Контрольная работа

Контрольная работа Многомерные и многосвязные системы

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024


Контрольная работа

«Многомерные и многосвязные системы»

Задание

Для многомерной системы, заданной матрицами А, В, С, получить:

1. Передаточную функцию ;

2. Частотную передаточную функцию ;

3. Годограф;

4. Импульсную характеристику ;

5. Переходную характеристику ;

6. ЛАЧХ ;

7. ФЧХ .

Составить структурную схему системы.

Дано:

;

;

.

Решение:

1. Передаточная функция

Рассматриваем линейную систему с постоянными параметрами:

,

.

Преобразуем по Лапласу матричные уравнения:

; (1)

, (2)

где

; ;

лапласовы преобразования координат состояния , выходных и входных сигналов.

Преобразуем уравнение (1):

Выносим за скобки:

где

единичная матрица.

Умножаем слева на обратную матрицу:

Откуда получаем:

.

Подставляем в уравнение (2):

Получаем:

Выражение называют передаточной функцией системы.

Находим её:

Находим обратную матрицу:

Подставляем:

.

2. Частотная передаточная функция

Для получения частотной передаточной функции производим замену в передаточной функции :

,

получаем:

.

Выделим действительную и мнимую части:

,

для этого умножим числитель и знаменатель на комплексно – сопряжённый знаменатель:

;

;

;

.

3. Годограф

Годограф – это график частотной передаточной функции на комплексной плоскости при изменении частоты от нуля до бесконечности.

Изменяя частоту, производим расчёт действительной и мнимой частей частотной передаточной функции.

Результат расчёта записываем в таблицу 1.

Таблица 1. Расчёт годографа

0

2,8750000

0,0000000

10

-0,0512719

0,4570747

200

-0,00018

0,020008

1

2,7230769

0,9846154

20

-0,0163435

0,2074170

300

-0,000078

0,013336

2

1,9500000

1,9000000

30

-0,0075500

0,1355448

400

-0,000044

0,010001

3

0,8344828

1,9862069

40

-0,0043030

0,1009350

500

-0,000028

0,008001

4

0,2250000

1,5500000

50

-0,0027705

0,0804792

600

-0,000019

0,006667

5

0,0130624

1,1611030

60

-0,0019302

0,0669441

700

-0,000014

0,005715

6

-0,0500000

0,9000000

70

-0,0014209

0,0573176

800

-0,000019

0,005000

7

-0,0645030

0,7269777

80

-0,0010893

0,0501171

900

-0,000009

0,004445

8

-0,0634615

0,6076923

90

-0,0008614

0,0445267

1000

-0,000007

0,004000

9

-0,0578113

0,5216604

100

-0,0006982

0,0400600

2000

-0,000002

0,002000

Можно построить график на комплексной плоскости – рис. 1.


Рис. 1. Годограф

4. Импульсная характеристика

Импульсная характеристика вычисляется как обратное преобразование Лапласа от передаточной функции:

.

Найдём полюса передаточной функции:

Видим – полюса расположены в правой полуплоскости, а это значит, что процесс будет расходящимся.

Разложим передаточную функцию на простые дроби:

.

Используя табличные значения, находим:

,

.

Таким образом, получаем:

.

Изменяя время от нуля до 5 секунд, производим расчёт по формуле, результаты заносим в таблицу 2.

Таблица 2. Импульсная характеристика

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

-4

11,28

62,69

100,8

-167,1

-1236

-2395

2097

23854

54578

-15944

Строим график импульсной характеристики – рис. 2.

Рис. 2. Импульсная характеристика

5. Переходная характеристика

Переходная характеристика вычисляется как обратное преобразование Лапласа от передаточной функции, делённой на р:

.

Найдём полюса передаточной функции:

; .

Видим – полюса расположены в правой полуплоскости, а это значит, что процесс будет расходящимся.

Разложим передаточную функцию, делённую на р, на простые дроби:

.

Приводим к общему знаменателю:

.

Приравниваем коэффициенты при равных степенях р:

,

,

.

