Контрольная работа на тему Нормирование естественного и искусственного освещения
Работа добавлена на сайт bukvasha.net: 2014-11-10Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Федеральное агентство по образованию
Государственное образовательное учреждение высшего
профессионального образования
«Ярославский государственный технический университет»
Кафедра «Охраны труда»
Контрольную работу защитил
с оценкой__________
Профессор, доктор
технических наук
____________Н.И.Володин
.01.2009
Контрольная работа по дисциплине
«Безопасность жизнедеятельности»
Нормирование естественного и искусственного освещения. Источники искусственного света
ЯГТУ 080502.65 – 006 к/р
Работу выполнил
студент гр. ЗЭУС-58
___________О.Х.Давлетшина
12.01.2009
2009
Содержание
Введение………………………………………………………………...…………3
1. Естественное освещение. Нормирование и расчет……………………...…...4
2. Искусственное освещение. Нормирование и расчет. Источники искусственного света……………………..……..………………………………..7
Заключение……………………………………………………………..………..13
Список использованных источников…………………………………………...15
Расчетное задание………………………………………………………………..16
Введение
Безопасность и здоровье условия труда в большой степени зависят от освещенности рабочих мест и помещений. Неудовлетворительное освещение утомляет не только зрение, но и вызывает утомление организма в целом.
Неправильное освещение может быть причиной травматизма: плохо освещенные опасные зоны, слепящие лампы, резкие тени ухудшают или вызывают полную потерю зрения, ориентации.
Неправильная эксплуатация осветительных установок в пожароопасных цехах может привести к взрыву, пожару и несчастным случаям.
Обычно пользуются естественным, искусственным и совмещенным (естественное и искусственное совместно) освещением. Нормирование освещения внутри и вне зданий, мест производства работ, наружного освещения городов и др. населенных пунктов производится по СНиП 11-4-79 (строительные нормы и правила, часть II, глава 4, Естественное и искусственное освещение, М.,1980).
Согласно санитарным нормам все помещения с постоянным пребыванием людей должны иметь естественное освещение.
1. Естественное освещение. Нормирование и расчет
Источник естественного (дневного) освещения – солнечная радиация, т. е. поток лучистой энергии солнца, доходящей до земной поверхности в виде прямого и рассеянного света. Естественное освещение является наиболее гигиеничным и предусматривается, как правило, для помещений, в которых постоянно пребывают люди. Если по условиям зрительной работы оно оказывается недостаточным, то используют совмещенное освещение.
Естественное освещение помещений подразделяется на:
Ø боковое (через световые проемы в наружных стенах),
Ø верхнее (через фонари, световые проемы в покрытии, а также через проемы в стенах перепада высот здания),
Ø комбинированное – сочетание верхнего и бокового освещения.
Систему естественного освещения выбирают с учетом следующих факторов:
Ø назначения и принятого архитектурно-планировочного, объемно-пространственного и конструктивного решения зданий;
Ø требований к естественному освещению помещений, вытекающих из особенностей технологической и зрительной работы;
Ø климатических и светоклиматических особенностей места строительства здании;
Ø экономичности естественного освещения.
В зависимости от географической широты, времени года, часа дня и состояния погоды уровень естественного освещения может резко изменяться за очень короткий промежуток времени в довольно широких пределах. Поэтому основной величиной для расчета и нормирования естественного освещения внутри помещений принят коэффициент естественной освещенности (КЕО) — отношение (в процентах освещенности) в данной точке помещения Евн к наблюдаемой одновременно освещенности под открытым небом Eнар.
Таблица 1. Значения коэффициента естественной освещенности для производственных помещений
Нормы естественного освещения промышленных зданий, сведенные к нормированию КЕО, представлены в СНиП II-4—79. Для облегчения нормирования освещенности рабочих мест все зрительные работы по степени точности делятся на восемь разрядов.
СНиП 11-4—79 устанавливают требуемую величину КЕО в зависимости от точности работ, вида освещения и географического расположения производства. В табл. 1. приведены значения КЕО для зданий, расположенных в III поясе светового климата (енIII).
Территория РФ делится на пять световых поясов, для которых значения КЕО определяются по формуле:
где m и c коэффициенты светового и солнечного климата соответственно.
Для определения соответствия естественной освещенности в производственном помещении требуемым нормам освещенность измеряют при верхнем и комбинированном освещении—в различных точках помещения с последующим усреднением; при боковом— на наименее освещенных рабочих местах. Одновременно измеряют наружную освещенность и определенный расчетным путем К.ЕО сравнивают с нормативным.
