Диплом

Диплом Мониторинг и прогнозирование геофизических процессов

Работа добавлена на сайт bukvasha.net: 2015-10-24

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.1.2025



Мониторинг и прогнозирование геофизических процессов

(Программа курса для магистров экологического факультета РУДН)

Планетарные геосферы и методы их исследования (сейсмология, гравиметрия, магнитометрия, геоэлектрика, геотермия).

Наша планета Земля по составу, состоянию слагающего вещества, физическим свойствам и протекающим в ней процессам неоднородна. Вообще, неоднородность - это главное свойство и движущая сила всей Вселенной, в том числе и нашей планеты.

В направлении к центру Земли можно выделить следующие оболочки, или, иначе говоря, геосферы: атмосферу, гидросферу, биосферу, земную кору, мантию и ядро. Иногда внутри твердой Земли выделяют литосферу, объединяющую земную кору и верхнюю мантию, астеносферу, или частично расплавленный слой в верхней мантии, и подастеносферную мантию. Ниже мы покажем, что последняя классификация верхних геосфер твердой Земли более обоснована при рассмотрении геодинамических процессов.

Три внешние оболочки (атмосфера, гидросфера и биосфера) имеют весьма непостоянные или даже неопределенные границы, но по сравнению с другими геосферами они наиболее доступны непосредственному наблюдению. Геосферы твердой Земли, за исключением самого верхнего слоя земной коры, изучаются в основном косвенными, геофизическими методами, поэтому многие вопросы пока остаются нерешенными. Достаточно сравнить радиус Земли - 6370 км и глубину самой глубокой пробуренной скважины - менее 15 км, чтобы представить себе, как мало мы имеем непосредственной информации о составе вещества планеты.

Рассмотрим основные физические характеристики отдельных геосфер.

Атмосфера - сплошная газовая оболочка, мощность которой составляет несколько десятков тысяч км. Ее плотность быстро уменьшается с высотой. Основная масса атмосферы - около 50% - сосредоточена в нижнем (5-км) слое, 90% находится в 16-км слое, а масса воздуха, находящегося выше 30 км, не превышает одного процента всей массы атмосферы.

Атмосфера представляет собой механическую смесь газов с небольшой примесью твердых частиц (пыли) и паров воды. В состав атмосферы входят: азот (N2) - 78,08%, кислород (О2) - 20,95%, аргон (Ar) - 0,93% и углекислый газ (СО2) - 0,03%. К остальным, сравнительно незначительным по содержанию, газовым компонентам относятся неон (Ne), гелий (Не), криптон (Kr), водород (Н2) и некоторые другие. Указанный процентный состав воздуха сохраняется до высоты 100-120 км; выше происходит их разделение по плотности и на высоте 200-250 км преобладает азот; до 500-700 км - атомарный кислород, затем гелий и водород (у внешней границы атмосферы - атомарный водород). Суммарная масса газов атмосферы оценивается в 5,3×1015 т. Объем воды в атмосфере составляет около 13000 км3. Однако атмосфера составляет всего 10-6 часть массы всей Земли.

На процессы, происходящие во внешних геосферах твердой Земли (в био- , гидро- и лито- сферах) основную роль играют такие компоненты атмосферы как кислород, углекислый газ и водяные пары. Их содержание в зависимости от времени и места может меняться в широких пределах.

Кислород обеспечивает протекающие в природе процессы окисления различных веществ, а также дыхание организмов. В атмосфере, особенно на высоте 20-30 км, имеется озон (О3). В процентном отношении озон составляет лишь 10-4 % от массы газов всей атмосферы, но он играет важнейшую роль в обеспечении жизни на планете, предохраняя от вредного воздействия ультрафиолетового и других жестких излучений Солнца.

Водяные пары, достигая состояния насыщения, конденсируются, образуя облака. При определенной величине капель воды или кристаллов льда, когда их вес превышает силы поверхностного натяжения, происходит выпадение осадков.

Углекислый газ и водяные пары являются регулятором температуры воздуха вблизи поверхности, т.к. конденсируют получаемое Землей тепло. СО2 поступает в атмосферу в результате дыхания и разложения организмов, а также при вулканизме и гидротермальной деятельности, а расходуется растениями для питания и образования хлорофилла.

Физические свойства атмосферы: температура, давление, плотность, электро-, теплопроводность и др. меняются как по латерали, так и по высоте.

В зависимости от характера изменения температуры с высотой атмосфера делится на следующие слои (рис.1).

Тропосфера - от поверхности Земли на высоту от 8-9 км до 16-17 км.

Стратосфера - от 8-17 до 50-55 км.

Мезосфера - от 50-55 до 80 км.

Термосфера - от 80 до 600-800 км.

Экзосфера - выше 800 км.

В тропосфере заключена подавляющая часть газовых компонентов атмосферы, а также почти весь водяной пар и твердые частицы. Среднегодовая температура основания тропосферы составляет +15оС. С высотой температура в тропосфере линейно понижается с градиентом - 6-6,5 мК/м. На верхней границе тропосферы Твозд. снижается до -58-60 оС в полярных областях и -80-85 оС в экваториальной области. В тропосфере зарождаются облака, выпадают осадки, формируются циклоны и антициклоны, ураганы и смерчи. Углекислый газ и водяные пары здесь поглощают большую часть солнечной радиации, особенно инфракрасную, и вместе с тем удерживают почти все излучаемое Землей тепло. В тропосфере возникает планетарная конвекция воздушных масс из-за неравномерного нагрева Солнцем земной поверхности. Таким образом происходит теплообмен между низкими и высокими широтами.



Рис.1. Изменение температуры с высотой в атмосфере

Неоднородности теплового режима тропосферы обусловливаются также разным атмосферным давлением в ее частях. Это связывается с рельефом, расположением континентов и акваторий, вращением Земли. Воздушные массы при охлаждении сжимаются, уплотняются и опускаются вниз, при этом давление увеличивается, а при нагревании - расширяются, облегчаются и поднимаются вверх, при этом давление уменьшается. Воздух перемещается из мест с повышенным давлением в места с пониженным давлением, в связи с чем возникают ветры.

В тропосфере происходит круговорот воздушных масс, вызванный постоянной разницей между температурами отдельных тепловых поясов земной поверхности. В экваториальной полосе на протяжении всего года бывает высокая температура, здесь находится пояс низкого давления. В этой полосе нет постоянных ветров; существующее затишье лишь иногда нарушается бурями и ураганами. Нагретый воздух на экваторе поднимается в верхние слои атмосферы и направляется к полюсам. Под влиянием вращения Земли вокруг оси масса воздуха, движущаяся на высоте до 2-3 км, постепенно отклоняется от северных азимутов к востоку. Достигнув 30-35 о с.ш. (30-35 о ю.ш.), т.е. районов субтропиков, основные массы воздуха окончательно поворачивают на восток и начинают вращаться вокруг Земли с запада на восток. Новые, непрерывно притекающие потоки воздуха обусловливают в субтропиках скопление масс воздуха и образуют пояса высокого давления. Воздушные массы, которые сконцентрировались вверху, опускаются и расходятся от поясов высокого давления по поверхности Земли. Эти массы формируют постоянные ветры от поясов высокого давления в сторону экватора, которые называют пассатами. Им противопоставляются антипассаты - массы воздуха, создающие ветры в верхних слоях тропосферы от экватора к субтропикам. Под влиянием вращения Земли пассаты отклоняются к западу и в северном полушарии дуют на юго-запад, а в южном полушарии - на северо-запад.

От субтропических поясов высокого давления часть воздушных масс не доходит до полюсов, т.к. сильно отклоняется. Поэтому в средних широтах (60-65 о) преобладают юго-западные ветры в северном полушарии и северо-западные - в южном полушарии. Ветры дуют также с полюсов, где расположены пояса высокого давления.

Кроме постоянно дующих ветров, существуют и периодически дующие ветры. К ним принадлежат циклоны и антициклоны, муссоны и др. Для циклонов и антициклонов характерно вращательное движение воздушных масс: у первых - против часовой стрелки с областью пониженного давления в центре; у вторых - по часовой стрелке с областью повышенного давления в центре. Циклоны перемещаются иногда с огромной скоростью (например, в тропических поясах до 200-250 км/ч) и причиняют огромный ущерб на поверхности суши или океанов. Циклоны и антициклоны образуются от соприкосновения встречных воздушных масс. Муссоны возникают по побережьям океанов от неравномерного нагревания суши и водных масс. Летом они дуют с океана, зимой - с суши.

Пограничный слой между тропо- и стратосферой называется тропопаузой. В этом сравнительно тонком слое толщиной 2-4 км наблюдаются изотермические условия.

В стратосфере температура воздуха постепенно повышается с высотой, градиент составляет 1-2 мК/м, т.е. у верхней границы слоя температура достигает 10оС. Причиной повышения температуры является слой озона, который, поглощая ультрафиолетовую радиацию, выделяет затем в вышележащие слои атмосферы тепловую энергию. Сам же озон, по-видимому, возникает под действием на кислород той же ультрафиолетовой солнечной радиации или же космических лучей.

В стратосфере происходит интенсивная циркуляция воздуха, сопровождающаяся вертикальными и горизонтальными его перемещениями. В переходном слое от стратосферы к мезосфере, который называется стратопаузой, температура с высотой начинает понижаться.

В мезосфере температура с высотой непрерывно падает. Здесь возможно движение воздушных масс, и здесь образуются так называемые серебристые облака, которые располагаются на довольно постоянной высоте - 80-85 км. Слой серебристых облаков является пограничным между мезо- и термосферой; этот пограничный слой называется мезопаузой.

Температура с высотой довольно быстро возрастает в термосфере. Если на высоте 90 км Т= -90 оС, то на высоте 400 км она достигает 1000-2000 оС; выше температура остается почти неизменной. Под действием ультрафиолетового солнечного излучения и космических лучей воздух сильно ионизируется и становится электропроводным. Этот слой иногда называют ионосферой. Однако следует заметить, что и в вышележащем слое - экзосфере, где температура составляет примерно 200 оС, газы также ионизированы, но их плотность очень низка, поэтому отдельные молекулы газа двигаются с огромными скоростями и преодолевают притяжение Земли.

Охрана атмосферы

Жизнь на Земле была бы невозможна без атмосферы. Она также является одним из основных экзогенных факторов непрерывного изменения и преобразования земной коры (процессы выветривания, эолового переноса вещества и др.). Вместе с тем, она играет важную роль и в хозяйственной деятельности человека. Антропогенное воздействие на атмосферу имеет много направлений. Прежде всего это использование в производстве некоторых составных частей атмосферы - азота для производства удобрений, кислорода для металлургии, медицинских целей, горения и т.д.

Обычная хозяйственная деятельность человечества много тысячелетий оказывает воздействие на климат, причем чаще всего отрицательное. Одним из главных отрицательных факторов глобального воздействия является загрязнение атмосферы углекислым газом. Помимо обычного, природного поступления СО2 в атмосферу, происходит систематическое пополнение атмосферы этим газом за счет сжигания огромного количества топлива. Оценки показывают, что содержание СО2 в атмосфере за последние 20-30 лет возросло на 10-15% и продолжает увеличиваться. Увеличение содержания СО2 приводит к повышению температуры воздуха у поверхности Земли. Расчеты показывают, что по этой причине уже к началу следующего тысячелетия среднегодовая температура может подняться на 0,5оС, что не так уж и мало. Даже такое, казалось бы, незначительное повышение среднегодовой температуры может привести к усилению таяния и некоторому сокращению ледникового покрова, а это, в свою очередь, вызовет цепную реакцию в изменении целого ряда других природных явлений на Земле.

Воздействие человека сказывается и на содержании кислорода в воздухе. Кислород восстанавливается в атмосфере благодаря естественным процессам, и в первую очередь, в результате фотосинтеза растений. Поэтому уменьшение площади лесов ослабляет один из основных источников пополнения атмосферы кислородом.

Загрязнение атмосферы промышленными и транспортными выбросами (сажа, зола, сернистые соединения, СО, СО2, пыль и др.) делают в ряде случаев атмосферу мало или даже совсем непригодной для жизнедеятельности человека и для некоторых видов флоры и фауны. В промышленных городах, где выбросы в атмосферу особенно велики, нередко образуются смоги - это густой туман, состоящий из смеси вредных соединений: оксидов серы, азота, углерода и др.). “Рекордсменами” по смогу можно считать такие города, как Лос-Анджелес, Мехико-Сити, Сан-Пауло, и некоторые другие. Все это указывает на настоятельную необходимость сочетания хозяйственной деятельности человека с тщательной охраной атмосферы.

Особое внимание необходимо обратить на сохранение озонового слоя. Разрушающе действуют на озон водяные пары, ОН- , NO2, CH4, и некоторые другие вещества. Самую большую опасность для озонового слоя представляют наземные и воздушные испытания атомных и водородных бомб, на которые, правда, уже 15 лет наложен международный мораторий. Тем не менее, следует упомянуть о том, что при наземном испытании одной водородной бомбы средней мощности в атмосферу выбрасывается до 100 млн.т пыли; возникающее при этом помутнение атмосферы равносильно помутнению при крупном вулканическом извержении. (Примеры последних мы будем рассматривать ниже).

