Диплом

Диплом на тему Модель синхронного генератора в фазных координатах

Работа добавлена на сайт bukvasha.net: 2014-06-27

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


МОиН Украины
Национальный технический университет
“Харьковский политехнический институт”
Кафедра электрических станций
Расчётное задание
по курсу: “Математическое моделирование”
на тему: “Модель синхронного генератора в фазных координатах”

Выполнил: ст. гр. Э-51а

Абашкина О.С.
Сербиненко М.С.
Бабенков А.А.
Шаповал О.
Проверил: доц. Пискурёв М.Ф.
Харьков 2005

Общие понятия и определения в математическом моделировании

Модель – некоторый объект, с помощью которого исследуются свойства оригинала и находящегося во взаимозначном соответствии с ним и более доступном для изучения.

Моделирование – исследование свойств объекта методом изучения свойств другого объекта находящегося в определённом соответствии с первым объектом и более удобным для исследования.
Под “моделью” понимают некоторые технические устройства, процесс, схемы замещения, мысленные образы, математические формулы.
Модель должна удовлетворять 3 условиям:
1.                достоверно отображать некоторые свойства оригинала подлежащие изучению;
2.                должно быть определённое соответствие, т.е. правила позволяющие осуществить переход от свойств модели к оригиналу и наоборот;
3.                должна быть наглядной, простой и доступной для изучения.
Виды моделей:
1) Структурная. Показывает структуру объекта и взаимную связь между элементами этого объекта;
2) Модели прямой аналогии. В них процессы совпадают с процессами оригинала.
3) Физические модели. Они имеют одну и ту же физическую природу с оригиналом.
4) Математические модели, которые имеют одинаковое математическое описание с оригиналом. Эти модели бывают аналоговые и цифровые.

Основные допущения при составлении математической модели синхронного генератора
1.                Не учитывается магнитное насыщение генератора.
2.                В воздушном зазоре машины действуют намагничивающие силы только первой гармоники. Следовательно, ЭДС синхронного генератора – синусоидальный.
3.                Не учитываются потери на перемагничивание.
4.                Считают, что обмотки статора выполнены симметрично, а ротор генератора симметричен относительно осей d и q.
5.                Все демпферные обмотки по оси d заменены одной демпферной обмоткой аналогичной по оси q.
6.                При исследовании электромагнитных переходных процессов не учитывают изменение вращения скорости генератора.
Математическая модель синхронного генератора в фазных координатах
При составлении этой модели, в целях упрощения, не будем учитывать демпферные обмотки. Следовательно, уравнение баланса напряжений имеет вид:
Уравнение статора: Уравнение ротора:
   
 ( 1 )

где , , ,  - мгновенные значения напряжений обмоток статора и ротора;
, , ,  - потокосцепления, связанные с соответствующими обмотками;
* , , ,  - мгновенные токи, протекающие в свободных обмотках.
 
 ( 2 )
 
 
где  и - индуктивности и взаимоиндуктивности соответствующих обмоток.
Система уравнений 1 после подставления в неё значений из уравнений 2 превращается в систему из 4 дифференциальных уравнений с переменными коэффициентами, т.к. практически все индуктивности и взаимоиндуктивности – переменные величины, т.е. являются функцией времени (вращение ротора генератора) за исключением индуктивной обмотки возбуждения.
 const
Эти коэффициенты оказываются непостоянными из-за электрической и магнитной несимметрии ротора генератора. Т. о. система уравнений 1 и 2 позволяет смоделировать процессы в СГ в фазных координатах в режиме ХХ.
Чтобы смоделировать СГ в нагруженном режиме или в режиме КЗ необходимо добавить систему уравнений, позволяющую найти токи в обмотках статора и ротора.
Т. о. систему уравнений 1 дополненную системой уравнений 2 и уравнениями внешней цепи генератора будут представлять собой математическую модель СГ в фазных координатах.