Расчет естественного освещения заключается в определении площади световых проемов для помещения. Расчет ведут по следующим формулам:
при боковом освещении
при верхнем освещении
где So, 5ф—площадь окон и фонарей, м2; Sn—площадь пола, м2; eн—нормированное значение К.ЕО; Кз—коэффициент запаса (kз=1,2—2,0); ho, hф— световая характеристики окна, фонаря; То—общий коэффициент светопропускания (учитывает оптические свойства стекла, потери света в переплетах, из-за загрязнения остекленной поверхности, в несущих конструкциях, солнцезащитных устройствах); r1, r2—коэффициенты, учитывающие отражение света при боковом и верхнем освещении; kзд—1—1,7—коэффициент, учитывающий затемнение окон противостоящими зданиями; kф—коэффициент, учитывающий тип фонаря.
Значения коэффициентов для расчета естественного освещения принимают по таблицам СНиП 11-4—79.
2. Искусственное освещение. Нормирование и расчет
Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света, или для освещения помещения в часы суток, когда естественная освещенность отсутствует.
Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т. д.).
Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев и аварий.
По функциональному назначению искусственное освещение подразделяется на рабочее, дежурное, аварийное. Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта. Дежурное освещение включается во вне рабочее время.
Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.
В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Для искусственного освещения в этом случае целесообразно использовать люминесцентные лампы.
В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные.
Лампы накаливания. Свечение в этих лампах возникает в результате нагрева вольфрамовой нити до высокой температуры. Промышленность выпускает различные типы ламп накаливания:
вакуумные (В), газонаполненные (Г) (наполнитель смесь аргона и азота), биспиральные (Б), с криптоновым наполнением (К). Лампы накаливания просты в изготовлении, удобны в эксплуатации, не требуют дополнительных устройств для включения в сеть. Недостаток этих ламп—малая световая отдача от 7 до 20 лм/Вт при большой яркости нити накала, низкий кпд, равный 10—13%; срок службы 800—1000 ч. Лампы дают непрерывный спектр, отличающийся от спектра дневного света преобладанием желтых и красных лучей, что в какой-то степени искажает восприятие человеком цветов окружающих предметов.
Основные характеристики ламп—световая отдача, световой поток, средняя продолжительность службы — регламентированы ГОСТ 2239—79 «Лампы накаливания общего назначения. Технические условия» ГОСТ 19190—84 «Лампы электрические. Общие технические условия».
Галогенные лампы накаливания наряду с вольфрамовой нитью содержат в колбе пары того или иного галогена (например, иода), который повышает температуру накала нити и практически исключает испарение. Они имеют более продолжительный срок службы (до 3000 ч) и более высокую светоотдачу (до 30 лм/Вт).
Газоразрядные лампы излучают свет в результате электрических разрядов в парах газа. На внутреннюю поверхность колбы нанесен слой светящегося вещества—люминофора, трансформирующего электрические разряды в видимый свет. Различают газоразрядные лампы низкого (люминесцентные) и высокого давления.
Люминесцентные лампы создают в производственных и других помещениях искусственный свет, приближающийся к естественному, более экономичны в сравнении с другими лампами и создают освещение более благоприятное с гигиенической точки зрения.
К другим преимуществам люминесцентных ламп относятся больший срок службы (10000 ч) и высокая световая отдача, достигающая для ламп некоторых видов 75 лм/Вт, т. е. они в 2,5-3 раза экономичнее ламп накаливания. Свечение происходит со всей поверхности трубки, а следовательно, яркость и слепящее действие люминесцентных ламп значительно ниже ламп накаливания. Низкая температура поверхности колбы (около5гр.С) делает лампу относительно пожаробезопасной.
Несмотря на ряд преимуществ, люминесцентное освещение имеет и некоторые недостатки: пульсация светового поток, вызывающая стробоскопический эффект (искажение зрительного восприятия объектов различия—вместо одного предмета видны изображения нескольких, а также направления и скорости движения); дорогостоящая и относительно сложная схема включения, требующая регулирующих пусковых устройств (дроссели, стартеры); значительная отраженная блескость; чувстительность к колебаниям температуры окружающей среды (оптимальная температура 20— 25 °С) понижение и повышение температуры вызывает уменьшение светового потока.
В зависимости от состава люминофора и особенностей конструкции различают несколько типов люминесцентных ламп:
ЛБ—лампы белого света, ЛД—лампы дневного света, ЛТБ — лампы тепло-белого света, ЛХБ—лампы холодного света, ЛДЦ—лампы дневного света правильной цветопередачи. Наиболее универсальны лампы ЛБ. Лампы ЛХБ, ЛД и особенно ЛДЦ применяются в случаях, когда выполняемая работа предполагает цветоразличение.