Специалисты по моделированию природных катастроф из ВЦ РАН (акад.Н.Н.Моисеев и др.) пришли к выводу, что в случае взрыва даже 25% существующего арсенала атомного оружия, вследствие выброса в атмосферу пыли и дыма (помимо других изменений природной среды) может возникнуть катастрофическая “ядерная зима” на всей планете. В качестве примера подобного явления, но в значительно меньших масштабах, приводятся последствия извержения вулкана Тамбор в Индонезии в 1815 г., послужившее причиной того, что в следующем году в США выпал невиданной толщины снежный покров, а в Европе лето оказалось самым холодным за всю историю.

Гидросфера - это, в первом приближении, прерывистая оболочка Земли, включающая воды океанов, морей, озер и рек, подземные воды, воды, собранные в виде вечных снегов и льда, а также химически связанные воды горных пород. Здесь мы рассмотрим характеристики основного земного резервуара вод - Мирового океана, объединяющего все океаны, окраинные и внутренние моря.

На Мировой океан приходится примерно 71% всей поверхности Земли (361 млн.км2 из 510 млн.км2). Если объем воды всей гидросферы составляет, примерно, 1458 млн км3, то на Мировой океан приходится 1370 млн км3, что равно 94% всего объема воды планеты. Масса гидросферы составляет примерно 0,025% от массы всей Земли.

На океанском дне в зависимости от глубины можно выделить несколько основных батиметрических зон, отличающихся тектонической природой, физико-географическими условиями, биологическими видами и другими особенностями (табл.1).

Наглядное представление о характере распределения высот суши и глубин океанского дна дает гипсометрическая кривая (рис.2). Она отражает соотношение площадей твердой оболочки Земли с различной высотой - на суше и с различной глубиной - в море. С помощью кривой вычислены средние значения уровня земной поверхности с учетом уровня земной поверхности (245 м), твердой оболочки (-2440 м), суши (840 м) и средней глубины моря (-3880 м). Если не принимать во внимание горные области и глубоководные впадины, занимающие относительно небольшую площадь, то на гипсометрической кривой можно отчетливо выделить два преобладающих уровня: уровень континентальной платформы высотой примерно 1000 м и уровень океанического ложа с отметками от -2000 до -6000 м. Соединяющая их переходная зона представляет собой относительно резкий уступ и называется континентальным склоном. Естественным продолжением континента является его внешняя, затопленная морем часть, - континентальный шельф. Таким образом, естественной границей, разделяющей океан и континенты, является не видимая береговая линия, а внешняя граница склона.

Основные зоны дна Мирового океана

Таблица 1

Элементы рельефа

Глубина, м

Доля относительно площади океанов,%

Шельф

0-300

9,6

Континентальный склон

300-2500

13,0

Абиссаль

2500-6500

76,5

Глубоководные впадины

6500-11000

0,9

Являясь продолжением континентов, близким с ним по геологическому строению, и располагаясь на доступных глубинах, шельф представляет особый интерес с точки зрения поисков и разведки месторождений полезных ископаемых. Происхождение шельфа обычно связывают с эвстатическими колебаниями уровня вод Мирового океана, обусловленными глобальными изменениями климата. Так, во время четвертичного оледенения значительное количество воды было сосредоточено в покровных и плавающих льдах; при этом уровень океана был ниже на 100-150 м. Современное положение бровки шельфа, за которой начинается континентальный склон, в связи с проявлением вертикальных движений земной коры неодинаково и колеблется в интервале глубин 90-500 м при среднем значении 132 м. Рельеф шельфа свидетельствует о проявлении поверхностных эрозионных процессов - здесь известны речные и ледниковые формы рельефа (подводные русла рек и пролювиальные долины), ископаемые льды и торфяники с остатками мамонтов и других наземных животных, что подтверждает прежнее положение суши на шельфе.

Реконструкция климата и связанных с ним изменений уровня океана свидетельствует о том, что в течение всего фанерозоя (560 млн лет) не прекращались эвстатические колебания, а в отдельные периоды уровень вод Мирового океана повышался на 300-350 м относительно его современного положения (рис.3, а). При этом значительные участки суши (до 60% площади континентов) оказывались затопленными (рис.3, б).

В последние годы геологи и экологи связывают возможные изменения уровня вод Мирового океана не только с природными, но и с антропогенными факторами. В соответствии с одним из таких прогнозов, разогрев атмосферы за счет повышения содержания СО2 приведет в 2100 г. к полному таянию ледников и повышению уровня вод Мирового океана на 60-80 м. При этом под водой окажутся многие низменные области суши, многие крупные города на берегу океана (рис.3, в).

Континентальный склон характеризуется крутым погружением дна, достигающим 15о и более. На западном побережье п-ва Флорида (рис.4), например, начало континентального склона четко фиксируется на карте по сгущению изобат. Переход от континентального склона к абиссали обычно выражен хуже - продукты эрозии склона образуют зону континентального подножья, расположенную на глубинах от 2 до 5 км. Крутизна континентального склона способствует его интенсивной подводной эрозии, в результате которой перегиб шельфа и поверхность склона сильно изрезаны. Характерной формой рельефа склона являются каньоны - глубоко врезанные долины с крутыми склонами. Часто они являются продолжениями рек. Так, каньон р.Конго (рис.5) начинается в ее эстуарии и прослеживается до глубины 4 км. В устье каньона имеется конус выноса площадью в несколько десятков тысяч квадратных километров.

С разрушением (оползанием) склонов связаны также мутьевые потоки, выносящие к подножью массы осадков, называемых турбидитами.

Океаническое ложе, включающее континентальное подножье и абиссальные равнины, занимает наибольшую часть площади Мирового океана. Характерные формы рельефа здесь - это обширные котловины и протяженные срединно-океанические хребты. Система срединно-океанических хребтов протягивается через все океаны на 60000 км.

Рельеф поверхности дна морей и океанов неоднороден; в нем, как и на материках, различают горы, возвышенности, равнины, плато. В рельефе различают как линейные, так и мозаичные (изометричные) структуры. Отдельно стоящие подводные горы, чаще всего встречающиеся на абиссали или у подножья континентального склона, имеют вулканическое происхождение - это потухшие подводные вулканы. Если вершина вулкана поднималась над поверхностью океана, то она подвергалась эрозии и становилась плоской. При повторном опускании под уровень океана вулканический остров превращался в подводную гору с плоской поверхностью, которая называется гайотом.

Срединно-океанические хребты образуются в дивергентных зонах океанического дна, т.е. в местах его растяжения (спрединга). Это вызывает образование глубинных разломов, приток глубинного мантийного вещества к поверхности океанов и образование новой коры. Поэтому районы срединно-океанических хребтов называют также конструктивными зонами. Вдоль всех срединных хребтов встречаются многочисленные действующие подводные вулканы и гидротермальные проявления. Вулканическая и гидротермальная деятельность срединных хребтов ярко иллюстрируется в Исландии, где Срединно-Атлантический хребет выходит на сушу (рис.6). Характерными формами срединно-океанических хребтов являются рифтовые долины и трансформные разломы. Центральная, наиболее приподнятая часть хребта обычно бывает рассечена глубокой продольной долиной, образованной разрывами и протягивающийся вдоль всего хребта - эта долина и называется рифтовой. Сегменты хребта по простиранию смещены на значительные расстояния вдоль поперечных, или трансформных разломов. Их протяженность измеряется тысячами км.

Наиболее погруженной частью Мирового океана является область глубоководных желобов, занимающая всего 0,9% площади океанов. Основная часть этих впадин приурочена к периферии Тихого океана и генетически связана с конвергентными зонами, т.е. с зонами, в которых происходит “сдвижение” океанских плит. Это сдвижение сопровождается субдукцией (пододвиганием) океанической плиты под континентальную, т.е. в этих зонах происходит поглощение океанической коры и ее постепенное преобразование в континентальную кору. У основания зон субдукции образуются глубоководные желоба, состоящие из отдельных очень глубоких впадин. Самой глубокой известной впадиной является впадина Марианского желоба, открытая в 1954 году в одном из рейсов научно-исследовательского судна Академии наук “Витязь”. Ее глубина составляет 11022 м. Над зонами субдукции располагаются хотя и надводные, но относящиеся к океаническим структурам - островные дуги. Земная кора в островных дугах имеет океанический облик, что и позволяет их относить скорее к океанам, чем к континентам.

К основным физико-химическим свойствам Мирового океана относятся температура, плотность, химический состав, теплоемкость и др.

Океаны холодные. Вода в них прогревается только у самой поверхности, а с глубиной она становится все холоднее и холоднее. Только 8% вод океана теплее 10оС, более половины холоднее 2,3оС. Можно сказать, что по особенностям температуры океан представляет собой холодную массу воды с тонким более нагретым слоем у поверхности. Поверхностная “пленка” воды в тропиках теплее, чем в более высоких широтах. С глубиной температура изменяется неравномерно. Термометр, миновав теплый поверхностный слой воды, обычно регистрирует резкое понижение температуры. Такое распределение характерно для большей части океана: прогретый поверхностный слой с довольно однородной температурой сменяется областью резкого ее падения, которая отделяет его от холодных вод океана. Поверхностный слой часто называют слоем перемешивания, а область быстрого изменения температуры - термоклином (рис.7). Поскольку в тропиках поверхностный слой теплее, чем в высоких широтах, а глубинные воды везде однородно холодные, то характер термоклина меняется с глубиной. Самые мощные термоклины наблюдаются в тропиках. В некоторых глубоководных районах океана, особенно во впадинах и желобах, температура с глубиной медленно возрастает (рис.8). В какой-то мере это вызвано прогревом воды глубинным тепловым потоком из недр Земли. На графиках как функция глубины показаны: ход температуры (Т), измеренной in situ, и ход потенциальной температуры (q), т.е. температуры, которая должна была бы наблюдаться у поверхности океана, если частицу воды со дна при адиабатических условиях перенести к поверхности. Поясним это явление. Для воды с глубин в несколько тысяч метров различия между температурой in situ и потенциальной температурой составляют несколько десятых долей градуса. Поскольку для изучения процессов в придонных слоях воды океанологам нужно знать температуру до сотых долей градуса, эта разница в температуре имеет решающее значение. Она обусловлена сжимаемостью морской воды под давлением. Так, если 1 м3 с поверхности опустить на глубину 5 км, где давление в 500 раз выше атмосферного, то этот объем уменьшился бы на 2%. Более того, при сжатии температура воды повысилась бы почти на 0,5оС, поскольку в этом процессе обмена теплом с окружающей водой не происходит. Такой процесс называется адиабатическим. В глубоководных впадинах различие между потенциальной температурой и температурой in situ особенно примечательно. Если в распределении потенциальной температуры с глубиной наблюдается максимум у дна, то можно говорить о наличии аномального прогрева слоя придонных вод за счет поступления глубинного тепла. Этот признак позволяет в некоторых случаях определять факт разгрузки термальных вод на океанское дно.

Плотность воды находится в тесной зависимости от температуры и солености; она повсеместно возрастает с глубиной. Средняя плотность поверхностных вод Мирового океана при Т=20оС и солености 35 составляет 1,02474 г/см3 (она выше плотности речных вод). Охлаждаясь, вода тяжелеет. При той же солености, но при Т=2оС r»1,028 г/см3. Давление с глубиной возрастает примерно на 104 Па (0,1 атм.) при погружении на каждый метр. Давление также увеличивает плотность воды. На глубине 5 км плотность уже составляет 1,050 г/см3.

На больших глубинах, в связи с высоким давлением, усиливается растворяющее действие воды, поэтому попадающие туда из верхних слоев воды минеральные тела и органические остатки в той или иной степени растворяются и исчезают.

Океанские воды характеризуются определенным химическим составом и соленостью (табл.2). Соленый вкус - самая характерная особенность морской воды. Большая часть растворенного в морской воде вещества составляет хлористый натрий. Перепад в концентрации соли между солеными водами океана и солоноватыми водами устьевых участков рек и болот на побережье морей характеризуется резко выраженными фаунистическим и флористическими границами. Соленость представляет собой общее количество растворенного в морской воде вещества. Если говорить точнее, то соленость следует понимать как “общее количество твердых веществ в г/кг морской воды при условии, что все карбонаты переведены в оксиды, бром и йод замещены хлором и все органическое вещество окислено”. Обычно соленость в океанах составляет 34,69 г/кг, или 34,69. В зависимости от ряда условий (сильная испаряемость воды, ее опреснение, большой привнос солей речными водами, изолированность от океана) соленость воды может быть выше или ниже нормальной. Так, в Красном море (под влиянием сухих ветров и сильного испарения) соленость воды составляет 41-43, в Средиземном море - 37-39, в Балтийском море у проливов 20, а в Финском заливе вблизи устья Невы - всего 2.

