопрос сохранения квазипериодических орбит представляет собой одну из ключевых проблем современной физики, которая находится в постоянном развитии [12].
[5] На практике резонансные свойства системы следует прямо связать с порядком итерации асимптотической процедуры. Например, если рассматривается первое приближение, то резонансы, возникающие во втором порядке по в расчет не берутся.