Характеристика люминесцентных ламп приведена в ГОСТ 6825—74. Для освещения открытых пространств, высоких (более6 м ) производственных помещений в последнее время большое распространение получили дуговые люминесцентные ртутные лампы высокого давления (ДРЛ). Эти лампы в отличие от обычных люминесцентных ламп сосредотачивают в небольшом объеме значительную электрическую и световую мощность. Такие лампы выпускают мощностью от 80 до 1000 Вт. Лампы работают при любой температуре внешней среды. Кроме того, их можно устанавливать в обычных светильниках взамен ламп накаливания.
К недостаткам ламп относится длительное, в течение 5— 7 мин, разгорание при включении. Ведутся разработки по созданию мощных ламп, дающих спектр, близкий к спектру естественного света. Такими источниками являются дуговая кварцевая лампа ДКсТ, выполненная из кварцевого стекла и наполненная ксеноном под большим давлением, галогенные (ДРИ) и натриевые лампы (ДНаТ).Эти лампы обладают высокой световой отдачей до 100 лМ/Вт, правильной цветопередачей, их мощность составляет 1—2 кВт. Такие лампы можно применять для освещения производственных помещений высотой более10 м .
Для освещения помещений, как правило, следует предусматривать газоразрядные лампы низкого и высокого давления. В случае необходимости допускается использование ламп накаливания. Источники света выбирают с учетом рекомендаций СНиП 11-4—79.
Для искусственного освещения нормируемый параметр—освещенность. СНиП 11-4—79 устанавливают минимальные уровни освещенности рабочих поверхностей в зависимости от точности зрительной работы, контраста объекта и фона, яркости фона, системы освещения и типа используемых ламп.
Нормами установлена наименьшая освещенность, при которой обеспечивается выполнение зрительной работы. Кроме того, нормируется степень равномерности освещения источниками общего и местного освещения при комбинированном освещении с целью обеспечения более полной зрительной адаптации в наименьший отрезок времени. Для ослабления слепящего действия открытых источников света и освещенных поверхностей с чрезмерной яркостью (блескостью) нормами предусмотрен ряд защитных мер: наименьшая высота подвеса над уровнем пола светильников общего освещения, наличие отражателей, допустимая яркость светорассеивающей поверхности.
Нормы освещенности для I разряда зрительной работы даны в табл. 2. Деление разрядов на подразряды дает возможность более оптимально выбрать освещенность для каждой зрительной работы. Необходимый уровень освещенности тем выше, чем темнее фон, меньше объект различения и контраст объекта с фоном.
Нормы освещенности для ламп накаливания меньше, чем для газоразрядных, их следует снижать по шкале освещенности согласно СНиП 11-4—79.
Расчет электрического освещения выполняют при проектировании осветительных установок для определений общей установленной мощности и мощности каждой лампы или числа всех светильников.
Существует несколько методов расчета освещения, наиболее простой — метод удельной мощности, но он менее точен и им пользуются только для ориентировочных расчетов.
Таблица 2. Hopмы освещенности рабочих поверхностей для газоразрядных источников света
где n—число светильников; Р—мощность лампы, Вт; S—освещаемая площадь, м2.
Государственное образовательное учреждение высшего
профессионального образования
«Ярославский государственный технический университет»
Кафедра «Охраны труда»
Контрольную работу защитил
с оценкой__________
Профессор, доктор
технических наук
____________Н.И.Володин
.01.2009
Контрольная работа по дисциплине
«Безопасность жизнедеятельности»
Нормирование естественного и искусственного освещения. Источники искусственного света
ЯГТУ 080502.65 – 006 к/р
Работу выполнил
студент гр. ЗЭУС-58
___________О.Х.Давлетшина
12.01.2009
2009
Содержание
Введение………………………………………………………………...…………3
1. Естественное освещение. Нормирование и расчет……………………...…...4
2. Искусственное освещение. Нормирование и расчет. Источники искусственного света……………………..……..………………………………..7
Заключение……………………………………………………………..………..13
Список использованных источников…………………………………………...15
Расчетное задание………………………………………………………………..16
Введение
Безопасность и здоровье условия труда в большой степени зависят от освещенности рабочих мест и помещений. Неудовлетворительное освещение утомляет не только зрение, но и вызывает утомление организма в целом.
Неправильное освещение может быть причиной травматизма: плохо освещенные опасные зоны, слепящие лампы, резкие тени ухудшают или вызывают полную потерю зрения, ориентации.