Воды океана содержат почти все известные химические элементы и их изотопы. Общее количество солей, растворенных в воде океанов, составляет 5×1016 т. Мировой океан постоянно пополняется солями, преимущественно за счет их выноса материковым стоком. Ежегодно реки выносят в океан примерно 2,5×109 т солей. Потери же соли в океане происходят при испарении (когда соль выпадает в осадок) и разбрызгивании воды под действием приливной деятельности в береговой зоне.

Солевой состав океанических и речных вод

Таблица 2

Химические вещества

Воды океанов, %

Речные воды, %

Хлориды - NaCl, MgCl2

88,7

5,2

Сульфаты - Mg(SO4), Ca(SO4), K2(SO4)

10,8

9,9

Карбонаты - Ca(CO3)

0,3

60,1

Прочие вещества

0,2

24,8

Карбонаты, кремнезем и некоторые другие вещества широко извлекаются из воды морскими организмами на построение скелета. Поэтому солевой состав океанических вод резко отличается от состава речных вод (см.табл.2).

В табл.3 приводится концентрация отдельных компонентов (элементов) солей океанической воды.

Примерно до 1955 г. соленость измеряли, определяя количество ионов хлора в единице массы воды. Полученное таким образом значение “хлорности” (Cl) вводили в эмпирическую формулу для расчета солености (S): S=1,80655´Cl. Эта формула исходит из допущения, что относительное содержание различных солей, растворенных в морской воде, постоянно. Многочисленные анализы показывают, что, за исключением незначительных отклонений в концентрации кальция, это действительно так. Указанная зависимость остается верной примерно до значения ±0,002 общей солености; этим же значением ограничивается точность метода химического анализа путем титрования.

Компонентный состав океанской воды

Таблица 3.

Компонент

Концентрация (г/кг)

Компонент

Концентрация (г/кг)

Хлор

19,353

Бикарбонат

0,142

Натрий

10,760

Бром

0,067

Сульфат

2,712

Стронций

0,008

Магний

1,294

Бор

0,004

Кальций

0,413

Фтор

0,001

Калий

0,387





Соленость приходится определять очень тщательно, т.к. ее величина мало изменяется на огромных морских просторах, за исключением некоторых изолированных внутренних или окраинных бассейнов, часть из которых упомянута выше. Тем не менее считается, и не без основания, что небольшие различия в солености вод контролируют направления и скорость их циркуляции. Например, соленость придонных вод в Тихом океане меняется примерно от 34,70 в южной части до 34,68 к 40ос.ш. Это небольшое изменение поддается объяснению, если предположить, что придонная вода движется в северном направлении и разбавляется менее соленой водой из вышерасположенных слоев.

Морской лед, в отличие от морской воды, имеет принципиально иную соленость, что объясняется спецификой образования морского льда. Как известно, температура замерзания понижается по мере увеличения солености. В диапазоне солености от 30 до 35 точка замерзания меняется от -1,6оС до -1,9оС. Механизм образования морского льда можно представить как замерзание пресной воды с вытеснением солей в ячейки морской воды внутри толщи льда. Когда температура достигает точки замерзания, образуются ледяные кристаллы, которые “окружают” незамерзшую воду. Незамерзшая вода обогащается солями, вытесненными кристаллами льда, что приводит к дальнейшему понижению точки замерзания воды в этих ячейках. Если кристаллы льда не полностью окружат обогащенную солями незамерзшую воду, она будет опускаться и смешиваться с нижележащей морской водой. Если процесс замерзания растянут во времени, то почти весь обогащенный солями рассол уйдет из льда и его соленость окажется близкой к нулю. При быстром замерзании большая часть рассола захватится льдом и его соленость будет почти такой же. Как и соленость окружающей воды. В большинстве случаев соленость морских льдов находится в диапазоне от 2 до 20, причем более старый лед имеет в среднем более низкую соленость. Причина этого состоит в том, что опреснению старого льда способствовало неоднократное таяние и замерзание при изменениях температуры воздуха. При достаточно низкой температуре начинает кристаллизоваться сам раствор солей. Na2(SO4) кристаллизуется при -8,2оС, а NaCl - при -23оC.

Прочность морского льда из-за сложной картины распределения солевых ячеек и его частично двухфазного состава в три раза уступает прочности пресноводного льда той же толщины. Однако старый морской лед с очень низкой соленостью или лед, образовавшийся при температуре ниже точки кристаллизации хлорида натрия, не уступает по прочности пресноводным льдам.

Кроме солей, в воде растворены и некоторые газы: азот, кислород, углекислый газ и др. Между гидросферой и атмосферой в планетарном масштабе существует постоянный газовый обмен и динамическое равновесие. Но соотношение между газами в водах Мирового океана и атмосферы далеко не одинаковое. Так, в водах азота в два раза меньше, чем в атмосфере, а кислорода в 1,4 раза больше. Это объясняется лучшей растворимостью в воде кислорода, чем азота. Насыщенность вод газами в значительной мере зависит от температуры: чем выше температура воды, тем ниже растворимость газов. По этой причине воды высоких широт более насыщены газами. Газовый состав океанских вод зависит также от циркуляции вод, жизнедеятельности организмов, биохимических процессов, подводного вулканизма, ветрового перемешивания воды и прилегающих слоев атмосферы. В застойных бассейнах или в тех частях толщи воды, где циркуляция ее ослаблена или полностью отсутствует, содержание кислорода резко уменьшается, начинают проявляться восстановительные процессы, что приводит к образованию сероводорода. Примером зараженного сероводородом бассейна может служить Черное море, где ниже 170 м и до самого дна сероводород содержится во всей массе воды.

Циркуляция океанских вод зависит главным образом от двух факторов: плотности воды и влияния ветра. Более плотные массы воды высоких широт направляются к низким широтам. Вместе с тем, пассатные и другие ветры создают огромные теплые и холодные течения, прибойные волны. Морские волнения могут ощущаться в общем до глубины 200 м, а высота волн достигает 10 и более метров. Вблизи побережья волны, вследствие их трения о дно опрокидываются на берег, образуя прибой.

Теплые течения, возникающие в районе действия пассатов, оказывают большое влияние на температурный режим океанских вод, миграцию организмов, отложение и вынос осадков. Одним из наиболее теплых и замечательных течений в океане является Гольфстрим, берущий начало в Мексиканском заливе. “В океане течет река. Она не пересыхает в самые жестокие засухи и не переполняется во время самых сильных наводнений. Ее берега и дно образованы холодной водой, а сама она теплая”. Этими словами начинается описание Гольфстрима в классической работе Фонтена Мори “Физическая география океана и его метеорология”[1]. Немного более ста лет спустя Генри Стоммел в работе “Гольфстрим”[2] охарактеризовал его более точно, но менее поэтично, как пограничное течение между теплыми солоноватыми водами Саргассова моря и холодными плотными водами континентального склона. Около Флориды температура вод этого течения до глубины 1500 м достигает 20оС. Скорость его достигает 220 км/сутки. Огибая Саргассово море с юга, Гольфстрим пересекает Атлантический океан, достигает берегов Ирландии и Великобритании, течет вдоль берегов Норвегии, а затем раздваивается и направляется к Шпицбергену и в Баренцево море. Благодаря притоку относительно теплых вод Мурманский порт не замерзает круглый год, а расположенный южнее С.-Петербургский порт замерзает на несколько месяцев.

Совершенно иное влияние оказывают холодные течения. Например, холодное Лабрадорское течение, омывающее берега канадского п-ва Лабрадор, превратило эту землю в холодную и почти безжизненную пустыню, хотя Лабрадор и находится на одной широте с Англией.

Своеобразным движением океанских вод являются приливы и отливы. Их высота в открытых океанах достигает 10-12 м, а на мелководье - до 15 м; во внутренних морях приливы и отливы практически не ощущаются.

Основное влияние на приливы и отливы оказывает Луна. Лунные приливы в 2,2 раза сильнее солнечных. Приливы проявляются одновременно на стороне Земли, обращенной к Луне, и на противоположной стороне Земли. В последнем случае прилив происходит по той причине, что водная оболочка как бы отстает от Земли, потому что последняя, находясь ближе к Луне, притягивается сильнее. В областях, расположенных перпендикулярно к линии наибольших приливов, будет происходить отток воды в сторону приливов, т.е. там будут наблюдаться отливы. По мере вращения Земли вокруг своей оси в течение суток в одной и той же точке может произойти два прилива и два отлива.

Земля Луна





Рис.8. Схема лунных приливов и отливов

Энергия приливно-отливных волн огромна, и люди давно уже задумывались над тем, как ее использовать. В настоящее время в России действует первая экспериментальная приливная электростанция вблизи Мурманска на Кольском п-ве. Высота приливных волн здесь достигает 5 м. Приливные электростанции имеются во многих странах мира. Особенно этот вид альтернативной энергетики развит во Франции, Испании, США, Японии, Англии, Канаде и в др. странах.

Охрана Мирового океана. Мировой океан играет огромную роль в жизни и планеты, и человечества. Подчеркнем два фактора общепланетарного значения Мирового океана:

Около трети кислорода атмосферы продуцируется растительным планктоном океана;

Огромные запасы механической и тепловой энергии океанских вод и обмен с атмосферой оказывают колоссальное воздействие на погоду и климат планеты.

Для человека и его деятельности значение океана выражается в следующем:

Океан - важный источник пищевых ресурсов;

В океане и в его недрах находятся огромные запасы полезных ископаемых, которые во все большем объеме привлекаются для нужд человечества (нефть, химическое сырье, полиметаллические руды гидротермального происхождения).

Воды океанов подвергаются загрязнению нефтью и нефтепродуктами, радиоактивными веществами, промышленными и бытовыми отходами. Это обстоятельство приобрело столь угрожающие размеры, что проблема охраны переросла в глобальную проблему, требующую безотлагательного решения.

Жизнь в океане в основном связана с поверхностными зонами воды; они же подвержены наибольшему загрязнению. Гибель планктона означает гибель и остальных групп животных океана, а гибель фитопланктона сокращает поступление кислорода в атмосферу. Жизнь на суше находится в тесной зависимости от жизни в океане. Туру Хейердалу принадлежит такое высказывание: “... мертвый океан - мертвая планета.”

Биосфера - или сфера жизни Земли, не занимает обособленного положения, а располагается в пределах других оболочек, охватывая гидросферу, тропосферу и верхнюю часть земной коры - ее приповерхностный и почвенный слои. Живые организмы встречаются и ниже почвенного слоя - в глубоких трещинах, пещерах, подземных водах и даже в нефтеносных слоях на глубине в сотни и тысячи метров.

В состав живых организмов входят не менее 60 химических элементов, главные из которых (биогенные элементы) - это C, O, H, N, S, P, K, Fe, Ca и некоторые другие. Живые организмы приспосабливаются к жизни при экстремальных условиях. Споры некоторых низших растений выдерживают температуры до -100 - -200оС. Бактерии встречаются в горячих источниках при Т=100оС и даже в океанских гидротермах при Т=200-250 оС. К удивлению аквонавтов, опускавшихся на глубины океанских впадин, они встретили живые организмы, приспособившиеся к жизни при огромных давлениях.

Живая масса биосферы в пересчете на сухое вещество составляет около 1015 т. В целом на растения приходится 99% биомассы, а на животных и микроорганизмы - всего 1%. Таким образом, живая масса планеты преимущественно растительная.

Биосфера - это самый мощный аккумулятор солнечной энергии благодаря фотосинтезу растений. Подсчитано, что только фитопланктон океана поглощает 0,04% солнечной энергии, поступающей на поверхность Земли. За геологическую историю Земли биосфера накопила в недрах колоссальное количество энергии - в толщах углей, нефти, скоплениях горючего газа и горючих сланцев, которыми сейчас человечество широко пользуется. Организмы - важные породообразователи земной коры.

Биосфера, ее биохимическая деятельность обеспечивает планетарное равновесие на Земле - равновесное состояние газов, состава природных вод, круговорот вещества. Образование живого вещества и аккумуляция им энергии сопровождается одновременно и диаметрально противоположными процессами - распадом органических соединений и превращением их в простые минеральные соединения - СО2, воду, аммиак (NH4) с освобождением энергии; в этом и состоит сущность биологического круговорота вещества.

Жизнь на Земле зародилась еще в архее - примерно, 3,5 млрд.лет назад. Такой возраст имеют найденные палеонтологами древнейшие органические остатки. Возраст Земли как самостоятельной планеты Солнечной системы, оценивается в 4,5 млрд.лет. Таким образом, можно считать, что жизнь зародилась еще в юношескую стадию жизни планеты.

Охрана животного и растительного мира

Органический мир для человека является основой удовлетворения его пищевых потребностей, а также отчасти удовлетворения сырьевых нужд в его повседневной хозяйственной деятельности. К сожалению, ряд видов организмов частично или полностью потеряли свое значение из-за хищнического хозяйствования. Исчезнувшие виды животных и растений не могут быть восстановлены. Сейчас мы еще в силах сохранить те виды животных и растений, которые находятся на грани полного уничтожения: запрещена охота на те или иные виды, сохраняются природные условия обитания таких организмов (заповедники, охранные зоны и др.). Для пищевых и сырьевых нужд привлекаются новые, ранее не использовавшиеся виды организмов, особенно населяющие океаны.

