Контрольная работа

Контрольная работа Передаточные функции одноконтурной системы

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024


Практическая работа № 1

1. По заданным дифференциальным уравнениям определить операторные уравнения при нулевых начальных условиях, передаточные функции, структурные схемы звеньев, характеристические уравнения и их корни. Показать распределение корней на комплексной плоскости.

Оценить устойчивость каждого из звеньев.

а) ; б).

2. По заданной передаточной функции записать дифференциальное уравнение:

.

  1. а). Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s) и F(s) как изображения сигналов соответственно y и f, тогда операторное уравнение (при нулевых начальных условиях) примет вид:

1,25s3Y(s) – 4s2Y(s) + 5sY(s) = 3F(s) – sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и F(s) за скобки:

Y(s). (1,25s3 – 4s2 + 5s) = F(s). (3 – s).

Отсюда получено:

.

Очевидно, что входной сигнал x отсутствует, и выходной сигнал у определяется только внешним воздействием f (система, действующая по возмущению): , то получается уравнение Y(s) = WF(s).F(s). Структурная схема объекта приведена на рис. 1.

Рис.1

Рис. 2

Передаточная функция имеет знаменатель, называемый характеристическим выражением:

A(s) =.

Если приравнять данное выражение к нулю, то образуется характеристическое уравнение , корни которого:

, и .

Распределение корней на комплексной плоскости показано на рис. 2. По рисунку видно, что корни лежат в правой полуплоскости, следовательно, объект неустойчив.

б) Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s), X(s) и F(s) как изображения сигналов соответственно y, x и f, тогда операторное уравнение (при нулевых начальных условиях) примет вид:

2s2Y(s) + 4sY(s) + 10Y(s) = 3X(s) + 4sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и X(s) за скобки:

Y(s). (5s2 + 4s + 10) = 3X(s) + 4sF(s).

Отсюда получено:

.

Если обозначить передаточные функции объекта как

и ,

то получается уравнение Y(s) = Wx(s).X(s) + WF(s).F(s). Структурная схема объекта приведена на рис. 3.

Рис. 3

Характеристическая функция имеет вид:

,

а характеристическое уравнение:

.

Корни этого уравнения равны:

и .

Распределение корней на комплексной плоскости показано на рис. 4:

Рис. 4.

Все корни характеристического уравнения лежат в левой полуплоскости, очевидно, что объект устойчив.

  1. Дана передаточная функция вида:

Зная, что по определению, , получим:

, тогда:

.

Раскрывая скобки:

Применяя к полученному выражению обратное преобразование Лапласа, находим искомое дифференциальное уравнение:

.

Практическая работа № 2


Дана одноконтурная АСР, для которой определена передаточная функция регулятора (Р) с настройками и дифференциальное уравнение объекта управления (ОУ). Требуется определить:

- передаточную функцию разомкнутой системы W∞(s),

- характеристическое выражение замкнутой системы (ХВЗС),

- передаточные функции замкнутой системы Фз(s) – по заданию, Фв(s) – по возмущению, ФЕ(s) – по ошибке,

- коэффициенты усиления АСР,

- устойчивость системы.

Р - ПИ-регулятор с ПФ вида ;

дифференциальное уравнение объекта управления:

.

Определим передаточную функцию объекта:

Wоб(s).

Передаточная функция разомкнутой системы имеет вид:

Характеристическое выражение замкнутой системы:

;

Передаточные функции замкнутой системы:

- по заданию;

- по ошибке;

- по возмущению.

По передаточным функциям определим коэффициенты усиления путем подстановки в них s = 0:

К3 = Ф3(0) = 1 – по заданию;

КЕ = ФЕ(0) = 0 – по ошибке;

Кв = Фв(0) = 0 – по возмущению.

Определим устойчивость АСР по критерию Гурвица.

Так как коэффициенты ХВЗС а3 = 4, а2 = 6, а1 = 18, а0 = 4 (степень полинома n = 3), то матрица Гурвица имеет вид:

Диагональные миноры матрицы равны соответственно:

Поскольку все определители положительны, то АСР является устойчивой.

Практическая работа № 3

По табличным данным построить переходную кривую объекта, определить параметры передаточной функции объекта, рассчитать настройки ПИД-регулятора, обеспечивающие 20%-е перерегулирование.

DXвх = 5,5 кПа; DY = 0,149 %; tзап = 40 сек

t, мин

0

20

50

80

110

140

170

200

230

260

DY

0

0,009

0,032

0,060

0,089

0,116

0,130

0,141

0,149

0,149

Полученная переходная характеристика изображена на рисунке 5:

Рис. 5. Переходная характеристика.

Установившееся значение выходной величины составляет:

;

Коэффициент усиления равен:

;

Постоянная времени равна:

.