Неправильная эксплуатация осветительных установок в пожароопасных цехах может привести к взрыву, пожару и несчастным случаям.
Обычно пользуются естественным, искусственным и совмещенным (естественное и искусственное совместно) освещением. Нормирование освещения внутри и вне зданий, мест производства работ, наружного освещения городов и др. населенных пунктов производится по СНиП 11-4-79 (строительные нормы и правила, часть II, глава 4, Естественное и искусственное освещение, М.,1980).
Согласно санитарным нормам все помещения с постоянным пребыванием людей должны иметь естественное освещение.
1. Естественное освещение. Нормирование и расчет
Источник естественного (дневного) освещения – солнечная радиация, т. е. поток лучистой энергии солнца, доходящей до земной поверхности в виде прямого и рассеянного света. Естественное освещение является наиболее гигиеничным и предусматривается, как правило, для помещений, в которых постоянно пребывают люди. Если по условиям зрительной работы оно оказывается недостаточным, то используют совмещенное освещение.
Естественное освещение помещений подразделяется на:
Ø боковое (через световые проемы в наружных стенах),
Ø верхнее (через фонари, световые проемы в покрытии, а также через проемы в стенах перепада высот здания),
Ø комбинированное – сочетание верхнего и бокового освещения.
Систему естественного освещения выбирают с учетом следующих факторов:
Ø назначения и принятого архитектурно-планировочного, объемно-пространственного и конструктивного решения зданий;
Ø требований к естественному освещению помещений, вытекающих из особенностей технологической и зрительной работы;
Ø климатических и светоклиматических особенностей места строительства здании;
Ø экономичности естественного освещения.
В зависимости от географической широты, времени года, часа дня и состояния погоды уровень естественного освещения может резко изменяться за очень короткий промежуток времени в довольно широких пределах. Поэтому основной величиной для расчета и нормирования естественного освещения внутри помещений принят коэффициент естественной освещенности (КЕО) — отношение (в процентах освещенности) в данной точке помещения Евн к наблюдаемой одновременно освещенности под открытым небом Eнар.
Таблица 1. Значения коэффициента естественной освещенности для производственных помещений
Разряд работ | Характеристика зрительной работы | Значение КЕО | ||
Виды работы по степени точности | наименьший размер объекта различения, мм | при верхнем или комбинированном освещении | При боковом освещении в зоне с устойчивым снежным покровом на осталь ной территории РФ | |
I | Наивысшей точности | менее 0,15 | 10 | 2,8/3,5 |
II | Очень высокой точности | 0,15—0,3 | 7 | 2,0/2,5 |
III IV | Высокой точности Средней точности | 0,3—0,5 0,5—1,0 | 5 4 | 1,6/2,0 1.2/1,5 |
V | Малой точности | 1,0—5,0 | 3 | 0,8/1,0 |
VI | Грубая | более 5,0 | 2 | 0,4/0,5 |
VII | Работы со светящимися материалами и изделиями в горячих цехах | более 0,5 | 3 | 0,8/1,0 |
VIII | Общее постоянное наблюдение за ходом производственного процесса | — | 1 | 0,2/0,3 |
СНиП 11-4—79 устанавливают требуемую величину КЕО в зависимости от точности работ, вида освещения и географического расположения производства. В табл. 1. приведены значения КЕО для зданий, расположенных в III поясе светового климата (енIII).
Территория РФ делится на пять световых поясов, для которых значения КЕО определяются по формуле:
где m и c коэффициенты светового и солнечного климата соответственно.
Для определения соответствия естественной освещенности в производственном помещении требуемым нормам освещенность измеряют при верхнем и комбинированном освещении—в различных точках помещения с последующим усреднением; при боковом— на наименее освещенных рабочих местах. Одновременно измеряют наружную освещенность и определенный расчетным путем К.ЕО сравнивают с нормативным.
Расчет естественного освещения заключается в определении площади световых проемов для помещения. Расчет ведут по следующим формулам:
при боковом освещении
при верхнем освещении
где So, 5ф—площадь окон и фонарей, м2; Sn—площадь пола, м2; eн—нормированное значение К.ЕО; Кз—коэффициент запаса (kз=1,2—2,0); ho, hф— световая характеристики окна, фонаря; То—общий коэффициент светопропускания (учитывает оптические свойства стекла, потери света в переплетах, из-за загрязнения остекленной поверхности, в несущих конструкциях, солнцезащитных устройствах); r1, r2—коэффициенты, учитывающие отражение света при боковом и верхнем освещении; kзд—1—1,7—коэффициент, учитывающий затемнение окон противостоящими зданиями; kф—коэффициент, учитывающий тип фонаря.