Организмы рассматриваются человеком не только с экономической точки зрения. Так, растительный покров имеет важное оздоровительно-гигиеническое значение (зоны отдыха). Забота о животных и растениях во всем мире приобретает большое эстетическое, научно-познавательное и воспитательное значение.

Твердые оболочки Земли: земная кора, мантия, ядро.

Земная кора представляет собой верхнюю твердую оболочку Земли и имеет сложный рельеф. В рельефе суши различают горные системы, плоскогорья и равнины, а также подчиненные им формы. О рельефе океанского дна мы уже говорили выше.

Толщина земной коры колеблется в широких пределах - от 5 до 15 км под океанами и от 20 до 70 км под континентами. Верхняя часть земной коры в пределах глубин, достигнутых бурением, доступна для непосредственного изучения. Поэтому нам более или менее достоверно известен состав вещества верхней части коры до глубин 10-12 км (максимальная глубина, достигнутая бурением, составляет немногим более 14 км (скв.Вредефорд в Южной Африке); российская сверхглубокая скважина СГ-3 на Кольском п-ве достигла глубины 12, 2 км). О более глубоких горизонтах земной коры и подстилающих ее геосфер, недоступных для непосредственного изучения, приходится судить по косвенным геофизическим данным. Однако, следует заметить, что в результате тектонических перемещений блоков земной коры иногда на поверхность Земли или в разрезы глубоких скважин попадают обломки пород из нижних частей коры или из верхней мантии (ксенолиты), поэтому их изучение позволяет судить о составе этих геосфер.

В составе вещества земной коры выявлено 89 из 105 элементов периодической системы Менделеева. Химические элементы земной коры образуют природные химические соединения - минералы, а те, в свою очередь, путем химического или чаще механического соединения - горные породы.

На основании многочисленных химических анализов минералов и горных пород, слагающих верхнюю часть земной коры, А.Б.Роновым и А.И.Ярошевским было вычислено среднее содержание каждого химического элемента, или кларк каждого элемента. Наибольшие кларки имеют следующие элементы (в %%): О2 - 47; Si - 29,5; Al - 8,05; Fe - 4,65; Ca - 2,96; Na - 2,50; K - 2,50; Mg - 1,87; прочие - 0,93. Вычислены также кларки для всех остальных оболочек Земли, для Солнца, Луны.

Поскольку кислород, кремний и алюминий составляют подавляющую часть земной коры, они входят в состав всех наиболее распространенных природных соединений.

По физическим свойствам и геофизическим характеристикам (скорости прохождения сейсмических волн, плотности, магнитной восприимчивости, теплопроводности, электропроводности и др.) земную кору принято разделять, как минимум, на три слоя: осадочный, гранитно-метаморфический и базальтовый (рис.10). Присутствие гранитно-метаморфического слоя - это признак континентальной земной коры - в океанической коре этот слой отсутствует. Разделение на слои с таким названием не означает, что породы действительно имеют состав гранитов или базальтов. Это только значит, что по сейсмическим характеристикам, т.е. по скоростям прохождения сейсмических волн через этот слой они сходны с соответствующими породами. Например, у многих метаморфических пород, относимых к гранитно-метаморфическому слою (амфиболитовых, хлоритовых сланцев, мраморов и др.), скорость прохождения сейсмических волн такая же, как у гранитов. Мощность гранитно-метаморфического слоя под континентами составляет от 10 до 40 км. Мощность базальтового слоя под континентами изменяется от 30 до 40 км, а под океанами - от 3 до 15 км. Плотность пород “гранитного” слоя составляет 2400-2600 кг/м3, базальтового - 2,8-3,3 кг/м3, вещества мантии, состоящего из ультрабазитовых пород (с пониженным содержанием SiO2), - 3,4 кг/м3.

Земная кора - это продукт дифференциации вещества мантии, т.е. разделения этого вещества по плотности. Более легкоплавкое и менее плотное вещество, в соответствии с законом Архимеда, всплывало сквозь толщу мантии, иногда диффундируя по межмолекулярным промежуткам, а иногда проходя по трещинам, образовавшимся между отдельными блоками. Если первый способ дифференциации происходил очень медленно (скорость диффузии можно оценить величинами 10-8-10-9 см/с, то скорость массообмена по трещинам на два порядка выше - 10-6-10-7 см/с.

Образование земной коры продолжается и в настоящее время. Так, океаническая кора формируется в рифтовых и разломных зонах срединно-океанических хребтов, а континентальная - в зонах перехода от океана к континенту: островные дуги по периферии океанов - это фрагменты сформировавшейся континентальной земной коры. Не следует думать, что вся континентальная кора находится ниже уровня Мирового океана. Так, вся шельфовая зона и верхняя часть континентального склона - это материк, прослеживающийся под уровнем моря. Имеются также участки, или фрагменты континентальной коры, находящиеся на океаническом ложе. Среди таких можно упомянуть возвышенность Ямато в центре Японского моря, Плато Манихики в юго-западной части Тихого океана и др.

Границу между земной корой и мантией условно решили выделять на глубине, где происходит скачкообразное изменение скорости сейсмических волн. Впервые эту границу выделил югославский геофизик А.Мохоровичич. В его честь она и названа (сокращенное название - граница Мохо или М).

Мантия простирается от границы Мохо до глубины 2900 км, где также по скачку сейсмических скоростей устанавливается ее граница с внешним ядром.

Сейсмические методы изучения мантии выявили ее неоднородность и позволили выделить в ее пределах три слоя.

верхняя мантия протягивается на глубину до 400 км и носит название слоя Гутенберга. В пределах этого слоя, в интервале глубин от 100-120 до 350-400 км под континентами и на глубине от 50-60 до 400 км под океанами, скорость продольных сейсмических волн не возрастает, а скорость поперечных волн - даже падает. Это может указывать на уменьшение вязкости вещества, и, возможно, на его частично расплавленное состояние. Эта зона внутри верхней мантии получила название астеносфера (“ослабленная сфера”), в отличие от верхней твердой литосферы. В астеносферном слое располагаются первичные очаги вулканизма и проявляются процессы, приводящие к тектоническим движениям в земной коре. Поэтому для мониторинга и прогноза вулканических и сейсмических проявлений важно знать глубину астеносферы и ее соотношение с вышележащей литосферой.

средняя мантия охватывает глубины Земли от 400 до 900 км. В этом слое скорости прохождения сейсмических волн резко возрастают (с 8,5 км/с до 11,2 км/с), что указывает на значительное увеличение плотности и вязкости вещества. Этот слой назван слоем Голицына.

нижняя мантия располагается на глубинах от 670 до 2900 км; здесь скорости сейсмических волн с глубиной возрастают медленно, но тем не менее достигают здесь максимальных для нашей планеты значений: продольная скорость увеличивается до 13,6 км/с, а поперечная - до 7,3 км/с. Полагают, что относительно равномерное нарастание скорости с глубиной связано только с ростом давления и свидетельствует об относительно однородном строении нижней мантии. В низах этого слоя, на глубине 2700-2900 км выделяется переходная оболочка, отличающаяся по свойствам от всей остальной нижней мантии. Здесь отмечается некоторое снижение скорости продольных волн, что, вероятно, связано с переходом к внешнему ядру.

Центральная геосфера Земли, ее ядро занимает около 17% ее объема и составляет 34% ее массы. Такое соотношение долей объема и массы обусловлено резкими различиями физических параметров ядра и мантии. В частности, на внешней границе ядра, приуроченной к поверхности Вихерта-Гутенберга (раздел между нижней мантией и внешним ядром), происходит скачкообразное снижение скорости распространения продольных волн от 13,6 до 8,1 км/с и полное затухание поперечных сейсмических волн. Это определяет специфику прохождения ядра продольными волнами, испытывающими внутри него отклонение к центру Земли. В интервале эпицентральных расстояний 103-143о образуется, таким образом, область “сейсмической тени”, т.е. в этой зоне, располагающейся на противоположной землетрясению стороне планеты, не могут быть зарегистрированы продольные сейсмические волны из-за отклонения в очень плотном веществе ядра.

В разрезе ядра выделяются две границы - на глубинах 4980 и 5120 км, в связи с чем оно подразделяется на три элемента: внешнее ядро, переходное ядро и субъядро. Внешнее ядро обладает феноменальной особенностью скоростной характеристики - не пропускает поперечных сейсмических волн. Это свидетельствует об отсутствии здесь упругого сопротивления сдвигу. Тными словами, вещество, слагающее внешнее ядро, по отношению к сейсмическим волнам ведет себя как жидкость. По-видимому, вещество при таких давлениях и температурах не может находиться в жидком состоянии в обычном понимании этого термина, но обладает некоторыми ее свойствами. Субъядро скорее всего находится в твердом состоянии, а переходное ядро является двухфазной смесью.

Рассмотрим кратко изменение основных физических свойств земного вещества с глубиной.

Отсутствие прямых данных о плотности вещества обусловливает необходимость использования для ее оценок косвенных данных, в частности, данных о скорости сейсмических волн. На первый взгляд кажется, что скорости должны возрастать при увеличении плотности пород. На самом же деле, эти величины находятся в обратном соотношении:

vp =; vs =, где vp и vs, соответственно, скорости продольных и поперечных волн, s - плотность пород; l и m - упругие постоянные (коэффициенты Лямэ) (l - модуль всестороннего сжатия; m - модуль сдвига).

Тем не менее, сопоставление изменений скорости сейсмических волн с плотностью показывает, что более плотные породы обычно характеризуются более высокой скоростью. Это объясняется тем, что возрастание плотности вещества Земли с глубиной сопровождается ростом значений коэффициентов Лямэ, приводящим к увеличению скорости сейсмических волн. Особенно значительны изменения l и m в мантии Земли, где отмечается закономерное нарастание скорости Р- и S- волн и плотности вещества.

Оценки показывают, что средние значения плотности земной коры и Земли в целом составляют, соответственно, 2700 и 5520 кг/м3.

Имеющиеся данные о свойствах глубинных геосфер позволяют считать, что мантии и ядру Земли свойственны черты двух агрегатных состояний, хорошо изученных в обычных условиях, - твердого и жидкого вещества. Если на вещество мантии действуют мгновенные силы, то оно ведет себя как твердое вещество, а если действие нагрузок растягивается в геологическом времени - то как жидкость. Таким образом, есть все основания считать, что Земля в целом находится в состоянии гидростатического равновесия. В этом случае изменение давления с глубиной можно оценить, исходя из массы вышележащего столба пород. Расчеты показывают, что у подошвы земной коры давление составляет около 1300 МПа, а на границе ядра - около 140000 МПа. Особенно велико давление в ядре - до 4×105 МПа. Такие давления характеризуют на мгновения давления вблизи фронта ударной волны при ядерном взрыве.

Представляет интерес изменение в Земле еще одного параметра - ускорения свободного падения (g), определение которого также связано с принятой моделью распределения плотности. На поверхности Земли среднее значение ускорения свободного падения равно 9,82 м/с2, или 982 Гал. По расчетам, с глубиной g возрастает до 10,81 м/с2 на поверхности ядра и затем круто убывает до нуля в центре Земли.

Рассмотрим методы геофизики, которые позволяют получить информацию о внутреннем строении Земли, о ее свойствах и о фазовом состоянии вещества.

Начнем с сейсморазведочного метода, который не только самый информативный в геофизике, но и самый дорогой по стоимости его проведения. Достаточно указать, что на сейсмометрические работы затрачивается 85% средств, затрачиваемых вообще на геофизические работы. В становление и развитие сейсмометрии большой вклад внесли русские и советские ученые: Б.Б.Голицын, В.С.Воюцкий, Г.А.Гамбурцев, А.И.Заборовский, Ю.Н.Годин, Ю.В.Ризниченко, М.К.Полшков, А.М.Епинатьева, И.И.Гурвич, Л.А.Рябинкин, Е.Ф.Саваренский и др.

Этот метод основан на изучении скорости распространения сейсмических волн в литосфере, т.е. принципиально близок к сейсмологическим методам, изучающим скорости распространения упругих колебаний от землетрясений. Отличие заключается в том, что в сейсмологии используется естественный источник колебаний - землетрясение, а в сейсмометрии - искусственный - взрыв в неглубокой скважине. До объявления моратория на испытания ядерного оружия в 1988 г. геофизики использовали в качестве источника упругих колебаний волну от ядерного взрыва. Волна, возбужденная взрывом, достигая границ изменения скоростей, а точнее, сейсмических плотностей (произведения плотности на скорость r×v), отражается и достигает системы регистрации, состоящей из серии сейсмографов - приборов, реагирующих на колебания почвы и регистрирующих их. Время движения волны от пункта взрыва до каждого сейсмографа откладывается на графиках в виде кривых, которые называют годографами. Годограф отраженной волны имеет гиперболическую форму, кривизна которой определяется, в частности, скоростью распространения волны v1. Значение скорости позволяет вычислить глубину залегания границы сред. Так как путь волны 2S » v1×tA, а с другой стороны, S», то h » , где h - глубина границы, v1 - скорость волн в покрывающей среде, tA - время движения отраженной волны в точку А, l - удаление точки А от пункта взрыва, 2S - длина пути волны. На некотором удалении от пункта взрыва при увеличении угла падения прямой волны на границу нижележащей среды со скоростью v2 возникает преломленная волна, опережающая отраженную, если v2>v1. Годограф волны, преломленной на плоской границе, прямолинеен.