Реализация модели синхронного генератора в фазных координатах
С целью упрощения модели представим её в виде 9 суперблоков. Первый суперблок моделирует переменные коэффициенты в уравнения для определения потокосцепления. Суперблоки 2,3,4,5 моделируют потокосцепление, 6,7,8 - фазное напряжение, 9-й – ток в обмотках возбуждения.
Первый суперблок в свою очередь состоит из подблоков. Первые три моделируют постоянные коэффициенты , , , ; подблоки 4 – 6 моделируют индуктивности , , ; подблоки 7 – 9 моделируют взаимоиндукцию между фазами , , ; подблоки 10 – 12 моделируют взаимоиндукцию между обмотками возбуждения и фазными обмотками статора.
Порядок выполнения работы
I. Реализация первого суперблока
1. При реализации модели СГ в первую очередь необходимо смоделировать постоянные коэффициенты , , , .
Первый подблок имеет следующую реализацию:


Рис.1 – Первый подблок первого суперблока, моделирующий  
Реализация второго подблока:


Рис.2 – Второй подблок первого суперблока, моделирующий ,
Реализация третьего подблока:


Рис.3 – Третий подблок первого суперблока, моделирующий
Каждый из трёх подблоков представляем в виде субблоков. Для этого:
а) выделяем подблок;
б) с помощью правой кнопки мыши находим операцию “Create subsystem”;
в) образуем субблок;
г) обозначаем входящие и выходящие параметры.
2. Моделирование индуктивностей , , :
cos
cos
cos ,
где  = ;
- переход времени от секунд к о.е.

Рис. 4 – Модель  

Рис. 5 – Четвертый подблок первого суперблока, моделирующий , ,
3. Моделирование взаимоиндуктивностей между фазами ,
cos
cos
cos

Рис. 6 – Пятый подблок первого суперблока, моделирующий ,
4. Моделирование взаимоиндуктивностей между обмоткой возбуждения и фазными обмотками , .
  cos
cos
cos

Рис. 7 – Шестой подблок первого суперблока, моделирующий ,
4.                Каждый из подблоков преобразуем в субблок аналогично первым трём подблокам, при этом соединяя одноимённые входы и выходы подблоков.

Рис. 8 – Содержимое первого суперблока
6. Образуем первый суперблок (Sb1).

Рис. 9 – Первый суперблок (Sb1)
II. Реализация 2 - 5 суперблоков
Согласно системе уравнений (2) моделируем потокосцепления, связанные с соответствующими обмотками.


Рис. 10 – Второй суперблок (Sb2)


Рис. 11 – Третий суперблок (Sb3)


Рис. 12 – Четвертый суперблок (Sb4)
 

Рис. 13 – Пятый суперблок (Sb5)
Преобразуем суперблоки Sb2 - Sb5 в субблоки.

III. Реализация 6 – 8 суперблоков

Согласно системе уравнений (1) моделируем фазные напряжения в обмотках статора.

 

Рис. 14 – Шестой суперблок, моделирующий напряжение фазы А (Sb6)



Рис. 15 – Седьмой суперблок, моделирующий напряжение фазы В (Sb7)



Рис. 16 – Восьмой суперблок, моделирующий напряжение фазы С (Sb8)


IV. Реализация девятого суперблока
 Согласно той же системе уравнений (1) моделируем ток в обмотке возбуждения.


Рис. 17 – Девятый суперблок, моделирующий ток в обмотке возбуждения (Sb9)
Преобразуем каждый из суперблоков в субблоки и соединяем их одноимённые входы и выходы с предыдущими блоками. Затем аналогичным образом получим суперсуперблок (SSb), на вход которого подаём  и Uf.

Рис. 18 – Содержимое SSb


Рис. 19 – Суперсуперблок SSb

V. Модель СГ в режиме ХХ
Подключив осциллографы к соответствующим выходам SSb, будем наблюдать изменение фазных напряжений и тока в обмотке возбуждения СГ в режиме ХХ. С помощью объединяем фазные напряжения для просмотра в одной системе координат. Т.к. в данной модели фазные токи равны 0, то это модель СГ в режиме ХХ.

Рис. 20 – Модель СГ в режиме ХХ


1. Реферат на тему Martin The Warrior Essay Research Paper MARTIN
2. Контрольная работа Лексическое значение слов Фразеологизмы
3. Диплом Распределение врановых птиц на территории города Гомеля
4. Реферат Авторитаризм 2
5. Реферат Психология профессионального обучения
6. Реферат Стилистические особенности современной рекламы
7. Контрольная работа на тему Жалованные грамоты Екатерины II
8. Статья Инициирование деэмульгирующих свойств реагентов физическими полями
9. Реферат Подвижные игры 4
10. Реферат на тему Особенности ценность и добыча яшмы