Значения коэффициентов для расчета естественного освещения принимают по таблицам СНиП 11-4—79.
2. Искусственное освещение. Нормирование и расчет
Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света, или для освещения помещения в часы суток, когда естественная освещенность отсутствует.
Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т. д.).
Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев и аварий.
По функциональному назначению искусственное освещение подразделяется на рабочее, дежурное, аварийное. Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта. Дежурное освещение включается во вне рабочее время.
Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.
В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Для искусственного освещения в этом случае целесообразно использовать люминесцентные лампы.
В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные.
Лампы накаливания. Свечение в этих лампах возникает в результате нагрева вольфрамовой нити до высокой температуры. Промышленность выпускает различные типы ламп накаливания:
вакуумные (В), газонаполненные (Г) (наполнитель смесь аргона и азота), биспиральные (Б), с криптоновым наполнением (К). Лампы накаливания просты в изготовлении, удобны в эксплуатации, не требуют дополнительных устройств для включения в сеть. Недостаток этих ламп—малая световая отдача от 7 до 20 лм/Вт при большой яркости нити накала, низкий кпд, равный 10—13%; срок службы 800—1000 ч. Лампы дают непрерывный спектр, отличающийся от спектра дневного света преобладанием желтых и красных лучей, что в какой-то степени искажает восприятие человеком цветов окружающих предметов.
Основные характеристики ламп—световая отдача, световой поток, средняя продолжительность службы — регламентированы ГОСТ 2239—79 «Лампы накаливания общего назначения. Технические условия» ГОСТ 19190—84 «Лампы электрические. Общие технические условия».
Галогенные лампы накаливания наряду с вольфрамовой нитью содержат в колбе пары того или иного галогена (например, иода), который повышает температуру накала нити и практически исключает испарение. Они имеют более продолжительный срок службы (до 3000 ч) и более высокую светоотдачу (до 30 лм/Вт).
Газоразрядные лампы излучают свет в результате электрических разрядов в парах газа. На внутреннюю поверхность колбы нанесен слой светящегося вещества—люминофора, трансформирующего электрические разряды в видимый свет. Различают газоразрядные лампы низкого (люминесцентные) и высокого давления.
Люминесцентные лампы создают в производственных и других помещениях искусственный свет, приближающийся к естественному, более экономичны в сравнении с другими лампами и создают освещение более благоприятное с гигиенической точки зрения.
К другим преимуществам люминесцентных ламп относятся больший срок службы (10000 ч) и высокая световая отдача, достигающая для ламп некоторых видов 75 лм/Вт, т. е. они в 2,5-3 раза экономичнее ламп накаливания. Свечение происходит со всей поверхности трубки, а следовательно, яркость и слепящее действие люминесцентных ламп значительно ниже ламп накаливания. Низкая температура поверхности колбы (около5гр.С) делает лампу относительно пожаробезопасной.
Несмотря на ряд преимуществ, люминесцентное освещение имеет и некоторые недостатки: пульсация светового поток, вызывающая стробоскопический эффект (искажение зрительного восприятия объектов различия—вместо одного предмета видны изображения нескольких, а также направления и скорости движения); дорогостоящая и относительно сложная схема включения, требующая регулирующих пусковых устройств (дроссели, стартеры); значительная отраженная блескость; чувстительность к колебаниям температуры окружающей среды (оптимальная температура 20— 25 °С) понижение и повышение температуры вызывает уменьшение светового потока.
В зависимости от состава люминофора и особенностей конструкции различают несколько типов люминесцентных ламп:
ЛБ—лампы белого света, ЛД—лампы дневного света, ЛТБ — лампы тепло-белого света, ЛХБ—лампы холодного света, ЛДЦ—лампы дневного света правильной цветопередачи. Наиболее универсальны лампы ЛБ. Лампы ЛХБ, ЛД и особенно ЛДЦ применяются в случаях, когда выполняемая работа предполагает цветоразличение.
Характеристика люминесцентных ламп приведена в ГОСТ 6825—74. Для освещения открытых пространств, высоких (более
К недостаткам ламп относится длительное, в течение 5— 7 мин, разгорание при включении. Ведутся разработки по созданию мощных ламп, дающих спектр, близкий к спектру естественного света. Такими источниками являются дуговая кварцевая лампа ДКсТ, выполненная из кварцевого стекла и наполненная ксеноном под большим давлением, галогенные (ДРИ) и натриевые лампы (ДНаТ).Эти лампы обладают высокой световой отдачей до 100 лМ/Вт, правильной цветопередачей, их мощность составляет 1—2 кВт. Такие лампы можно применять для освещения производственных помещений высотой более
Для освещения помещений, как правило, следует предусматривать газоразрядные лампы низкого и высокого давления. В случае необходимости допускается использование ламп накаливания. Источники света выбирают с учетом рекомендаций СНиП 11-4—79.
