Контрольная работа

Контрольная работа Расчёт структурной схемы

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


Дана структурная схема:

Где:

W1 = 10;

W5 = K(1+10p)

W6=10 / (1+2*10*0.2*p+102p2)

1. Получить передаточную функцию разомкнутой системы W(p)

Вывод передаточной функции производится вручную любым из методов алгебраических и структурных преобразований блок - схемы.

Перенесём средний сумматор против хода сигнала, преобразуем при этом схема станет:

Заменим звено с единичной ООС на эквивалентное:

Перенесём правый сумматор против хода сигнала, переставим местами сумматоры и получим звено суммы и звено с отрицательной обратной связью их эквивалентная передаточная функция:

2. Исследовать устойчивость разомкнутой системы от буквенного параметра методами Гурвица и Михайлова

Метод Михайлова:

Запишем характеристический полином системы:

D(p)=11000kp3+ (100+1540k)p2+ p(4+154k)+11k+1

D(p)=-11000jw3- (100+1540k)w2+ jw(4+154k)+11k+1

U(w)=-(100+1540)w2+11k+1

V(w)= -11000jw3 + jw(4+154k)

Для того, чтобы система находилась на границе устойчивости, необходимо чтобы:


Корень второго уравнения w=0 отбрасываем, т.к. для нахождения системы на границе устойчивости годограф Михайлова должен пройти через начало координат при w= 0.

Тогда из второго уравнения определяем

Подставим в первое и получим

1452k2 + 132k+5>0

тогда:

Метод Гурвица:

Запишем характеристический полином системы:

D(p)=11000kp3+ (100+1540k)p2+ p(4+154k)+11k+1

В общем виде

D(p) =a3p3+a2p2+a1p+a0

Так как система имеет третий порядок, то она будет находиться на границе устойчивости при равенстве нулю выражения:

a1a2-a0a3= (4+154k)*(100+1540k) –11000k*(11k+1)=0

или 1452k2 + 132k+5>0

что одинаково с выше полученным уравнением,

3. Получить передаточную функцию W(p) системы, замкнутой единичной отрицательной обратной связью

4. Исследовать устойчивость замкнутой системы от буквенного параметра методам Гурвица. Получить области устойчивых и неустойчивых значений параметра в классе вещественных чисел

Метод Михайлова:

Запишем характеристический полином системы:

Для того, чтобы система находилась на границе устойчивости, необходимо чтобы:

w2 =

512k2 + 1137k+5>0

Метод Гурвица:

Запишем характеристический полином системы:

В общем виде

D(p) =a3p3+a2p2+a1p+a0

Так как система имеет третий порядок, то она будет находиться на границе устойчивости при равенстве нулю выражения:

a1a2-a0a3= (4+1014k)*(100+140k) –1000k*(101k+11)=0

512k2 + 1137k+5>0

5. Сформировать набор значений параметра, включающий все граничные и по одному из каждого интервала устойчивости и неустойчивости замкнутой системы

k1 = -2.2163, k2= - 0,0044, k3=1, k4 = -10 k5 = -1

6. Для каждого значения параметра из набора построить частотные характеристики, необходимые для исследования зависимости устойчивости замкнутой системы от параметра по критериям Найквиста и Михайлова

В общем виде

D(p) =a3p3+a2p2+a1p+a0

Годограф Михайлова построим по формулам c помощью пакета MAPLE:

Из графика видно, что гадограф Михайлова, начавшись с положительной действительной оси обходит последовательно 3 квадранта против часовой стрелки, проходя через ноль, следовательно замкнутая система находится на границе устойчивости

Проведем анализ при k2= -0,0044 по критерию Найквиста с помощью пакета MatLab:

k1=tf([44 6,16 –3,784 9,604],[-48,4 93,224 3,3224 0,9516])

subplot(121)

nyquist(k1,'b')

Из рисунка видно, что АФХ системы проходит через точку (-1;j0) , следовательно, замкнутая система на границе устойчивости.

Теперь рассмотрим точку

Метод Михайлова:

Из графика видно, что годограф Михайлова, начавшись с положительной действительной оси обходит последовательно 3 квадранта против часовой стрелки, следовательно, замкнутая система устойчива.

Проведем анализ k4 = -10 по критерию Найквиста с помощью пакета MatLab:

i1=tf([100000 14000 -8600 -890],[-110000 –15300 –1536 -109])

subplot(211)

pzmap(i1,'b')

subplot(212)

nyquist(i1,'b')

Из расположения корней на комплексной плоскости видно, что система не имеет корней с положительной вещественной частью, а АФХ системы не охватывает точку (-1;j0) , следовательно, замкнутая система устойчива.

Исследуем точку

Метод Михайлова:

Из графика видно, что годограф Михайлова, начавшись с положительной действительной оси не обходит последовательно 3 квадранта против часовой стрелки, следовательно, замкнутая система неустойчива.

7. Получить оценки качества временных характеристик разомкнутой системы

i1=tf([-22163 –3102,82 1906,018 189,467],[24379,3 3313,102 337,3102 23,3793])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

i1=tf([99.89 9.989 99.89 20],[99.89 11.989 100.9 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

Как видно, процесс имеет экспоненциальный характер.

i1=tf([0.005 0.0005 0.005 20],[0.005 2.0005 0.205 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

i1=tf([50 5 50 20],[50 7 50.2 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

Как видно, процесс имеет экспоненциальный характер.

i1=tf([50 5 50 20],[150 17 150.2 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

i2=impulse(i1)

Как видно, процесс имеет экспоненциальный характер.



1. Доклад на тему Конфликт крови
2. Курсовая на тему Система автоматического регулирования
3. Реферат на тему The Efffects Of Louis 16Th On France
4. Доклад на тему Мифы об антибиотиках и других антимикробных средствах
5. Контрольная работа Упорядочивание элементов файла
6. Реферат на тему Theories Of Thomas Aquinas Essay Research Paper
7. Шпаргалка Шпаргалка по социологии 9
8. Реферат на тему Договор найма продажи
9. Доклад на тему Автомобилестроение
10. Диплом на тему Программное обеспечение системы принятия решений адаптивного робота