Для процесса с 20 % перерегулированием ПИД-регулятора, его настройки:

;

;

.

Практическая работа № 4

Дана одноконтурная АСР. Требуется определить:

  • передаточные функции регулятора и объекта управления,

  • передаточную функцию разомкнутой системы W∞(s),

  • характеристическое выражение замкнутой системы (ХВЗС),

  • передаточные функции замкнутой системы Фз(s) – по заданию,

Фв(s) – по возмущению, ФЕ(s) – по ошибке,

  • коэффициенты усиления АСР,

  • примерный вид переходных процессов по заданию, ошибке и возмущению,

  • устойчивость системы.

Структурная схема АСР:


W1(s): ; W2(s): ;

K1 = 1,2; K0 = 1,0; K = 1,0

  • Передаточная функция регулятора:

.

  • Передаточная функция объекта управления:

.

Определим операторные уравнения звеньев объекта управления: для этого обозначим Y(s) и U(s) как изображения сигналов соответственно y и u, тогда операторные уравнения примут вид:

W1(s): sY(s) = 2U(s);

W2(s): 2s2Y(s)+sY(s)+4Y(s)=7U(s).

Данные уравнения можно преобразовать, вынеся Y(s) и U(s) за скобки:

W1(s): sY(s) = 2U(s);

W2(s): Y(s)·(2s2+s+4)=7U(s).

Отсюда получено:

W1(s): Y(s) =

W2(s): Y(s) =.

Тогда:

.

Передаточная функция объекта управления:

  • Передаточная функция разомкнутой системы:

  • Характеристическое выражение замкнутой системы:

  • передаточные функции замкнутой системы

Ф3(s) – по заданию:

ФЕ(s) – по ошибке:

ФВ(s) – по возмущению:

При определении передаточной функции по возмущению принимается Wу.в. = Wоу. Тогда:

.

  • По передаточным функциям определим коэффициенты усиления путем подстановки в них s = 0:

К3 = Ф3(0) = 1 – по заданию;

КЕ = ФЕ(0) = 0 – по ошибке;

Кв = Фв(0) = 0 – по возмущению.

  • Определим устойчивость АСР по критерию Гурвица.

Так как коэффициенты ХВЗС (степень полинома n = 4), то матрица Гурвица имеет вид:

Диагональные миноры матрицы равны соответственно:

Поскольку все определители положительны, то АСР является устойчивой.

  • Определим вид переходных процессов по заданию, ошибке и возмущению:

    1. По заданию:

Корни знаменателя:

Изображение разбивается на сумму дробей:

.

Тогда оригинал y(t), согласно таблицам, имеет вид:

y(t) = y0 + y1,2(t) + y 3,4(t) =

+;

где a1,2, α3,4 и w1,2, w3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.

C1,2, С3,4 и D1,2, D3,4 – действительная и мнимая части пары коэффициентов М1 и М3 соответственно.

Для корня s0 = 0:

;

Для корней :

=;

Для корней :

;

Тогда:

Получим оригинал:

б) По ошибке:

Корни знаменателя:

Изображение разбивается на сумму дробей:

.

Тогда оригинал y(t), согласно таблицам, имеет вид:

y(t) = y1,2(t) + y 3,4(t) =

+;

где a1,2, α3,4 и w1,2, w3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.

C1,2, С3,4 и D1,2, D3,4 – действительная и мнимая части пары коэффициентов М1 и М3 соответственно.

Для корней :

Для корней :

;

Тогда:

Получим оригинал:

в) По возмущению:

Корни знаменателя:

Изображение разбивается на сумму дробей:

.

Тогда оригинал y(t), согласно таблицам, имеет вид:

y(t) = y1,2(t) + y 3,4(t) =

+;

где a1,2, α3,4 и w1,2, w3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.

C1,2, С3,4 и D1,2, D3,4 – действительная и мнимая части пары коэффициентов М1 и М3 соответственно.

Для корней :

Для корней :

;

Тогда:

Получим оригинал:


1. Контрольная работа на тему Моральное сознание
2. Реферат на тему Hindu Pilgrimage Essay Research Paper The following
3. Реферат на тему Macbeth And The Witches Essay Research Paper
4. Реферат на тему Общая характеристика средств обучения истории их классификация
5. Реферат Загрязнение 2
6. Кодекс и Законы Агентирование
7. Реферат Гуморальна система чинника Хагемана i патогенез гіпертензивної ремодуляції серцево-судинної сист
8. Статья Педагогическое обеспечение формирования здорового образа жизни студента
9. Курсовая на тему Позаказный метод учета затрат и калькулирования себестоимости
10. Реферат Служба дільничних інспеторів міліції