Для искусственного освещения нормируемый параметр—освещенность. СНиП 11-4—79 устанавливают минимальные уровни освещенности рабочих поверхностей в зависимости от точности зрительной работы, контраста объекта и фона, яркости фона, системы освещения и типа используемых ламп.
Нормами установлена наименьшая освещенность, при которой обеспечивается выполнение зрительной работы. Кроме того, нормируется степень равномерности освещения источниками общего и местного освещения при комбинированном освещении с целью обеспечения более полной зрительной адаптации в наименьший отрезок времени. Для ослабления слепящего действия открытых источников света и освещенных поверхностей с чрезмерной яркостью (блескостью) нормами предусмотрен ряд защитных мер: наименьшая высота подвеса над уровнем пола светильников общего освещения, наличие отражателей, допустимая яркость светорассеивающей поверхности.
Нормы освещенности для I разряда зрительной работы даны в табл. 2. Деление разрядов на подразряды дает возможность более оптимально выбрать освещенность для каждой зрительной работы. Необходимый уровень освещенности тем выше, чем темнее фон, меньше объект различения и контраст объекта с фоном.
Нормы освещенности для ламп накаливания меньше, чем для газоразрядных, их следует снижать по шкале освещенности согласно СНиП 11-4—79.
Расчет электрического освещения выполняют при проектировании осветительных установок для определений общей установленной мощности и мощности каждой лампы или числа всех светильников.
Существует несколько методов расчета освещения, наиболее простой — метод удельной мощности, но он менее точен и им пользуются только для ориентировочных расчетов.
Таблица 2. Hopмы освещенности рабочих поверхностей для газоразрядных источников света
Характеристика зрительной работы | Разряд работ | Под-разряд работ | Контраст объекта различения с фоном | Характеристика фона | Освещенность, лк | |
при комбинированном освещении | при общем освещении | |||||
Наивысшей точности | I | а | Малый | темный | 5000 | 1500 |
б | Малый | средний | 4000 | 1250 | ||
Средний | темный | |||||
в | Малый | светлый | 2500 | 750 | ||
Средний | средний | |||||
Большой | темный | |||||
г | Средний | светлый | 1500 | 400 | ||
Большой | светлый | |||||
Большой | средний |
Удельную мощность вычисляют по формуле
где n—число светильников; Р—мощность лампы, Вт; S—освещаемая площадь, м2.
Значение удельной мощности указано в таблицах справочников по светотехнике в зависимости от типа светильника, высоты его подвеса, площади пола и требуемой освещенности.
Обычно при расчете задаются всеми параметрами установки и числом светильников п, по таблице находят W и выбирают мощность лампы, ближайшей к определяемой из выражения W*S/n.
Основной метод расчета— по коэффициенту использования светового потока, которым определяется поток, необходимый для создания заданной освещенности горизонтальной поверхности при общем равномерном освещении с учетом света, отраженного стенами и потолком. Расчет выполняют по следующим формулам:
для ламп накаливания и ламп типов ДРЛ, ДРИ и ДНат
для люминесцентных ламп
где F—световой поток одной лампы, лм; Е—нормированная освещенность, лк; «S—площадь помещения, m2; г—поправочный коэффициент светильника (для стандартных светильников 1,1—1,3); k — коэффициент запася», учитывающий снижение освещенности при эксплуатации (k=1,1—13) n -число светильников; и—коэффициент использования, зависящий от типа
Таблица 3. Световые и электрически параметры ламп накаливания
[по ГОСТ 2239—79)
и люминесцентных ламп (по ГОСТ 6815—74)
светильника, показателя (индекса) помещения, отраженности и т. д., находится в пределах 0,55—0,60, m—число люминесцентных ламп в светильнике.
После расчета светового потока по табл. 3 выбирают ближайшую стандартную лампу и определяют электрическую мощность всей осветительной установки.
По окончании монтажа системы освещения обязательно проверяют освещенность. Если фактическая освещенность отличается от расчетной более чем на —10 и +20%, то изменяют схему расположения светильников или мощность ламп.
