Контрольная работа

Контрольная работа Краткие сведения и задачи по курсу векторной и линейной алгебры

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.12.2024


Контрольная работа

Краткие сведения и задачи по курсу векторной и линейной алгебры

Векторная алгебра

Вариант №21

  1. Найти скалярное произведение .

  1. При каком значении α векторы и ортогональны?

;;;

;;;

Два вектора ортогональны, когда их скалярное произведение равно нулю.

  1. Для прямой М1М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1(0,-3) М2(2,1).

Общий вид уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

значит для прямой М1М2

у+3=kx

Общий вид уравнения прямой, проходящей через две точки записывается в виде:

,

значит для прямой М1М2

Общий вид уравнения прямой в отрезках записывается в виде:

,

Здесь

Уравнения прямой в отрезках для прямой М1М2

;

  1. В треугольнике М0М1М2 найти уравнение медианы, высоты, проведенных их вершины М0, а также уравнение средней линии EF, параллельной основанию М1М2.(М0(-1,-2); М1(0,-3); М2(2,1)).

Найдём координаты точки М3, координаты середины стороны М1М2:

уравнения прямой, проходящей через две точки записывается в виде:

,

уравнение для высоты М0М3:

Найдём уравнение прямой М1М2:

Из условия перпендикулярности (k2=-1/k1) следует, что k2=1/2.

Уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

тогда уравнение для высоты примет вид:

y+1= (x+2)/2

или

x+2y=0.

Расстояние от точки М(x0,y0) до прямой Ax+By+c=0 находится по формуле:

Чтобы найти длину высоту, найдём расстояние от точки М0(-3,-5) до прямойМ1М2, уравнение которой имеет вид -x+2y-4=0. Подставим данные в формулу(1):

Найдём координаты точек Е иF.

Для точки Е: x=-1/2; y=-5/2; E(-1/2;-5/2).

Для точки F: x=1/2; y=-1/2; F(1/2;-1/2).

Уравнение прямой EF:

y+5/2=-2x-1 или 2x+y+3,5=0.

  1. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).

(1)

Воспользуемся параллельным переносом (O’(-3,-1))

(2)

Подставим (2) в (1), получим

кривая второго порядка является эллипсом.

F1(c;0); F2(-c;0).

т.к.

Координаты центра: O’(-3,-1).

  1. Преобразовать к полярным координатам уравнения линии.

1)

2)

Первое уравнение представляет собой (при любых значениях φ) полюс О. Второе – дает все точки линии, в том числе полюс. Поэтому первое уравнение можно отбросить. Следовательно, получаем:

Линейная алгебра

Матрицы

Ответы на вопросы

  1. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?

Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е – единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .

  1. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?

Система уравнений в матрично-векторной форме записывается в виде: .

Решение системы уравнения при помощи обратной матрицы:

  1. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?

Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:

Выполняются элементарные преобразования, вследствие чего можно получить два исхода:

  1. получается строчка, в которой до черты стоят нули, а после – ненулевое число, тогда решения нет;

  2. система приводится к лестничному виду.

Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.

Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.

Задача 1.

X4-свободная переменная

r = 3

система совместима.

Задача 2

т.к. detA0, то матрица является невырожденной.

А11=3;А12= -1;А13= -10;А21=0;А22=0;А23= -1;А31=0;А32= -1;А33= -1.

;

.

.

.

5. Найти скалярное произведение .

  1. При каком значении α векторы и ортогональны?

;;;

;;;

Два вектора ортогональны, когда их скалярное произведение равно нулю.

  1. Для прямой М1М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1(2,-2) М2(1,0).

Общий вид уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

значит для прямой М1М2

у+2=k(x-2)

Общий вид уравнения прямой, проходящей через две точки записывается в виде:

,

значит для прямой М1М2

Общий вид уравнения прямой в отрезках записывается в виде:

,

здесь

Уравнения прямой в отрезках для прямой М1М2

;

y=-2x+2


  1. В треугольнике М0М1М2 найти уравнение медианы, высоты, проведенных их вершины М0, а также уравнение средней линии EF, параллельной основанию М1М2.(М0(-3,-5); М1(2,-2); М2(1,0)).

Найдём координаты точки М3, координаты середины стороны М1М2:

уравнения прямой, проходящей через две точки записывается в виде:

,

уравнение для высоты М0М3:

Найдём уравнение прямой М1М2:

Из условия перпендикулярности (k2=-1/k1) следует, что k2=-1/2.

Уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

тогда уравнение для высоты примет вид:

y+5= -(x+3)/2

или

x+2y+13=0.

Расстояние от точки М(x0,y0) до прямой Ax+By+c=0 находится по формуле:

Чтобы найти длину высоту, найдём расстояние от точки М0(-3,-5) до прямойМ1М2, уравнение которой имеет вид 2x+y-2=0. Подставим данные в формулу(1):

Найдём координаты точек Е иF.

Для точки Е: x=-1/2; y=-7/2; E(-1/2;-7/2).

Для точки F: x=-1; y=-5/2; F(-1;-5/2).

Уравнение прямой EF:

y+7/2=-2x-1 или 2x+y+4,5=0.

  1. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).

(1)

Воспользуемся параллельным переносом (O’(-2,2))

(2)

Подставим (2) в (1), получим

кривая второго порядка является эллипсом.

F1(c;0); F2(-c;0).

т.к.

Координаты центра: O’(-2,2).

  1. Преобразовать к полярным координатам уравнения линии.

1)

2)

Первое уравнение представляет собой (при любых значениях φ) полюс О. Второе – дает все точки линии, в том числе полюс,. Поэтому первое уравнение можно отбросить. Следовательно получаем:

Ответы на вопросы

  1. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?

Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е – единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .

  1. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?

Система уравнений в матрично-векторной форме записывается в виде:

.

Решения системы уравнения при помощи обратной матрицы:

  1. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?

Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:

Выполняются элементарные преобразования, вследствие чего можно получить два исхода:

  1. получается строчка, в которой до черты стоят нули, а после – ненулевое число, тогда решения нет;

  2. система приводится к лестничному виду.

Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.

Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.

Задача 1.

r=2; система совместима.

х 3,x 4 – свободные переменные

;.

Задача 2.

т.к. detA0, то матрица невырождена.

А11=-1; А12=-3; А13=-1;А21=-3;А22=1;А23=2;А31=2;А32=-1;А33= -3.

.


1. Контрольная работа Управление эмоциональным состоянием ученика
2. Реферат на тему Then Changing Gender Roles In Sweden Society
3. Реферат Государственное устройство
4. Контрольная работа Стратегический анализ внутренней среды предприятия
5. Реферат на тему What To Expect Essay Research Paper How
6. Реферат на тему Развитие технологий и институтов в русле трансакционных издержек
7. Контрольная_работа на тему Технический регламент на соковую продукцию Сертификат соответствия на оборудование технологическое
8. Реферат Норманская и антинорманская теория
9. Реферат Военный коммунизм 2 Обстоятельства военно-мобилизационной
10. Курсовая Борьба с солеотложениями путем периодической закачки ингибитора солеотложений в призабойную зону