Контрольная работа

Контрольная работа на тему Высшая математика 2

Работа добавлена на сайт bukvasha.net: 2014-07-03

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


Контрольная работа
Высшая математика

ЗАДАЧА 1.
 В декартовой прямоугольной системе координат даны вершины пирамиды .
Найдите:
а) длину ребра ;  
б) косинус угла между векторами  и ;
в) уравнение ребра ;
г) уравнение грани С1; если А1 (-2,2,2),В1(1,-3.0), С1(6,2,4), D1(5,7,-1).
Решение.
а) Найдем координаты вектора А1В1 по формуле
 где  - координаты точки А1, -координаты точки В1.
Итак  ={1-(-2);-3-2;0-2}={3;-5;-2}. Тогда = = .
Итак, длина отрезка, (или длина векторе ) равна . Это и есть искомая длина ребра.
б) Координаты ={3;-5;-2} уже известны, осталось определить координаты вектора ={6- (-2); 2 - 2; 4 - 2}= {8,0; 2}.
Угол между векторами и вычислим по формуле
cos φ =        (А1В1, А1С1)
         |А1В1|·| А1С1|
где скалярое произведение векторов А1В1  и А1С1  равно ( , )=3·8+(-5)·0+(-2)=24+0-4=20,
| |= , | |= = .
Итак, cos φ =      20      =       10
                  ·     
в) Координаты точки А1(-2,2,2) обозначим соответственно Х0 = -2, У0 = 2, Z0 = 2, а координаты точки В1(1,-3,0) через X1 = 1, У1 = -3, Z1 = 0 и воспользуемся уравнением прямой и пространстве, проходящей через две точки:
.
Следовательно, уравнение ребра  имеет вид
.
г) Обозначим координаты векторов , и через Х1=3, У1= -5, Z1= -2 и  Х2=8, У2= 0, Z2=2 соответственно. Векторное произведение данных векторов определяется формулой
·A1C1 = {Y1·Z2-Y2·Z1;Z1·X2-Z2·X1;X1·Y2-X2·Y2} =
= {(-5)·2-0·(-2);-2·8-2·3;3·0-8·(-5)}={-10,-22,40}
Так как данный вектор перпендикулярен грани С1, то можно воспользоваться уравнением плоскости, проходящей через точку (Х0 У0, Z0) перпендикулярно вектору {А;В;С}, которое имеет вид A·(X-X0)+B·(Y-Y0)+С·(Z-Z0)=0.
Подставим координаты точки А1 (Хо= -2, У0=2, Z0=2) и координаты перпендикулярного вектора А= -10, В= -22, С=40 в это уравнение:
- 10 ( X + 2 ) - 22 (У – 2) т 40 ( Z- 2) - 0. Раскроем скобки и приведем подобные члены - 10 х -22 у + 40z + (-20 + 44-80)=0. Итак, уравнение грани ,C1 имеет вид: -10х- 22у + 4О z-56=0 или -5х- lly + 20z-28=0.

ЗАДАЧА 2.
Решите систему линейных уравнений
  а) методом Крамера;
  б) методом Гаусса;

Решение.
а) Решим данную систему уравнений с помощью формул Крамера (см.[2] глава 10. стр. 268). Рассмотрим произвольную систему трех линейных уравнений с тремя неизвестными:

Решение.
а) Решим данную систему уравнений с помощью формул Крамера ( см. [2] глава 10, стр. 268).
Тогда , где

Так как  Δx= -60; Δy= -60; Δz=60; Δ= -120, то x= ; y= ; z= .

6) решим данную систему уравнений методом Гаусса. Метод Гаусса состоит в том, что с помощью элементарных преобразований система уравнении приводится к равносильной системе ступенчатого (или треугольного) вида из которой последовательно, начиная с последнего уравнения, легко находят все неизвестные системы.
Составим расширенную матрицу данной системы.
-4  4   -6   3
1    0  -1    1
3    8    7   2

Поменяем местами первую и вторую строки матрицы, чтобы в ее левом верхнем углу была единица. Получим матрицу.
1    0  -1    1
-4  4   -6   3
3    8    7   2

Умножим каждый элемент первой строки матрицы на 4 и прибавим полученные числа к соответствующим элементам второй строки. Матрица примет вид.
1  0    -1    1
0  4    -10  7
3  8      7   2
      1                0          -1              1
1·4+(-4)     0·4+4   (-1)·4-6       1·4+3
      3                8            7              2
Подпись:       1		0	 -1	      1
1•4+(-4)     0•4+4   (-1)•4-6	  1•4+3
      3		8	  7	      2