Заключение
Свет – это важнейшее изобразительное средство управления формой объектов: он может повысить её выразительность и способен разрушить её. Для лучшего выявления формы нужно выбрать преимущественное направление падения света; при равномерном освещении объёмного элемента со всех сторон он может показаться плоским. Необходимый моделирующий эффект можно получить при правильно выбранном сочетании общего рассеянного или отражённого освещения с прямым направленным светом; при освещении объектов с глубоким ярко выраженным рельефом чаще всего превалирующую роль должен играть мягкий рассеянный или отражённый свет (к этому случаю относится и освещение лица человека).
При применении светильников направленного света необходимо тщательно проверить возможности образования нежелательных падающих теней, способных разрушить форму и освещаемого, и близлежащего объектов, и интерьера в целом. При целенаправленном использовании падающих теней можно создавать на плоскостях помещения светографические изображения и разнообразные световые ритмы, обогащая форму и пластику интерьера.
Чёрный и синий цвета зрительно уменьшают размеры объекта, а белый и красный – увеличивают.
Создание светоцветового комфорта, отличающегося уравновешенной световой обстановкой – важнейшая задача в дизайне интерьера, предназначенного для работы или спокойного отдыха. К основным составляющим светового комфорта относят: достаточные для выполнения заданной зрительной работы уровни освещённости; пониженные уровни прямой и отражённой блескости; баланс яркостей и цветностей пола, потолка, стен а также зоны зрительной работы; увязанной с цветовой отделкой, цветовую тональность искусственного освещения; повышенные цветопередающие свойства источников света и малую пульсацию освещённости на рабочем месте.
При декоративном оформлении интерьера следует учитывать следующие особенности и рекомендации, связанные с мерами снижения повреждающего действия света на материалы и изделия:
§ наименее устойчивыми к действию света являются фотографии, рукописи и документы; произведения живописи (акварель, темпера или пастель) и графики; гобелены, кружева и одежда; коллекции марок или насекомых;
§ для таких изделий уровни освещённости по нормам музейного освещения должны быть не выше 50 лк;
§ наименьшим повреждающим свойством обладают лампы накаливания, наибольшим – естественный свет, особенно прямой солнечный;
§ на выцветание наибольшее действие оказывает УФ, а на высыхание и коробление – ИК излучение;
§ наиболее ценные и нестойкие к свету изделия предпочтительнее располагать в глубине помещения или в зонах без естественного света.
Список использованных источников
1. Охрана труда в химической промышленности./ Г. В. Макаров, А. Я. Ясин. 1989г.
2. ”Азбука освещения”, авт.В.И Петров, издательство «ВИГМА»1999г.
3. Журнал “Иллюминатор”, выпуск №2, 2002г.
Расчетное задание
Определение границ зон с опасными производственными факторами.
Определить границу опасной зоны в процессе монтажа стеновых панелей при таких исходных данных: высота подъема панели h =10 метров , длина стропа m = 5 метров , угол между вертикалью и стропом = 450, половина длины конструкции n = 3 метра .
Решение:
Для определения размеров опасной зоны, возникающей вследствие возможного падения конструкции при перемещении краном, пользуются формулой:
Sk = {h[m(1-cos )n]}0,5
Sk = {10[5(1-0,71)3]}0,5
Sk =6,6 метров
Следовательно, в случае падения стеновой панели в заданных условиях граница опасной зоны будет находиться приблизительно на расстоянии7 метров от первоначального положения центра тяжести стеновой панели (положения грузового крюка крана).
Обычно при расчете задаются всеми параметрами установки и числом светильников п, по таблице находят W и выбирают мощность лампы, ближайшей к определяемой из выражения W*S/n.