Откуда находим:

,

,

.

Используя табличные значения, находим:

,

,

.

Таким образом, получаем:

.

Изменяя время от нуля до 5 секунд, производим расчёт по формуле, результаты заносим в таблицу 3.

Таблица 3. Переходная характеристика

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0

0,654

17,59

62,52

69,32

-243

-1209

-1744

3830

24151

42653

Строим график переходной характеристики – рис. 3.


Рис. 3. Переходная характеристика

6. ЛАЧХ

Для получения ЛАЧХ найдём модуль частотной передаточной функции:

.

далее находим 20 десятичных логарифмов от найденного модуля:

.

Это и есть выражение для ЛАЧХ.

Расчёт значений ЛАЧХ ведём в логарифмическом масштабе. Результаты записываем в таблицу 4. Размерность ЛАЧХ – децибелы (дБ).

Таблица 4. ЛАЧХ

-1

0,1

9,17406

0,1

1,25893

9,20891

1,2

15,8489

-11,426

-0,9

0,12589

9,17482

0,2

1,58489

9,08243

1,3

19,9526

-13,614

-0,8

0,15849

9,17601

0,3

1,99526

8,70564

1,4

25,1189

-15,738

-0,7

0,19953

9,17788

0,4

2,51189

7,83066

1,5

31,6228

-17,818

-0,6

0,25119

9,18077

0,5

3,16228

6,23375

1,6

39,8107

-19,869

-0,5

0,31623

9,18519

0,6

3,98107

3,94960

1,7

50,1187

-21,902

-0,4

0,39811

9,19182

0,7

5,01187

1,26946

1,8

63,0957

-23,923

-0,3

0,50119

9,20135

0,8

6,30957

-1,5050

1,9

79,4328

-25,936

-0,2

0,63096

9,21400

0,9

7,94328

-4,1982

2

100

-27,944

-0,1

0,79433

9,22792

1

10

-6,7459

2,1

125,893

-29,950

0

1

9,23483

1,1

12,5893

-9,1470

2,2

158,489

-31,953

Строим график ЛАЧХ – рис. 4.


Рис. 4. ЛАЧХ

7. ФЧХ

ФЧХ – угол поворота вектора на комплексной плоскости в зависимости от частоты:

.

Расчёт значений ФЧХ ведём в логарифмическом масштабе. Результаты записываем в таблицу 5. Размерность ФЧХ – радианы (рад).

Таблица 5. ФЧХ

-1

0,1

0,03263

0,1

1,25893

0,44997

1,2

15,8489

1,66382

-0,9

0,12589

0,04110

0,2

1,58489

0,58831

1,3

19,9526

1,64958

-0,8

0,15849

0,05177

0,3

1,99526

0,77030

1,4

25,1189

1,63592

-0,7

0,19953

0,06524

0,4

2,51189

0,99225

1,5

31,6228

1,62384

-0,6

0,25119

0,08227

0,5

3,16228

1,22480

1,6

39,8107

1,61359

-0,5

0,31623

0,10383

0,6

3,98107

1,42316

1,7

50,1187

1,60513

-0,4

0,39811

0,13123

0,7

5,01187

1,56064

1,8

63,0957

1,59824

-0,3

0,50119

0,16622

0,8

6,30957

1,63913

1,9

79,4328

1,59268

-0,2

0,63096

0,21126

0,9

7,94328

1,67427

2

100

1,58822

-0,1

0,79433

0,26981

1

10

1,68250

2,1

125,893

1,58466

0

1

0,34696

1,1

12,5893

1,67633

2,2

158,489

1,58182

Строим график ФЧХ – рис. 5.

Рис. 5. ФЧХ

8. Структурная схема системы

Записываем матричные уравнения системы:

;

.

Подставляем исходные данные:

;

.

Производим умножение матриц:

,

,

.

Получили систему уравнений, на основе которой строим структурную схему – рис. 6.

Рис. 6. Структурная схема системы

Часть 2:

Осуществить синтез замкнутой системы с собственными числами

{–1; –4; ± 5j}.

