Контрольная работа

Контрольная работа Интегралы Функции переменных

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.9.2024


Вариант 2

  1. Вычислить интегралы

Преобразуем подынтегральное выражения с целью его непосредственного интегрирования:

Найдем А и В:

Отсюда видно что А и В являются решением системы:

Решим эту систему и найдем А и В:

Итак, A=3/5, B=7/5, зная эти коэффициенты, вычисляем интеграл.

с помощью замены переменных

Введем и возьмем соответствующий неопределенный интеграл:

Возвращаемся к x:

Теперь вычисляем определенный интеграл:

Итак,

3. методом интегрирования по частям

Итак,

II. Функции многих переменных

1. Найти частные производные 1-го порядка

2. Исследовать на экстремум функцию

Найдем частные производные

Найдем все стационарные точки функции, точки в которых должны выполняться условия: ,

Это равносильно следующему:

Вторая система не имеет вещественного корня

t= 0 t=1

y=1 y=-1

x=1

M0(0;0) и M1(1;1) – стационарные точки данной функции.

Теперь определим характер этих стационарных точек.

Найдем частные производные второго порядка этой функции.

В точке M0(0;0):

Так как <0, то экстремума в точке M0(0;0) нет.

В точке M1(1;1):

Так как >0,A>0,C>0 то точка M1(1;1) это точка экстремума,

Причем этот экстремум-минимум.

III. Решить дифференциальные уравнения.

1. Решить уравнение с разделяющимися переменными

Интегрируем правую и левую части уравнения:

После некоторых преобразований выражаем решение уравнения:

2. Решить линейное уравнение 1-го порядка

Ищем решение уравнения в виде произведения двух функций:

При этом:

После подстановки в исходное уравнение имеем:

Чтобы коэффициент при u обратился в 0, в качестве v выбираем функцию удовлетворяющую уравнению:

Найдем функцию u, которая должна удовлетворять уравнению:

:

Решение запишется в виде:

3

Это неоднородное линейное дифференциальное уравнение второго порядка. Его решение ищем в виде:

, где - общее решение соответствующего однородного уравнения, - частное решение.

Найдем

Решим однородное дифференциальное уравнение

Характеристическое уравнение для него:

Это квадратное уравнение

d=36-100=-64 – дискриминант отрицательный, корни комплексные:

k1=3-4i ; k2=3+4i

Общее решение, следовательно, имеет вид:

,

где - константы.

Ищем частное решение. Функция свободного члена имеет вид:

, где a=2,b=3,k=1,p=-6,q=25

При этом , следовательно, частное решение ищем в виде:

Находим его производные первого и второго порядка и подставляем в уравнение:

Для нахождения коэффициентов А и В решим систему:

A=0,07, B=0,16

Таким образом, окончательное решение уравнения имеет вид:

IV. Ряды

  1. Исследовать на сходимость ряд с положительными членами

Рассмотрим ряд:

Это степенной ряд с основанием меньшим 1, а он заведомо сходится.

Теперь сравним члены ряда с членами ряда

при n>4 , значит ряд также сходится.

  1. Исследовать на абсолютную и условную сходимость ряд:

Исследуем на абсолютную сходимость (сходимость ряда, состоящего из модулей членов знакопеременного ряда) значит необходимый признак сходимости выполняется.

,

Сравним член этого ряда с членом заведомо расходящегося гармонического ряда:

, следовательно наш ряд расходится абсолютно.

Исследуем ряд на условную сходимость:

Так как условия признака Лейбница выполнены

данный ряд сходится условно.

3. Найти область сходимости функционального ряда

, перепишем его в виде:

Член данного ряда представляет собой член степенного ряда, помноженный на член гармонического ряда.

Для расходящегося гармонического ряда выполняется однако основной признак сходимости (его член стремится к нулю), так что сходимость функционального ряда определяется сходимостью степенного ряда: , причем при любом x это будет знакопостоянный ряд.

Cтепенной же ряд сходится когда его член по модулю <1:

Решаем это модульное неравенство и находим область сходимости функционального ряда :

Итак, область сходимости функционального ряда :


1. Практическая_работа на тему Блочно-модульная технология на уроках истории 2
2. Реферат на тему Computers Details Essay Research Paper Computers are
3. Реферат на тему Karl Marx Essay Research Paper Essay on
4. Реферат Институт уполномоченного по правам человека в РФ
5. Курсовая на тему Анализ и совершенствование деятельности коммерческого банка на примере ОАО АК БАРС Банк
6. Реферат на тему Россия и Всемирная Торговая Организация 2
7. Реферат Проблема я и гениальность
8. Сочинение на тему Тургенев и. с. -
9. Курсовая на тему Школьный музей как форма воспитательной работы
10. Реферат Психология переговорного процесса по разрешению конфликтов