Основным методом работ по сейсморазведке является профилирование, а кроме этого используется методика зондирования. Детальность исследований определяется частотой расположения сейсмографов на профиле. Чем чаще они расположены, тем, в общем, можно получить более детальный годограф. Глубинность работ определяется мощностью источника колебаний. Ядерный взрыв, а тем более землетрясение - это, естественно, самые сильные источники, которые невозможно повторить с помощью тротилового заряда, заложенного в скважину. Если время ядерного взрыва известно и к нему можно подготовиться, то точное время землетрясения, к сожалению, неизвестно. Поэтому сейсмографы на сейсмостанциях должны работать в автоматическом режиме мониторинга сейсмического события. Только в этом случае можно ожидать получение уникальной информации о глубинном строении нашей планеты.

Гравиметрический метод основан на изучении поля силы тяжести на поверхности Земли или в ее недрах. Задача о распределении силы тяжести на поверхности Земли была решена в общем виде в XVIII веке французским математиком А.Клеро (1713-1765 г.г.). Он впервые вывел формулу для вычисления силы тяжести на любой географической широте эллипсоида вращения при известных значениях силы тяжести (ускорения свободного падения) у полюса и на экваторе. Формула Клеро в первом приближении имеет вид:

g = gэ + (gп - gэ)×sin2j,

где g, gэ, gп - ускорение свободного падения, соответственно, для данной географической широты j, на экваторе и на полюсе. В 20-х годах нашего века была выведена международная формула для нормального значения силы тяжести на уровне моря, которой и пользуются в настоящее время:

g = 978,049 (1+ 0,0052894×sin2j - 0,0000059× sin22j).

Из этой формулы следует, что нормальное значение силы тяжести на Земле увеличивается от 978 см/с2 на экваторе до 983 см/с2 на полюсах. Однако эти значения, рассчитанные для эллипсоида вращения со сжатием 1/297, существенно отличаются от фактически измеряемых на поверхности Земли, что обусловлено изменениями плотности пород, слагающих Землю. В гравиразведке выведена формула для расчета превышения силы тяжести в случае контраста плотности блоков (рис.11). Если внутри плоскопараллельного слоя толщиной Н с плотностью s1 имеется внедрение блока с плотностью s2, то амплитуда аномалии силы тяжести над этим блоком вычисляется по формуле: Dg = 2pf×(s2 - s1)Н , где f - гравитационная постоянная, которая в системе CGSE равна 6,67×10-8 см 3×г -1×с -2 = 6,67×10-11 Н×м 2×кг -2 (система СИ).




s
2

 

s
1

 

s
1


 
Н






Рис.11. Внедрение блока с контрастной плотностью

Величина f впервые была вычислена Кавендишем (1797 г.). Численно гравитационная постоянная равна силе притяжения двух единичных точечных масс, разделенных единичным интервалом (т.е. соответственно. двух масс в 1 г на расстоянии 1 см (CGSE), или двух масс в 1 кг на расстоянии 1 м (СИ)).

Значения силы тяжести (ускорения свободного падения) измеряются гравиметрами, работающими на принципе компенсации изменений притяжения массы маятника гравиметра упругими силами закрученной кварцевой нити, на которой подвешен этот маятник. Чувствительность наземного кварцевого гравиметра к изменениям силы тяжести очень высока. Достаточно сказать, что он способен измерять с погрешностью 0,01 мГал (10-5см/с2). Следует заметить, что измерения с гравиметром носят “относительный характер”, т.е. с этим прибором невозможно определить абсолютное значение силы тяжести в пункте. Поэтому все точки гравиметрической съемки “привязываются” к “опорному пункту”, где абсолютное значение измерено другим способом, например, с помощью маятникового прибора.

Сравнение данных съемки возможно при теоретической предпосылке, что все притягивающие массы сосредоточены внутри сфероида, для которого по формуле Клеро рассчитаны абсолютные значения силы тяжести. Однако реально имеется множество масс, которые искажают теоретическое распределение силы тяжести на сфероиде (рельеф, наличие гидросферы, имеющей меньшую плотность, чем твердая Земля). Поэтому процесс измерения всегда сопровождается расчетом и внесением определенных поправок (редукций) в измеренные значения. К таким редукциям относятся:

поправка на высоту, учитывающая изменение расстояния до центра Земли; поправка приводит измеренное значение к уровню моря, не учитывая массы пород, сосредоточенных между поверхностью измерения и уровнем моря, она как бы переносит точку измерения вниз “по воздуху” в случае суши или вверх “по воздуху” - в случае моря. Поэтому эта поправка носит название “поправка за “свободный воздух””, или редукция Фая. Она равна gф = ±0,3086×Н, где высота (глубина). Н измеряется в метрах. Знак (-) применяется для суши, а знак (+) - для моря;

поправка на влияние промежуточных масс, заключенных между уровнем, на который приводится измерение, и высотой точки измерения. Эта поправка носит название “поправки на влияние промежуточного слоя”, или редукции Буге. В результате ее введения как бы удаляется притяжение масс между уровнями измерения и приведения. Эта поправка рассчитывается по формуле: gб = ±2pfsH = ±0,0419 sH, т.е. полностью совпадает с формулой для оценки аномалии в результате присутствия плоского блока с контрастной плотностью, которая приводилась выше. Смысл знака в этой формуле тот же, что и для редукции Фая;

поправка на рельеф окружающей местности, учитывающая притяжение всех форм внешнего рельефа. Эта поправка позволяет привести значение силы тяжести в данной точке к такому, которое было бы, если бы под точкой располагался ровный слой масс без выступов и впадин. Поправка на рельеф всегда уменьшает наблюденное значение силы тяжести независимо от того, находится ли вблизи исследуемой точки возвышенность или впадина. Технически поправка на рельеф рассчитывается путем аппроксимации форм рельефа серией призм или цилиндров, для которых рассчитывается аналитически сила тяжести при заданной плотности.

После внесения поправок формируется гравитационная аномалия Буге, которая для суши рассчитывается по формуле:

Dg = gн-go+gф-gб-gт,

где gн, go, gф, gб, gт, соответственно, наблюденное, абсолютное значения, поправки Фая, Буге и топографическая.

Расчет Dg позволяет сравнивать измерения в разных условиях. Аномалии тесно связаны с распределением плотностей. Положительные аномалии свидетельствуют о приближении к поверхности пород с повышенной по сравнению с окружающими плотностью, а отрицательные - о дефиците массы, т.е. о присутствии пород с пониженной плотностью. Из формул для расчета величины аномалии видно, что количественная интерпретация природы аномалии неоднозначна. Например, одна и та же величина аномалии может быть вызвана как большим контрастом плотности между аномальным телом и вмещающими породами, так и большей мощностью аномального тела при сохранении того же контраста плотности. В связи с этим для решения прикладных задач гравиметрический метод чаще всего комплексируется с другими геофизическими методами.

В любой точки на поверхности или внутри Земли, а также в окружающем ее пространстве действуют магнитные силы. Наша планета представляет собой гигантский магнит, но напряженность поля этого магнита относительно невелика - около 0,01 А/м. Для сравнения можно указать, что искусственное поле электромагнитов достигает напряженности 10-20 А/м, а с помощью сверхпроводников удается достичь напряженности магнитного поля в 1000-2000 А/м.

Внешнее магнитное поле Земли по форме силовых линий близко к полю диполя - элементарного бесконечно малого магнита. Центр диполя Земли смещен относительно Северного и Южного полюсов, поэтому географические и магнитные полюса не совпадают. Северный магнитный полюс расположен вблизи Южного географического полюса, и наоборот. Ось диполя смещена относительно оси вращения Земли на угол 11о26’, в связи с чем Южный магнитный полюс располагается вблизи Северной Гренландии (74ос.ш.,100оз.д.), а Северный - на северо-восточной оконечности Земли Королевы Виктории в Антарктиде (68ою.ш.,145ов.д.). Дипольный характер геомагнитного поля определяет еще одну его особенность. Вследствие замкнутого (от одного полюса до другого) характера силовые линии геомагнитного поля образуют систему “магнитных ловушек” для заряженных частиц, появляющихся в верхних слоях атмосферы под действием солнечного излучения. Таким образом возникли окружающие Землю пояса космической радиации, или зоны Ван-Аллена, заполненные ионами атмосферных газов и элементарными частицами. Пояса космической радиации, обнаруженные в 1958 г. советскими учеными С.Н.Верновым и А.Е.Чудаковым и американским ученым Д.Ван-Алленом, играют важную роль в формировании внешнего геомагнитного поля. В частности, они являются проводниками электромагнитных возмущений, возникающих в полярных областях. Одно из таких возмущений - полярные сияния, обусловленные свечением газов в мезосфере, на высоте 80-150 км. Электромагнитные возмущения по поясам Ван-Аллена почти мгновенно (за доли секунды) передаются от одной возбужденной полярной области к другой, чем обусловлены почти синхронные вспышки полярных сияний в Арктике и Антарктике.

Максимальная напряженность геомагнитного поля наблюдается на полюсах (0,008-0,009 А/м), а минимальная - на экваторе (0,005 А/м). С удалением от поверхности Земли напряженность резко убывает (пропорционально кубу расстояния). При этом между постоянным геомагнитным полем и силовым полем межпланетной среды под действием солнечного ветра образуется нестабильная переходная зона.

Магнитное поле является векторным, поэтому его интенсивность характеризуется не только напряженностью, но и положением в пространстве (рис.12). Во внешнем поле этот вектор Т направлен по касательной к магнитной силовой линии L и в вертикальной плоскости может быть разложен на горизонтальную Н и вертикальную z составляющие: . Линия пересечения этой вертикальной плоскости с поверхностью геоида называется магнитным меридианом S, а угол, образуемый им с географическим меридианом N, - углом магнитного склонения D.

Угол отклонения вектора от горизонтальной плоскости называется углом магнитного наклонения I и связан с составляющими вектора простым соотношением tg I = z/H. Распределение интенсивности геомагнитного поля изображают на картах, где равные значения напряженности (T, z ,H) образуют изодинамы, равные углы магнитного склонения - изогоны, а равные углы магнитного наклонения - изоклины. Напряженность поля в целом увеличивается по направлению к магнитным полюсам. Около географического экватора проходит изодинама минимальной магнитной напряженности - динамический экватор, в пределах которого вертикальная составляющая z равна нулю.

Изоклины изменяются от нуля до 90о. Они имеют тенденцию прослеживаться в широтном направлении подобно параллелям. Нулевая изоклина называется магнитным экватором и проходит в пределах Африки и Азии около 10ос.ш. и в пределах Южной Америки - около 15ою.ш.



Рис.12. Элементы магнитного поля Земли

а - участок поверхности Земли; в - вертикальная плоскость

Изогоны сходятся в магнитных полюсах Земли. По форме они напоминают географические меридианы, а нулевая изогона называется нулевым магнитным меридианом. Линия нулевого склонения образует петлю в Восточной Сибири и на Дальнем Востоке, где отмечается также максимум напряженности поля. Такие отклонения получили название магнитных аномалий. Их размеры составляют тысячи км, поэтому ясно, что их природа обусловлена особенностями строения Земли в целом.

Многолетние наблюдения и измерения составляющих магнитного поля установили его изменчивость во времени. Так, даже в течение суток отмечается периодическое, обычно достаточно правильное изменение параметров геомагнитного поля. Эти изменения обусловлены суточными изменениями положения земной поверхности относительно Солнца и называются суточными вариациями геомагнитного поля. Эти вариации невелики, поэтому они измеряются специальной единицей измерения - гаммой (1g = 1,257×10-7 А/м).

Ультрафиолетовое солнечное излучение в течение светового дня оказывает ионизирующее воздействие на слои ионосферы. Перемещения масс ионов в ионосфере, связанные с приливным воздействием и конвекцией воздуха, приводят к появлению здесь электрических токов и локальных магнитных полей, деформирующих основное дипольное поле. Амплитуда вариаций в полярных областях больше, чем на экваторе; в средних широтах в течение суток вертикальная составляющая меняется на 20-30g, а в полярных - до 200-300g, а склонение - на 10-15’. Деформация дипольного поля во время суточных вариаций настолько велика, что приводит даже к смещению положения магнитных полюсов. Величина таких смещений в течение суток достигает 100 км относительно среднего положения магнитного полюса.