Построить наблюдатель полного порядка.

Дано:

,

,

.

Решение:

1. Синтез замкнутой системы

Рассматриваем линейную систему с постоянными параметрами:

,

.

Пусть управление линейно зависит от координат состояния системы:

,

где

входной командный сигнал,

К – матрица коэффициентов обратной связи.

После замыкания эта система имеет структуру, изображённую на рис. 7.

Рис. 7. Структура исходной системы

Движение системы описывается линейным дифференциальным уравнением:

.

Таким образом, динамические свойства системы полностью определяются матрицей А – ВК, её характеристическими числами.

Характеристический многочлен исходной системы равен:

.

Спектр характеристических чисел (корни характеристического многочлена):

.

Желаемый характеристический многочлен замкнутой системы по условию имеет 4 собственных числа, но наша исходная система имеет третий порядок, поэтому одно из собственных чисел необходимо убрать, убираем собственное число (–1), тогда:

.

Пусть матрица коэффициентов обратной связи , тогда характеристический полином замкнутой системы:

.

Приравниваем коэффициенты при равных степенях многочленов и :

,

,

,

.

Решая полученную систему уравнений, получаем:

,

,

.

Искомое управление принимает вид:

.

Структура синтезированной системы представлена на рис. 8.

Она построена по уравнениям:

,

,

,

,

.

Рис. 8. Структура синтезированной системы

2. Построение наблюдателя полного порядка

Система

называется асимптотическим наблюдателем полного порядка, если для любого начального состояния х(0) и всех оценка с ростом времени асимптотически приближается к вектору состояния .

Найдём структуру асимптотического наблюдателя, для чего определим ошибку восстановления и найдём модель её изменения:

.

Затем потребуем, чтобы при всех и .

Это равенство возможно при:

,

.

Таким образом, структура асимптотического наблюдателя полного порядка определяется моделью вида:

.

На рис. 9 изображена структура системы и её наблюдателя.

Рис. 9. Структура системы с наблюдателем

Задача синтеза наблюдателя системы состоит в том, чтобы найти матрицу . Это можно сделать, исходя из условия асимптотической сходимости оценки к вектору состояния при любых начальных состояниях наблюдателя и системы.

Пусть ошибка восстановления , тогда

.

Ошибка восстановления описывается линейным однородным дифференциальным уравнением с матрицей и ненулевыми начальными условиями, а поэтому асимптотическая сходимость ошибки к нулю возможна тогда и только тогда, когда собственные числа матрицы , которые называют полюсами наблюдателя, располагаются в левой полуплоскости.

Пусть матрица

,

тогда матрица

.

Полюса наблюдателя определяются уравнением:

.

Переходные процессы в наблюдателе будут несравнимы с процессами в системе, если полюса наблюдателя будут значительно левее полюсов системы. Поскольку характеристические числа замкнутой системы равны:

{– 4; ± 5j},

то расположим полюса наблюдателя в точках:

.

Желаемый характеристический полином наблюдателя принимает вид:

,

что будет иметь место тогда, когда:

,

,

.

Решая полученную систему уравнений, получаем:

;

;

.

Находим матрицу:

Модель асимптотического наблюдателя системы принимает вид:

,

,

,

.

Структура системы со своим асимптотическим наблюдателем полного порядка представлена на рис. 10.

Она построена по уравнениям:

,

,

,

,

,

,

.


1. Реферат Иррациональное потребительское поведение
2. Реферат на тему Homer Essay Research Paper In the selected
3. Реферат на тему Амдминистративно территориальное деление государства
4. Курсовая Особенности формирования школьного коллектива в начальной школе
5. Реферат Анализ организации работы с населением в ЦСОН г. Таштагола
6. Реферат на тему Patience Essay Research Paper Have patience with
7. Реферат на тему The New Deal Essay Research Paper New
8. Доклад Опыт оценки реабилитационного потенциала у несовершеннолетних употребляющих наркотики
9. Реферат Территориальные основы местного самоуправления 2
10. Курсовая Бухгалтерский баланс понятие, строение, содержание