Статья

Статья на тему Доказательство Великой теоремы Ферма методами элементарной алгебры

Работа добавлена на сайт bukvasha.net: 2013-09-08

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.6.2025


Доказательство теоремы Ферма методами элементарной алгебры
Бобров А.В.
г. Москва
Контактный телефон – 8 (495)193-42-34
[email protected]
В теореме Ферма утверждается, что равенство   для натуральных  и   может иметь место только для целых .
Рассмотрим равенство
                                                         ,                               (1)
где  и  - натуральные взаимно простые числа, то есть числа, не имеющие общих целых множителей, кроме 1.  В этом случае два числа всегда нечетные. Пусть  - нечетное число,  и - натуральные числа. Для всякого действительного положительного числа выполнима операция нахождения арифметического значения корня, то есть  равенство (1) можно записать в виде:
,                        (2)
где  и  - действительные положительные множители числа  В соответствии со свойствами показательной функции, для любого
из действительных положительных чисел  и  существуют единственные значения чисел  , удовлетворяющие равенствам
                            ,                                                   (3)
 Из равенств (2) и (3) следует:
                   .                    (4)             
Поскольку p>q, всегда имеет место  p-q=k, или  аp= аk∙× аq, то есть числа    и  содержат общий множитель , что противоречит условию их взаимной простоты. Это условие  выполнимо только при  ,  то есть при  . Тогда равенства (4) принимают вид:
                                   ,                  (5)
откуда следует            
,                                                        (6)
то есть для взаимно простых  и  числа  и  всегда являются двумя последовательными целыми числами. Еще Эвклидом доказано, что всякое нечетное число выражается, как разность квадратов двух последовательных целых чисел, то есть равенство (1) для натуральных взаимно простых  и  может быть выражено только в виде равенства
                                               .                                       (7)
         Справедливость приведенного доказательства можно проиллюстрировать следующим примером.
Пусть в равенстве Ферма числа  и  – целые взаимно простые,  – четное. Тогда числа         ,   их сумма   и разность - также целые, показатель степени       p>q .
         Целые числа            и    
являются взаимно простыми, если не содержат общих целых множителей, кроме 1.    Это условие выполнимо только тогда, когда общий целый множитель   ,    то есть .
Тогда разность       , что для одновременно целых  и  может иметь место только при   , то есть при    или   , что и позволило Пьеру де Ферма сделать почти 370 лет назад свою запись на полях арифметики Диофанта.

1. Статья Кредиторская задолженность - инструмент в конкурентной борьбе
2. Реферат на тему Космические технологии
3. Контрольная работа на тему Поисковые специальные средства
4. Реферат Тадж-Махал - чудо света в Индии
5. Реферат на тему A1 Essay Research Paper GoldOne kind of
6. Реферат на тему The School Postmodernist Ideas Essay Research Paper
7. Реферат на тему Al Capone Essay Research Paper NameAlphonse CaponeBackgroundAlong
8. Реферат Теория палеолитической непрерывности
9. Реферат Функции государства 8
10. Реферат на тему 1776 Movie Review Essay Research Paper H1