Еще большую амплитуду имеют непериодические изменения составляющих магнитного поля, обусловленные вспышками солнечной активности. Изменения в ионосфере, связанные с этими вспышками, приводят к значительным по амплитуде вариациям магнитного поля - до нескольких градусов по склонению и до тысяч гамм по напряженности. Эти непериодические вариации поля часто сопровождаются полярными сияниями, ухудшением или прекращением коротковолновой радиосвязи и называются магнитными бурями.

Механизм возникновения магнитных бурь, по-видимому, определяется взаимодействием корпускулярного излучения Солнца с магнитным полем в околоземном пространстве. На удалении 100-200 тыс.км от Земли поле настолько ослабевает, что становится соизмеримым по интенсивности с космическим магнитным полем; эта граница называется магнитопаузой, а ограничиваемое ею околоземное пространство - магнитосферой.

Корпускулярное излучение Солнца создает солнечный ветер, являющийся источником космического магнитного поля интенсивностью в несколько гамм. Во время вспышек солнечной активности интенсивность солнечного ветра возрастает; при встрече его с магнитосферой образуется ударная волна, деформирующая магнитные силовые линии. Отклоняясь под действием излучения Солнца, они образуют длинный шлейф, достигающий Луны, а магнитосфера приобретает асимметричную форму. Эти деформации магнитосферы и являются причиной магнитных бурь, т.к. при этом над поверхностью планеты перемещаются значительные массы ионизированного газа. Изменение проводимости слоев ионосферы приводит к ухудшению их отражательной способности по отношению к радиоволнам и общему ухудшению радиосвязи. Продолжительность магнитных бурь может достигать нескольких суток.

Процессы в магнитосфере тесно связаны с еще одним полем Земли - электрическим. По современным данным, у ионов и элементарных частиц ионосферы преобладает положительный заряд. Это приводит к накоплению в литосфере отрицательных зарядов, а перемещения заряженных частиц в ионосфере индуцируют электрические токи в твердой оболочке Земли. В целом ионосфера образует с поверхностью Земли сферический конденсатор, в котором ионосфера обладает положительными, а литосфера отрицательными статическими электрическими зарядами. Роль изолятора выполняют плотные слои атмосферы. Величина заряда этого конденсатора достаточно велика - напряженность электрического поля в нижних слоях атмосферы составляет около 100 В/м, а в грозовую погоду значительно больше.

Природа атмосферно-электрического поля Земли, таким образом, связана с ионизацией верхних слоев атмосферы под действием излучения Солнца. Переменный характер электрическому полю придают мощные всплески солнечной активности при вспышках на поверхности Солнца. Эти относительно кратковременные вспышки создают неоднородную ионизацию в атмосфере Земли на высоте около 100-300 км, а перемещение электрических неоднородностей высотными ветрами приводит к образованию переменного электромагнитного поля в атмосфере и земной коре.

Таким образом в литосфере возникают теллурические токи. Электроды, вкопанные в почву и соединенные с амперметром, обычно регистрируют теллурические токи силой около 100 мА, а в периоды возмущений электромагнитного поля до 2,5 А. Средняя плотность теллурических токов 2 А/км2.

Кроме токов, обусловленных состоянием атмосферно-электрического конденсатора, в земной коре локально распространены постоянные и переменные электрические поля, вызванные естественной циркуляцией минерализованных растворов, электрохимическими процессами на поверхностях горных пород и другими факторами.

Теллурические токи обычно обладают значительной изменчивостью, периодичность которой определяется активностью процессов на Солнце и в ионосфере. В течение более продолжительных интервалов времени (десятки, сотни лет) также отмечается изменчивость составляющих магнитного поля Земли. По результатам измерения магнитного склонения и магнитного наклонения в Лондоне и Париже установлено, что за последние 350 лет вариации достигают 30о по склонению и 10о по наклонению. Эти плавные изменения геомагнитного поля по напряженности обычно не превышают десятков гамм и называются вековыми вариациями. Их изучение в различных участках Земли позволило установить еще одну форму изменчивости геомагнитного поля. Так, выявлено, что его аномалии плавно перемещаются на запад примерно в широтном направлении. Это свойство геомагнитного поля называется западным дрейфом. Скорость дрейфа довольно значительная - около 0,18о в год. При этой скорости наблюдаемое распределение аномалий магнитного поля совершит полный оборот вокруг Земли примерно за 1800 лет.

В отличие от суточных вариаций и магнитных бурь, которые связаны с излучением Солнца, вековые вариации и западный дрейф геомагнитного поля, очевидно, обусловлены глубинным источником, расположенным в недрах Земли. По подсчетам, с внешними источниками, основным из которых является Солнце, связано около 6% полного геомагнитного поля. На долю внутренних источников, природа которых, к сожалению, изучена недостаточно, приходится около 94% измеряемого магнитного поля Земли.

Интенсивность внутреннего источника можно оценить количественно по напряженности создаваемого им поля. Мерой интенсивности может служить магнитный момент, эквивалентный силе, которую необходимо приложить к магниту, чтобы удержать его в положении, перпендикулярном к внешнему магнитному полю. По результатам вычислений магнитного момента, проводимых с 1829 года, его значение постепенно уменьшается со средней скоростью около 3,7×10-25 А/м2×год, или 0,04% в год. Если это уменьшение будет продолжаться еще 1200 лет, то геомагнитное поле исчезнет.

Изменчивость магнитного поля Земли - суточные и вековые вариации, западный дрейф - обусловливают необходимость периодического повторения магнитных измерений и обновления магнитных карт, поэтому на картах составляющих геомагнитного поля обычно указан год, которому соответствует показание распределения поля.

Проблема происхождения магнитного поля относится к ряду сложных и до сих пор не решенных. Для объяснения природы земного магнетизма предложен ряд гипотез.

Ферромагнитная гипотеза. По расчетам содержание ферромагнетиков в земной коре слишком мало для создания геомагнитного поля. Однако с глубиной содержание тяжелых металлов возрастает, особенно в ядре, которое состоит в основном из ферромагнетиков - железа и никеля. Наличие ферромагнетиков и шарообразная форма ядра являются исходными предпосылками гипотезы постоянного магнита. По этой гипотезе ядро Земли представляет собой намагниченное тело, создающее магнитное поле дипольного характера[3]. Однако предположение о намагниченности ядра не согласуется с данными о его температуре, превышающей здесь 2000оС, что намного больше не только точки Кюри, при которой магнитные свойства полностью исчезают, но и температуры плавления железа и никеля (соответственно, 1535 и 1453оС). Учитывая давление в ядре Земли, можно допустить некоторое повышение точки Кюри, например, для железа до 780оС, но все равно эта температура намного ниже реально существующих температур в ядре. Кроме того, доказано жидкое состояние внешнего ядра, в то время как постоянные магниты в жидком состоянии неизвестны и существование их по теоретическим соображениям невозможно. Ферромагнитная гипотеза не дает ответа на вопросы о том, какие факторы могли намагнитить ядро Земли[4] , чем определяются вековые вариации и изменения полярности геомагнитного поля.

Электрические гипотезы. Внешнее ядро, находясь в жидком состоянии, быстрее реагирует на приложенные к нему силы, чем твердые мантия и земная кора. Поэтому вековые вариации магнитного поля связываются в первую очередь именно с электромагнитными эффектами в ядре. Для создания наблюдаемого геомагнитного поля требуется существование электрического тока порядка 109А. Электрический ток может возникнуть в результате термоэлектрического эффекта, т.е. разности температур на “спаях” разнородных металлов. Такая ситуация может возникнуть на границе мантии и ядра, где существуют участки с различной температурой. Однако в этой гипотезе не установлено, достаточна ли сила термоэлектрического тока для образования геомагнитного поля, не объясняется формирование дипольного характера поля и другие его особенности.

Более разработана (с участием акад.Я.И.Френкеля) гипотеза динамо, основанная на магнитогидродинамике - электромагнетизме проводящей жидкости. Согласно этой гипотезе в ядре Земли возникают кольцевые электрические токи противоположного направления в результате тепловой конвекции во внешнем ядре. В верхних слоях внешнего ядра в результате трения о подошву мантии скорость конвекции снижается, а в нижних слоях, на границе с субъядром, относительно увеличивается. Эти контрасты в скоростях течений приводят к образованию замкнутых тороидальных электрических полей большой напряженности (около 5 В/м), которые вследствие своей формы не выходят за пределы ядра. Взаимодействие этих полей с конвективными потоками и течениями на поверхности ядра приводит к появлению в ядре кольцевых токов широтного направления и связанных с ними магнитных полей. Однако кориолисова сила вращения Земли приводит к усреднению этих полей и образованию суммарного поля, близкого к дипольному, с осью, приближающейся к оси вращения. Таким образом, наблюдаемое геомагнитное поле является результирующим при сложении двух неравных и противоположно направленных магнитных полей. Вариации конвективных течений являются причинами того, что одно из генерируемых полей доминирует (и определяет полярность геомагнитного поля); вследствие изменения конвективных потоков доминирующее поле (и полярность) может меняться, с чем и связаны инверсии геомагнитного поля. Изменение скоростей течения на поверхности ядра способно вызвать также миграцию полюсов результирующего поля, а общее отставание течения на поверхности ядра от вращения мантии объясняет западный дрейф поля.

Приведенный принцип действия одной из моделей МГД-генератора предполагает самовозбуждение в ядре Земли - усиление слабого магнитного поля дипольного характера, необходимого для начала работы динамо. Таким начальным полем, по-видимому, могли служить слабые магнитные поля термоэлектрического происхождения. Гипотеза динамо предполагает тепловую конвекцию во внешнем ядре. Для объяснения причин возникновения и поддержания конвекции в ядре предложены два механизма: радиоактивный распад и выделение энергии, сопровождающее рост субъядра: потенциальной (при гравитационной дифференциации) и скрытой (за счет фазового перехода вещества из жидкого в твердое состояние). Концентрация радиоэлементов в ядре очень низка (в 1000 раз меньше, чем в земной коре), поэтому вклад этого механизма тепловыделения оценивается как подчиненный.

Особенности магнитного и электрического (теллурического) полей Земли, а также различие магнитных и электрических свойств пород используется для практических целей - для поисков руд. Скопление руд тяжелых металлов: железа, титана, никеля и др. ферромагнетиков обусловливает повышение уровня магнитного поля и возникновение аномалий. Крупная аномалия сопровождала месторождение железных руд на юге России - Курскую магнитную аномалию (КМА). Обнаружение этой аномалии собственно и привело к открытию месторождения. В пределах КМА магнитная стрелка отклоняется так резко, что ее “северный” конец часто указывает на запад, восток и даже юг, а напряженность магнитного поля достигает 0,01-0,03 А/м, что в 2-3 раза выше общей напряженности геомагнитного поля. Протяженность этой аномалии и размеры месторождения железистых кварцитов огромны - она протягивается на 600 км с севера на юг и на 400 км с запада на восток. Однако такие обширные и интенсивные аномалии встречаются очень редко. Чаще приходится иметь дело с локальными и небольшими по амплитуде аномалиями, сопровождающими те или иные месторождения, генетически обусловленные магматическими породами. С помощью магнитной съемки хорошо выделяются кимберлитовые трубки, с которыми связаны месторождения алмазов.

Регистрация электрических полей также помогает выявить месторождения некоторых руд. Например, хорошо выявляются сульфидные залежи, в которых происходят процессы окисления, зоны циркуляции минерализованных вод и др.

Геотермия дает важнейшую количественную информацию для понимания и моделирования геодинамических процессов в геосферах и для оценки энергетики геолого-геофизических проявлений - в этом заключается фундаментальные аспекты изучения теплового поля. Но не менее важны и прикладные аспекты геотермических исследований. Они связаны, с одной стороны, с оценкой геотермальных ресурсов для их использования в энергетике, теплоснабжении, коммунальном и сельском хозяйстве, а с другой - с применением геотермического метода поисков и разведки месторождений на континентах и на акваториях в комплексе с другими геолого-геохимико-геофизическими методами.

Тепловое поле Земли первым из геофизических полей привлекло внимание человека. Самые бурные проявления термической активности - извержения вулканов - сыграли важную роль в формировании религиозных мифологических представлений о строении мира. Другая форма геотермальной активности - горячие источники - с незапамятных времен использовались человеком для хозяйственных бытовых нужд. Таким образом, тепловое поле Земли оказалось первым объектом практического использования, по-видимому, опередив даже использование геомагнитного поля, выразившееся в изобретении компаса китайскими мореплавателями.

Но и предметом научных исследований тепловое поле Земли тоже стало раньше всех других полей. Началом этой стадии можно считать наблюдения за извержением Везувия в 73 г. до н.э. Плиния-Старшего, погибшего при этом и ставшего первой в истории жертвой научного энтузиазма. Но возможно, что начало этого этапа следует отодвинуть еще дальше, в третий век до н.э., когда великий философ Эмпедокл, уединившись, поселился на склоне Этны, в башне, которая впоследствии была названа "Торре дель Философо" (Башня философа). Много веков спустя на этом месте была создана одна из итальянских вулканологических обсерваторий; этот факт характеризует преемственность науки.