Основной метод расчета— по коэффициенту использования светового потока, которым определяется поток, необходимый для создания заданной освещенности горизонтальной поверхности при общем равномерном освещении с учетом света, отраженного стенами и потолком. Расчет выполняют по следующим формулам:
для ламп накаливания и ламп типов ДРЛ, ДРИ и ДНат
для люминесцентных ламп
где F—световой поток одной лампы, лм; Е—нормированная освещенность, лк; «S—площадь помещения, m2; г—поправочный коэффициент светильника (для стандартных светильников 1,1—1,3); k — коэффициент запася», учитывающий снижение освещенности при эксплуатации (k=1,1—13) n -число светильников; и—коэффициент использования, зависящий от типа
Таблица 3. Световые и электрически параметры ламп накаливания
[по ГОСТ 2239—79)
и люминесцентных ламп (по ГОСТ 6815—74)
Лампы накаливания, 220 В | Люминесцентные лампы | ||||
Тип | Мощность, Вт | световой по ток, лм | тип лампы | Мощность, Вт | световой по ток, лм |
В, Б | 25 | 230 | ЛДЦ (ЛБ) | 15 | 600 (820) |
Б (БК) | 40 | 415 (460) | ЛДЦ (ЛД) | 30 | 1500 (1800) |
5 (БК) | 60 | 715 (790) | ЛХБ (ЛТБ) | 30 | 1940 (2020) |
Б (БК) | 75 | 950 (1020) | ЛБ | 30 | 2180 |
Б (БК) | 100 | 1350 (1450) | ЛДЦ (ЛД) | 40 | 2200 (2500) |
Б, Г | 200 | 2920 | ЛХБ (ЛБ) | 40 | 3000 (3200) |
Г | 300 | 4610 | ЛД (ЛБ) | 65 | 4000 (4800) |
Г | 500 | 8300 | ЛДЦ (ЛД) | 80 | 3800 (4300) |
Г | 1000 | 18600 | ЛХБ (ЛБ) | 80 | 5040 (5400) |
После расчета светового потока по табл. 3 выбирают ближайшую стандартную лампу и определяют электрическую мощность всей осветительной установки.
По окончании монтажа системы освещения обязательно проверяют освещенность. Если фактическая освещенность отличается от расчетной более чем на —10 и +20%, то изменяют схему расположения светильников или мощность ламп.
Заключение
Свет – это важнейшее изобразительное средство управления формой объектов: он может повысить её выразительность и способен разрушить её. Для лучшего выявления формы нужно выбрать преимущественное направление падения света; при равномерном освещении объёмного элемента со всех сторон он может показаться плоским. Необходимый моделирующий эффект можно получить при правильно выбранном сочетании общего рассеянного или отражённого освещения с прямым направленным светом; при освещении объектов с глубоким ярко выраженным рельефом чаще всего превалирующую роль должен играть мягкий рассеянный или отражённый свет (к этому случаю относится и освещение лица человека).
При применении светильников направленного света необходимо тщательно проверить возможности образования нежелательных падающих теней, способных разрушить форму и освещаемого, и близлежащего объектов, и интерьера в целом. При целенаправленном использовании падающих теней можно создавать на плоскостях помещения светографические изображения и разнообразные световые ритмы, обогащая форму и пластику интерьера.
Чёрный и синий цвета зрительно уменьшают размеры объекта, а белый и красный – увеличивают.
Создание светоцветового комфорта, отличающегося уравновешенной световой обстановкой – важнейшая задача в дизайне интерьера, предназначенного для работы или спокойного отдыха. К основным составляющим светового комфорта относят: достаточные для выполнения заданной зрительной работы уровни освещённости; пониженные уровни прямой и отражённой блескости; баланс яркостей и цветностей пола, потолка, стен а также зоны зрительной работы; увязанной с цветовой отделкой, цветовую тональность искусственного освещения; повышенные цветопередающие свойства источников света и малую пульсацию освещённости на рабочем месте.
При декоративном оформлении интерьера следует учитывать следующие особенности и рекомендации, связанные с мерами снижения повреждающего действия света на материалы и изделия:
§ наименее устойчивыми к действию света являются фотографии, рукописи и документы; произведения живописи (акварель, темпера или пастель) и графики; гобелены, кружева и одежда; коллекции марок или насекомых;
§ для таких изделий уровни освещённости по нормам музейного освещения должны быть не выше 50 лк;
§ наименьшим повреждающим свойством обладают лампы накаливания, наибольшим – естественный свет, особенно прямой солнечный;
§ на выцветание наибольшее действие оказывает УФ, а на высыхание и коробление – ИК излучение;
§ наиболее ценные и нестойкие к свету изделия предпочтительнее располагать в глубине помещения или в зонах без естественного света.
Список использованных источников
1. Охрана труда в химической промышленности./ Г. В. Макаров, А. Я. Ясин. 1989г.
2. ”Азбука освещения”, авт.В.И Петров, издательство «ВИГМА»1999г.
3. Журнал “Иллюминатор”, выпуск №2, 2002г.
Расчетное задание
Определение границ зон с опасными производственными факторами.
Определить границу опасной зоны в процессе монтажа стеновых панелей при таких исходных данных: высота подъема панели h =
Решение:
Для определения размеров опасной зоны, возникающей вследствие возможного падения конструкции при перемещении краном, пользуются формулой:
Sk = {h[m(1-cos
Sk = {10[5(1-0,71)3]}0,5
Sk =
Следовательно, в случае падения стеновой панели в заданных условиях граница опасной зоны будет находиться приблизительно на расстоянии