Умножим каждый элемент первой строки матрицы на -3. и прибавим полученные числа к соответствующим элементам третьей строки. Получим:
1   0   -1     1
0   4   -10   7
0   8    10   -1
      1                0               -1                 1
      0                4               -10               7
1·(-3)+3   0·(-3)+8   (-1)·(-3)+7    1·(-3)+2

=  
Разделим каждый элемент второй строки матрицы на 4, чтобы второй элемент, стоящий на главной диагонали матрицы, стал равным 1.
1   0      -1     1
0   1        
0   8       10   -1

Умножим каждый элемент второй строки матрицы на -8 и прибавим полученные числа к соответствующим элементам третьей строки:
      1                0                 -1                     1
      0                1                                 
0·(-8)+0  1·(-8)+8  ·(-8)+10     ·(-8)-1
1   0    -1          1
0   1          
0   0     30      -15

=
Подпись: =
Данная матрица соответствует системе уравнений , решение которой совпадает с решением исходной системы. Начинай с последнего уравнения, несложно найти все неизвестные.
Действительно, так как z= =  и y z= , то y ·
Отсюда, y - = = = . Из x-z=1 имеем =z+1= +1=
Ответ: x= , y= , z= .
Элементы теории вероятности и математической статистики
Для решения задачи 3 см. [5] глава 1. § 1—5.

ЗАДАЧА 3.
На складе университета хранится 28 одинаковых упаковок писчей бумаги. Известно, что в четырех из них содержится бумага более низкого качества. Случайным образом выбирают три упаковки бумаги, Вычислить вероятность того, что среди них;
А) нет упаковок с бумагой более низкого качества,
Б) есть одна упаковка такой бумаги.
Решение. Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 3 упаковки бумаги из 28 упаковок, то есть
= = = =13·9·28=3276 – числу сочетаний из 28 элементов по 3.
а) Подсчитаем число исходов, благоприятствующих интересующему нас событию (нет упаковок с бумагой более низкого качества). Это число исходов ровно числу способов, которыми можно извлечь 3 упаковки бумаги из 24 упаковок (столько упаковок содержит бумагу высшего сорта), то есть
= = = =11·23·8=2024
искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
P1= = ≈0,62
б) Подсчитаем число исходов, благоприятствующих данному событию (среди трех упаковок бумаги ровно 1 упаковка содержит бумагу более низкого качества): две упаковки можно выбрать из 24 упаковок: = = = =276 способами, при этом одну упаковку нужно выбирать из четырех: = = =4 способами. Следовательно, число благоприятствующих исходов равно · =276·4=1104
Искомая вероятность равна отношению числа исходов, благоприятствующих данному событию, к числу всех элементарных исходов p2= = ≈0,34
Ответ: а) p1 =0,62; б) р2 =0,34.
ЗАДАЧА 4.
Магазин получает электролампочки с двух заводов, причем доля первого завода составляет 25 %. Известно, что доля брака на этих заводах равна соответственно 5 % и 10 % от всей выпускаемой продукции. Продавец наугад берет одну лампочку. Какова вероятность того, что она окажется бракованной?
Решение: Обозначим через А событие - «лампочка окажется бракованной». Возможны следующие гипотезы о происхождении этой лампочки: H1-лампочка поступила с первого завода, H2-лампочка поступила со второго завода. Так как доля первого завода составляет 25 %, то вероятности этих гипотез равны соответственно p(H1)= =0,25; p(H2)= =0,75.
Условная вероятность того, что бракованная лампочка выпущена первым заводомp(A/H1)= =0,05, вторым заводом - p(A/H2)= =0,10 искомую вероятность того, что продавец взял бракованную лампочку, находим по формуле полной вероятности
р(А) = P(H1 p(A/H1)+P(H2)·(A/H2)=0,25·0,05+0,75·0,10=0,0125+0,075=0.0875
Ответ: р(А) = 0,0875.
Для решения задачи 5 см. [5]глава 6 § 1—3, глава 7 § 1-2, глава 8 § J—3.
ЗАДАЧА 5.
Задан закон распределения дискретной случайной величены X:

X

-4
-2
0
2
4
6
8
p
0,05
p
0,12
0,23
0,32
0,14
0,04
Найти:
а)      неизвестную вероятность р.
б)      математическое ожидание М, дисперсию D и среднее квадратическое отклонение σ данной случайной величены;
Решение:
а)      так как сумма всех, вероятностей должна равняться единице, то получим уравнение
0,05-p + 0,12 + 0,23-0,32 + 0,14+0,04 = 1.
Отсюда р+0,9 = 1 и р=0,1.
б)      Математическое ожидание М это сумма всех произведений значений случайной величины на их вероятности:
М = (-4)·0,05+(-2)·0,1 + 0·0,12 + 2·0,23 + 4·0,32 + 6·0,14 + +8·0,04-0,2-0,2+0 + 0,46 + 1,28 + 0,84 + 0.32 = -0,4 + 2,9 = 2,5.
7
Подпись: 7Дисперсия D=∑(x1)2·p1-M2=
i=1
Подпись: i=1
=(-4)·0.05+(-2)2·0,1+02·0,12+22·0,23+42·0,32+62·0,14+82·0,04-(2,5)2=
=0,8+0+0,92+5,12+5,04+2,56-6,25=8,59
Среднее квадратическое отклонение σ =  =  ≈2,9
ЗАДАЧА 6.
Построить выпуклый многоугольник, заданный системой неравенств
x1-x2 ≥ - 2;
x1-3x2 ≥ - 10,
x1+2 x2 ≥4,
x1 ≤8,
x2≥0.
Пользуясь геометрической интерпретацией основной задачи линейного программирования, найти минимум и максимум линейной формы
L=2x1+x2
Решение. Построим прямоугольную систему координат x1Ox2.  Если в этой системе построить прямую ax1 + bx2 = c, то она разобьет плоскость x1Ох2 на две полуплоскости, каждая из которых лежит но одну сторону от прямой. Сама прямая в этом случае называется граничной и принадлежит обеим полуплоскостям. Координаты точек, лежащих в одной полуплоскости, удовлетворяют неравенству ах1+bx2c, а координаты точек, лежащих в другой полуплоскости,— неравенству. ах1+bx2≥c. Построим в плоскости x1Ox2 граничные прямые x1-x2=-2(AB), x1-3x2=-10(BC), x1+2 x2=4(AE), x1=8(CD) и x2=0(ED).
В результате получим пятиугольник ABCDE (рис. 12). Значения x1 и x2, удовлетворяющие системе неравенств (1), являются координатами точек, лежащих внутри или на границе найденного пятиугольника.
x2

E
 D х1
l1
Подпись: l10
Рис. 1
Теперь задача сводится к тому, чтобы найти те значения x1 и x2, при которых линейная форма, L (2) имеет минимум, и те значения x1 и х2, при которых линейная форма L достигает максимума. Из рис. 1 видно, что координаты всех точек, лежащих внутри или на границе пятиугольника, не являются отрицательными, т. е. все значения x1 и х2 больше или равны нулю. Для каждой точки плоскости x1Ox2 линейная форма L принимает фиксированное значение. Множество точек, при которых линейная форма L принимает значение L1, есть прямая 2x12=L1(l1), которая перпендикулярна вектору N = 2i+j. Если прямую l1 передвигать параллельно самой себе в положительном направлении вектора N, то линейная форма L будет возрастать, а если прямую передвигать в противоположном направлении — убывать. Построим прямую (l1) для того случая, когда L = 0, т.е. построим прямую 2x12=0. Как видно из рис. 1 , при передвижении прямой l1 в положительном направлении вектора N она впервые встретится с вершиной А построенного пятиугольника ABCDE. В этой вершине линейная форма L имеет минимум. Следовательно, Lmin=2·0+1·2=2, При дальнейшем передвижении прямой l1 параллельно самой себе в положительном направлении вектора N значение линейной формы L будет возрастать, и оно достигнет максимального значения в точке С(8; 6). Таким образом, Lmax=2·8+1·6=22.

1. Реферат на тему Katz V The United States Essay
2. Реферат на тему Light Matter Essay Research Paper Inner LightIn
3. Лекция Мировоззрение, его структура и основные типы
4. Книга Всеобщее управление качеством
5. Курсовая на тему Свободные аминокислоты нервной системы
6. Курсовая Товар, его свойства и функциональные формы
7. Диплом на тему Розвиток пізнавальних інтересів учнів 4 класу на уроках Я і Україна
8. Отчет_по_практике на тему Организация технологического процесса на предприятиях легкой промышленности
9. Курсовая на тему Геополитическое положение стран Африки
10. Статья на тему Математика и мифология о Чужом