Количественные методы в геотермию были введены после изобретения Г.Галилеем термометра в начале XVII века. Уже первые измерения температуры, проведенные в шахтах и рудниках, показали, что температура на глубоких горизонтах весь год неизменна и что она увеличивается с глубиной. На это своеобразие теплового режима шахт обращали внимание английский физик Р.Бойль и М.В.Ломоносов. В своем трактате "О вольном движении воздуха, в рудниках примеченном" М.В.Ломоносов писал: "...Воздух в рудниках во всякое время целого года сохраняет равное растворение" (т.е.температуру).

Факт роста температуры с глубиной дал основание для разработки научных космогонических гипотез, первой из которых явилась атеистическая гипотеза Канта-Лапласа. Согласно этой гипотезе история планеты представлялась как ее остывание из первоначально расплавленного состояния. Как показали позднейшие расчеты, теплосодержание расплавленной Земли должно было составлять около 3·1031Дж. Впоследствии эта гипотеза вошла в противоречие с другими астрономическими и геологическими фактами и в том числе с геохимическими данными о возрасте Земли, который оказался значительно больше времени, необходимого для остывания земного шара.

В 1868 г. по инициативе английского физика У.Томсона (лорда Кельвина) измерения температур в скважинах, шахтах и рудниках были систематизированы, что позволило сделать вывод о том, что на каждые 100 м температура возрастает на 2,5°-3,5°С. Одновременно выяснилась необходимость углубленного изучения теоретических вопросов геотермии - природы внутриземного тепла, термической эволюции Земли, глубинного теплового потока, условий формирования гидротерм.

В Земле существует несколько видов теплопередачи, так как ее оболочки имеют различную температуру, фазовое состояние и химический состав.

В ядре, состоящем из окислов железа, может существовать металлическая проводимость, для которой выполняется закон Видемана-Франса о прямой пропорциональности между теплопроводностью (k) и электропроводностью (s):

k = B(b/e)2·T·s,

где b - постоянная Больцмана; е - заряд электрона; Т - температура; В - постоянная, равная 2,5 для полупроводников и 3 - для металлов. Таким образом, теплопроводность ядра может быть вычислена на основании данных об его электропроводности. Сложнее обстоит дело с вычислением теплопроводности силикатной оболочки Земли. Здесь уже не применим закон Видемана-Франса, а теплопроводность сложным образом зависит от температуры, давления и химического состава. Для литосферы основную роль играет решеточная часть теплопроводности.

Теория решеточной (фононной) теплопроводности кристаллических диэлектриков развита в трудах Дебая (1914), Пайерлса (1956), Лейбфрида (1954), Померанчука (1944). Согласно этой теории теплопроводность обратно пропорциональна температуре. Теплопроводность рассматривается как распространение энергии за счет колебаний атомов в кристаллических решетках. Так, по Дебаю, в кристаллах с конечными размерами существует конечное число нормальных колебаний. Энергия каждого нормального колебания не может быть произвольной, она должна определяться целым числом квантов, или фононов. При этом процесс теплопередачи можно рассматривать как обмен энергиями в "фононном газе". Теплопроводность тогда пропорциональна длине свободного пробега фононов и их скорости. В реальных кристаллах фононы рассеиваются посредством различных механизмов. В частности, при высоких температурах рассеивание происходит преимущественно на другом фононе. Наиболее существенны процессы обмена энергией между тремя фононами: один фонон аннигилирует и рождаются два других, либо два фонона исчезают и рождается третий. Есть два типа трехфононных процессов: нормальные (N-процессы), в которых импульс сохраняется, и процессы переброса (U-процессы), в которых импульс не сохраняется. Первые не дают непосредственного вклада в теплосопротивление, но меняют распределение фононов, тогда как вторые действительно ограничивают и определяют теплопроводность в идеальном неметаллическом кристалле.

В теории введено понятие дебаевской температуры (ТD), которая разделяет интервалы высокотемпературного поведения параметров от низкотемпературного. Для горных пород ТD составляет 900-600°С. Температура порядка 600°С достигается в Земле на глубинах 30-50 км. Следовательно, изменение поведения фононной теплопроводности в зависимости от температуры приурочено к самому верхнему слою литосферы. При высоких температурах (T>>TD) теплопроводность пропорциональна (1/Т). С понижением температуры (T<TD) она возрастает, достигая максимума, после чего падает в соответствии с законом (Т3) в области очень низких температур, которые не характерны для Земли. Что касается влияния давления на фононную теплопроводность, то в верхних слоях, где доминирует действие температуры, решеточная теплопроводность должна падать с глубиной. В более глубоких слоях, где превалирует эффект давления, теплопроводность должна возрастать. Эти разные тенденции обусловливают появление минимума на кривой зависимости теплопроводности от глубины, приуроченного к верхним слоям верхней мантии.

По экспериментальным данным, полученным для интервала температур от 20° до 700°С (Ф.Берч, К.Кавада), можно отметить, что для большинства пород теплопроводность убывает с температурой почти как 1/Т; при эксперименте породы были приведены к уровню нулевой пористости, так как пористость и влагонасыщенность очень влияют на теплопроводность.

Причина уменьшения фононной теплопроводности с ростом температуры при Т>TD заключается в том, что решеточное рассеивание фононов тем больше, чем больше максимальные смещения атомов от их средних положений в кристаллической решетке. Это объясняет, в частности, тот факт, что теплопроводность тел, состоящих из относительно легких атомов, больше теплопроводности тел с тяжелыми атомами, слабо между собой связанными.

Все приведенные рассуждения сделаны для бездефектных кристаллов. Различные дефекты (точечные, примесные, изотопические), а также границы в поликристаллических телах могут служить дополнительными источниками рассеивания фононов, т.е. уменьшением теплопроводности. При высоких температурах дефектами можно пренебречь, так как определяющим является рассеивание фононов процессами переброса. Но при уменьшении температур, когда влияние процессов переброса быстро падает, заметно сказываются дефекты.


В заключение рассуждений о решеточной теплопроводности приведем эмпирически полученные соотношения для базальтов, связывающие теплопроводность и температуру:

k » 3,1/T при Т>573 K и

k » 1,15/T при Т<573 K.

При высоких температурах в недрах Земли (>1200°C) становятся существенными два других механизма теплопередачи: радиационный и экситонный. Радиационный теплоперенос связан с лучистым теплообменом, т.е. с передачей энергии электромагнитными колебаниями. Радиационная теплопроводность ничтожно мала на глубинах до 100-200 км и становится сравнимой с фононной теплопроводностью на больших глубинах, превосходя даже ее в верхней мантии, но убывая в нижней мантии из-за роста коэффициента поглощения излучения веществом.

Экситонная теплопроводность (по термину "экситон", т.е. квант возбуждения) связана с возбуждением электрона и "дырки" при поглощении кванта энергии, который превышает энергию связи. Экситонная теплопроводность, так же как и радиационная, пренебрежимо мала при относительно невысоких температурах, т.е. в литосфере. Но на глубинах более 500 км экситонная составляющая даже превышает радиационную и быстрее растет с глубиной.

Еще раз отметим, что в практических задачах нам важно знать фононную теплопроводность пород. Два же других вида теплопроводности нельзя игнорировать при исследовании теплового состояния и термической истории Земли как планеты.

Говоря о механизмах теплопередачи, необходимо изучить такой важный для Земли процесс, как конвекция, т.е. перенос тепла самим теплоносителем. Применительно к Земле теплоносителями являются вода, пар, магма и магматические растворы. Эти теплоносители, обладая большой теплоемкостью, при своем движении перераспределяют глубинный тепловой поток, создавая положительные и отрицательные аномалии температуры и теплового потока. Если теплоперенос теплопроводностью происходит повсеместно, где существует температурный градиент, то перенос конвекцией осуществляется только там, где имеются условия для движения теплоносителей. Очевидно, что наиболее интенсивно конвекция происходит в активно развивающихся геологических структурах, где проявляются разломная тектоника, вулканизм и гидротермальная деятельность. Но даже в стабильных тектонических блоках необходимо учитывать конвективный теплоперенос в верхней активной гидродинамической зоне.

К сожалению, геотермическое поле невозможно охарактеризовать только лишь температурой недр из-за того, что температура зависит от глубины измерений, а также часто и от широты местности. Для того, чтобы нормировать температуру по глубине, введено понятие геотермического градиента (grad T). Геотермический градиент является векторной величиной и определяется из выражения:

grad T = i dT/dx + j dT/dy + k dT/dz.

Плотность теплового потока (или, как часто называют, "тепловой поток") - это самая информативная геотермическая характеристика, так как он характеризует мощность теплового источника и величину теплопотерь с поверхности Земли. Тепловой поток коррелирует с параметрами других геофизических полей, которые также характеризуют источник соответствующих полей, например, с величинами гравитационных (Dg) и магнитных (DT) аномалий, что объясняется сходными генетическими факторами, формирующими эти аномалии. Для определения теплового потока традиционно используется метод раздельного измерения геотермического градиента и теплопроводности. Тепловой поток определяется как произведение этих величин:

q = -k (idT/dx + jdT/dy + kdT/dz).

Тепловой поток на континентах измеряется в буровых скважинах, которые, во-первых, пригодны для измерений по своему техническому состоянию, а во-вторых, находились "в состоянии покоя" после окончания бурения по крайней мере 30-50 дней. За это время тепловые возмущения, вызванные процессами бурения и промывки, в основном рассеиваются, и температура бурового раствора становится близкой к температуре окружающих пород.

Подавляющее большинство измерений теплового потока на континентах и в океанах, полученных к настоящему времени (а это более 30 тыс. пунктов), выполнено с помощью "раздельной методики", т.е. измерений геотермического градиента и коэффициента теплопроводности. Этот метод, несмотря на два источника погрешностей, является наиболее методически разработанным, а потому и наиболее точным.

В районах с высокими тепловыми потоками, например в вулканических областях, делались попытки прямых измерений теплового потока с помощью тепломеров. К сожалению, их низкая чувствительность не позволяет использовать тепломеры в областях со средними и низкими тепловыми потоками.

Поведение физических полей Земли (гравитационного, магнитного, теплового и др.) определяется физическими свойствами горных пород (плотностью, намагниченностью, теплопроводностью, упругостью и пр.), которые зависят от их минералогического состава, от давления и температуры. Роль двух последних факторов неодинакова. Давление на одних и тех же глубинах практически остается постоянным, а температура значительно изменяется в зависимости от величины теплогенерации и теплового потока. В некоторых районах колебания температур могут оказывать определяющее влияние на поведение физических параметров и, следовательно, на характер физических полей. Особенно чувствительны к изменению температур электропроводность и намагниченность.

Таким образом, между распределением тепловых потоков и другими геофизическими полями должны существовать достаточно тесные связи. Они основываются, с одной стороны, на чувствительности этих полей к колебаниям физических параметров горных пород, которые определяются их литолого-петрографическими особенностями, минералогическим составом и характером залегания, а с другой - на зависимости этих параметров от температуры, изменяющейся в соответствии с величиной теплового потока.

КОНТРОЛЬНЫЕ ВОПРОСЫ

На какие слои разделяется атмосфера? Каково распределение температур в каждом из этих слоев?

Какое значение имеет атмосфера для жизни на Земле и для происходящих на планете процессов? Охрана атмосферы.

Какова роль биосферы? Охрана биосферы.

Основные характеристики гидросферы. Как классифицируется Мировой океан по структурно-морфологическим зонам? Дайте характеристики шельфа, континентального склона, абиссальных котловин и глубоководных впадин.

Что такое дивергентные и конвергентные океанические зоны? Каково происхождение срединно-океанических хребтов и переходных зон от океана к континенту?

Каково распределение температуры, давления и солености в толще морской воды?

Каково значение океана для человека? Сохранение экологического равновесия в океане.

Каковы характеристики твердых земных оболочек? Какова мощность отдельных геосфер? В чем состоит отличие континентальной от океанической коры?

Что такое “литосфера” и “астеносфера”?

На какие слои делится мантия? Как ведет себя скорость сейсмических волн в каждом из этих слоев?

Какова особенность внешнего ядра по сравнению с внутренним и субъядром? Какими данными доказывается эта особенность?

Как изменяются плотности и скорости сейсмических волн в Земле?

Методы планетарной геофизики. Какие геофизические поля они исследуют?

Метод сейсмометрии, его методика и типы изучаемых сейсмических волн.

Гравиметрический метод. Что такое редукции поля силы тяжести?

Магнитное поле Земли - его происхождение и вариации.

Что такое “теллурические токи”, их происхождение.

Что изучает геотермия? Основные параметры теплового поля Земли. Источники глубинного тепла.

Природа и источники крупнейших геофизических проявлений: вулканизм, сейсмичность (в том числе цунами), гидротермальная деятельность, торнадо

Крупнейшие геофизические катастрофы, связанные с многочисленными жертвами и разрушениями, вызываются в результате сейсмической активности литосферы, которая чаще всего проявляется в виде землетрясений. Землетрясением называется сотрясение земной коры, вызванное естественными причинами. Они проявляются в виде подземных толчков, часто сопровождаются подземным гулом, волнообразными колебаниями почвы, образованием трещин, разрушением зданий, дорог и, что самое печальное, человеческими жертвами. Землетрясения играют заметную роль в жизни планеты. Ежегодно на Земле регистрируется свыше 1 млн. подземных толчков, что составляет в среднем около 120 толчков в час или два в минуту. Можно сказать, что земля находится в состоянии постоянного содрогания. К счастью, немногие из них бывают разрушительными и катастрофическими. В год происходит в среднем одно катастрофическое землетрясение и 100 разрушительных.

Сильные землетрясения происходят довольно редко. Из катастрофических землетрясений по разрушительной силе наиболее известны Лиссабонское (1755 г.), Калифорнийское (1906 г.), Тайваньское (1923 г.), Мессинское (1908 г.), Ганьсуйское (1920 г.), Токийское (1923 г.), Иранское (1935 г.), Чилийское (1939 и 1960 г.г.), Агадирское (1960 г.), Мексиканское (1975 г.) землетрясения. На территории стран СНГ к наиболее значительным следует отнести Ашхабадское (1948 г.), Ташкентское (1966 г.), Газлинское (1976 г.), Спитакское (1986 г.), Нефтегорское (1995 г.) землетрясения.

Масштабы разрушений при крупных землетрясениях огромны. В земной коре возникают крупные дизъюнктивные дислокации. Так, при катастрофическом землетрясении 4 декабря 1957 г. в Монгольском Алтае возник разлом Богдо длиной около 270 км, а общая длина образовавшихся разломов достигла 850 км. Вот только часть из многочисленных последствий землетрясений.

Повреждение построек:

трескаются, рассыпаются или опрокидываются домовые трубы,

трескаются стены; сырцовые и другие кирпичные стены теряют прочность и падают

обрушиваются крыши

падают выступающие части зданий (карнизы, парапеты)

падают внутренние полки и шкафы, содержимое вываливается,

здания раскалываются на части и падают,

падают и разрушаются водонапорные башни и нефтехранилища,

обрушиваются мосты, колонны и эстакады,

становятся неровными, изгибаются и разрушаются шоссейные и железные дороги,

рвутся телефонные провода и кабели; выходят из строя линии электропередачи,

начинаются пожары,

разрываются водопроводные трубы, нефте- и газопроводы, трубы канализационной системы.

Геологические последствия:

на грунте появляются трещины, иногда зияющие,

возникают воздушные, водяные, грязевые или песчаные фонтаны; при этом образуются скопления глины или груды песка,

прекращают или изменяют свое действие некоторые родники и гейзеры; возникают новые,

грунтовые воды становятся мутными (взбаламучиваются),

возникают оползни, грязевые и селевые потоки, обвалы; происходит разжижение почвы и песчано-глинистых пород,

происходит подводное оползание и образуются мутьевые (турбидитные) потоки,

обрушиваются береговые утесы, берега рек, насыпные участки,

возникают сейсмические морские волны (цунами),

срываются снежные лавины; от шельфовых ледников отрываются айсберги,

образуются зоны нарушений рифтового характера с внутренними грядами и подпруженными озерами,

грунт становится неровным с участками просадки и вспучивания,

на озерах возникают сейши (стоячие волны и взбалтывание волн у берегов); нарушается режим приливов и отливов,

активизируется вулканическая и гидротермальная деятельность.

Землетрясения - это социальное явление, т.к. им подвержено более 10% суши, на которой проживает половина человечества. Землетрясения остаются наиболее губительными из природных катастроф - наиболее крупные из них уносят сотни тысяч жизней и оставляют следы разрушительной деятельности на тысячах км2. Из исторических данных известно, что при землетрясении 1556 г. в Шаньси погибло 830 тысяч человек; уже в наши дни, 28 июля 1976 г. в результате катастрофического землетрясения был разрушен г.Таньшань (в 150 км к востоку от Пекина), при этом погибло 655 тыс. человек.

Землетрясения вызываются внезапными, быстрыми смещениями крыльев существующих или вновь образующихся тектонических разломов; напряжения, которые при этом возникают, способны передаваться на большие расстояния. Возникновение землетрясений на крупных разломах происходит при длительном смещении в противоположные стороны тектонических блоков или плит, контактирующих по разлому. При этом силы сцепления удерживают крылья разлома от проскальзывания, и зона разлома испытывает постепенно возрастающую сдвиговую деформацию. При достижении ею некоторого предела происходит “вспарывание” разлома и смещение его крыльев. Землетрясения на вновь образующихся разломах рассматриваются как результат закономерного развития систем взаимодействующих трещин, объединяющихся в зону повышенной концентрации разрывов, в которой формируется магистральный разрыв, сопровождающийся землетрясением. Объем среды, где снимается часть тектонических напряжений и высвобождается некоторая доля накопленной потенциальной энергии деформации, называется очагом землетрясения. Количество энергии, выделяющееся при одном землетрясении, зависит главным образом от размеров сдвинувшейся поверхности разлома. Максимально известная длина разломов, вспарывающихся при землетрясении, находится в диапазоне 500-1000 км (Камчатское - 1952, Чилийское - 1960 и др.), крылья разломов смещались при этом в стороны до 10 м. Пространственная ориентация разлома и направление смещения его крыльев получили название механизма очага землетрясения.

Центр возникновения землетрясения, т.е. то место, где началось “вспарывание” разлома, называется его фокусом или гипоцентром. Расчеты параметров гипоцентра реальных землетрясений показывают, что в первом приближении очаг представляет собой сферу, радиус которой может измеряться десятками км. Таким образом, обычно очаг землетрясения не точка, а некоторый объем, размер которого для сильных землетрясений значителен.

В очагах землетрясений возбуждаются упругие продольные Р и поперечные S сейсмические волны, распространяющиеся во все стороны. Характер их распространения достаточно сложен и определяется особенностями внутреннего строения Земли. Точка на поверхности, расположенная на кратчайшем расстоянии от очага, называется эпицентром, а точка, наиболее удаленная от очага - антиэпицентром. Максимальной разрушительной силы землетрясение достигает в эпицентре, по мере удаления от эпицентра сила его убывает.

Линии равных значений силы землетрясения называются изосейстами, а зона, окружающая эпицентр и ограниченная изосейстой максимального значения, называется плейстосейстовой областью. Форма этой области целиком определяется геологическими условиями района эпицентра. Обычно форма плейстосейстовой области в горных районах простирается вдоль основного простирания горной цепи, хотя и бывают исключения из этого правила.

Для энергетической классификации землетрясений на практике пользуются его магнитудой (М или m). Под магнитудой (иногда неправильно называемой интенсивностью землетрясения по шкале Рихтера) понимается логарифм отношения максимального смещения земной поверхности в волне данного типа или максимальной скорости смещения к аналогичной величине для землетрясения, магнитуда которого условно принята равной нулю. Классификация землетрясений по магнитуде введена в 1935 г. американским сейсмологом Ч.Рихтером применительно к территории Калифорнии. В начале 40-х годов она применена Б.Гутенбергом и Рихтером для энергетической классификации землетрясений всего мира. Для расчета М используется эмпирический закон изменения максимальной амплитуды сейсмической волны (А) или скорости колебаний (А/Т) с эпицентральным расстоянием (D), т.е. расстоянием до эпицентра землетрясения - это так называемая калибровочная функция s(D): М = lgA+sA(D) или М = lg(A/T)+sA/T(D), где Т - период волны. Максимально известное значение М приближается к 9,0. За год на земном шаре в среднем происходит по одному землетрясению с М ³8,0 ; десять землетрясений с М=7,0-7,9; 100 - с М=6,0-6,9; 1000 - с М=5,0-5,9; 10000 - с М=4,0-4,9. На территории СНГ магнитуда, например Камчатского-1952 землетрясения составила 8,5, Кеминского-1911 - 8,2, Ашхабадского-1948 - 7,3, Газлинского-1984 - 7,2, Спитакского-1986 - 6,9, Дагестанского-1970 - 6,6, Андижанского-1902 - 6,4, Ленинаканского-1926 - 5,7, Ташкентского-1966 - 5,1, Эстонского-1976 - 4,3.

Для перехода от магнитуды землетрясения к энергии (Е) сейсмических волн обычно пользуются соотношением: lgE = 11,8 + 1,5×M. В пределах бывшего СССР для классификации землетрясений на близких расстояниях широко применяют шкалу энергетических классов (К). В большинстве случаев под классом понимается логарифм энергии (в Дж) сейсмических волн, прошедших через окружающую очаг землетрясения референц-сферу радиусом 10 км (в таком понимании класс представляет собой разновидность магнитуды). Значения К определяются с помощью специальной номограммы по сумме амплитуд волн Р и S.

Сила землетрясения по ее проявлениях на поверхности Земли обычно оценивается в баллах по 10- или 12-балльной шкале. С 1952 г. в СССР принята 12-балльная сейсмическая шкала, характеристики которой приведены в табл.5.

Шкала интенсивности землетрясений

Таблица 5

Балл

Краткая характеристика (по С.В.Медведеву)

I

Колебания почвы отмечаются приборами

II

Ощущаются в отдельных случаях людьми, находящимися в спокойном состоянии

III

Колебания ощущаются немногими людьми

IV

Колебания ощущаются многими людьми. Возможно дребезжание стекол

V

Качание висячих предметов. Многие спящие просыпаются

VI

Легкие повреждения в зданиях

VII

Трещины в штукатурке и откалывание отдельных кусков, тонкие трещины в стенах

VIII

Большие трещины в стенах, падение карнизов, дымовых труб

IX

В некоторых зданиях обвалы - обрушение стен, перекрытий, кровли

X

Обвалы во многих зданиях. Трещины в грунтах шириной до 1 м

XI

Многочисленные трещины на поверхности Земли, большие обвалы в горах

XII

Полное разрушение. Волны на поверхности грунта. Значительные изменения рельефа

Сопоставление 12- и 10-балльной шкал

Таблица 6

I

II

III

IV

V

VI

VII

VIII

IX

X

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII



В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

Io=1,5M-3,51gh+3,0.


При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соarrsid735rs

 

В табл.6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.


Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1,4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок аe0л‘ тироа'e7жс. иита7awnil 'e6ет быть преальнp0'edия ff883нием'e5рх_f0релируетс4ного падения; ряe0внен_5р, даe8нии на_edтыedкцие7ага пример 1,a,drw30 f4, но позжefринятой а'efл_0ть ускора'e5н как гр_'f1и-'e0лаe5м на поверхности. Напра что циаль_sid1'e4 землей н_'f11f (9-10 баллов, 1976). Специальны_e5, чем на 'e4 ио амплитуда _т_не 3510 м lrtbио амаf2аtsWidth3tsWi'ff; напрималь\'ed_'fbrdrw30 еского пidth3-eвзcltxlrtbj _'f1ля к'ea и pli0

 
16217365гдиа пример 1,afbх зон. Мостна г_f0оid1621737srsid16217361когва, ли37иваЂясегт глрe8руе
rrsid73572'edа_0 огаd16217365однаarrsid732e0 кора'e5'e6ет быть и явлс2а, либо с его

rs. Сп_361конткону7иваЂрid16217365alt'e6еамчатскоcи, но позже было выявлd16217365

\'f2ен5ста-20 Гц на ак'eacellx8115релируерf0ося0'fc реаль:

Io='e5нияетринятой а'e5млей н0оставленагниодель реальПри ри аназыва'e0бл.6 привђ'edа,'fcно гур'ff К_e3Аnil dwnil ля К2'e5м на'e3раф5ста-20 Гц н\'e0л'e0 исполф



[1] Maury Mattew Fontaine. The Physical Geography of the Sea and its Meteorology, 1855.

[2] Stommel, Henry. The Gulf Stream. В русском переводе: Генри Стоммел. Гольфстрим. Физическое и динамическое описание. М.: ИЛ, 1963.

[3] Доказано, что поле намагниченного шара совпадает с полем элементарного диполя, помещенного в центр шара.

[4] Постоянный магнит постепенно утрачивает свою намагниченность

1. Реферат Роль Адольфа Гітлера у світовій історії
2. Диплом Образование как предмет познания
3. Реферат Философия и общество журнал
4. Сочинение на тему Восприятие истолкование оценка стихотворения Г Р Державина Властителям и судиям
5. Диплом Поэтика драмы Т. Стоппарда Розенкранц и Гильденстерн мертвы
6. Курсовая на тему Кінематичний аналіз плоских важільних кулачкових і зубчастих механізмів
7. Реферат Проста лінійна регресія
8. Реферат на тему UnH1d Essay Research Paper By EvanAnimal Farm
9. Диплом на тему Лингвистические и экстралингвистические аспекты перевода обществе
10. Реферат Страховые взносы