Контрольная работа

Контрольная работа Применение методов линейного программирования для оптимизации стоимости перевозок

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024





МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Реферат

по дисциплине: Методы и модели в экономике и менеджменте.

на тему: «Применение методов линейного программирования для оптимизации стоимости перевозок»
Воронеж 2010

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.

В общей постановке транспортная задача состоит в отыскании оптимального плана перевозок некоторого однородного груза с  баз   потребителям .

Различают два типа транспортных задач: но критерию стоимости (план перевозок оптимален, если достигнут минимум затрат на его реализацию) и по критерию времени (план оптимален, если на его реализацию затрачивается минимум времени).


(3. )
 
Обозначим количество груза, имеющегося на каждой из  баз (запасы), соответственно ,а общее количество имеющегося в наличии груза–:
;

(3. )
 
заказы каждого из потребителей (потребности) обозначим соответственно, а общее количество потребностей – :
,


(3. )
 
Тогда при условии










(3. )
 
мы имеем закрытую модель, а при условии

– открытую модель транспортной задачи.

Очевидно, в случае закрытой модели весь имеющийся в наличии груз развозится полностью, и все потребности заказчиков полностью удовлетворены; в случае же открытой модели либо все заказчики удовлетворены и при этом на некоторых базах остаются излишки груза , либо весь груз оказывается израсходованным, хотя потребности полностью не удовлетворены .

Так же существуют одноэтапные модели задач, где перевозка осуществляется напрямую от, например, базы или завода изготовителя к потребителю, и двухэтапные, где между ними имеется “перевалочный пункт”, например – склад.

План перевозок с указанием запасов и потребностей удобно записывать в виде следующей таблицы, называемой таблицей перевозок (Таблица 3. ):
Таблица 3. - План перевозок с указанием запасов и потребностей

Пункты

Отправления

Пункты назначения

Запасы

























































Потребности











или






Условие  или  означает, с какой задачей мы имеем дело, с закрытой моделью или открытой моделью транспортной задачи. Переменное  означает количество груза, перевозимого с базы  потребителю : совокупность этих величин образует матрицу (матрицу перевозок).

Очевидно, переменные  должны удовлетворять условиям:

(3. )
 



Система (3. ) содержит  уравнений с  неизвестными. Её особенность состоит в том, что коэффициенты при неизвестных всюду равны единице. Кроме того, все уравнения системы (3. ) могут быть разделены на две группы: первая группа из т первых уравнений (“горизонтальные” уравнения) и вторая группа из п остальных уравнений (“вертикальные” уравнения). В каждом из горизонтальных уравнений содержатся неизвестные с одним и тем же первым индексом (они образуют одну строку матрицы перевозок), в каждом из вертикальных уравнений содержатся неизвестные с одним и тем же вторым индексом (они образуют один столбец матрицы перевозок). Таким образом, каждая неизвестная встречается в системе (3. ) дважды: в одном и только одном горизонтальном и в одном и только одном вертикальном уравнениях.

Такая структура системы (3. ) позволяет легко установить ее ранг. Действительно, покажем, что совокупность неизвестных, образующих первую строку и первый столбец матрицы перевозок, можно принять в качестве базиса. При таком выборе базиса, по крайней мере, один из двух их индексов равен единице, а, следовательно, свободные неизвестные определяются условием , .Перепишем систему (3. ) в виде

(3. )
 

где символы и означают суммирование по соответствующему индексу. Так, например,

При этом легко заметить, что под символами такого суммирования объединяются только свободные неизвестные (здесь , ).

В рассматриваемой нами системе только два уравнения, а именно первое горизонтальное и первое вертикальное, содержат более одного неизвестного из числа выбранных нами для построения базиса. Исключив из первого горизонтального уравнения базисные неизвестные  с помощью вертикальных уравнений, мы получаем уравнение


или короче

(3. )
 

где символ  означает сумму всех свободных неизвестных. Аналогично, исключив из первого вертикального уравнения базисные неизвестные  с помощью горизонтальных уравнений, мы получаем уравнение

(3. )
 

Так как для закрытой модели транспортной задачи , то полученные нами уравнения (3. ) и (3. ) одинаковы и, исключив из одного из них неизвестное , мы получим уравнение-тождество 0=0, которое из системы вычеркивается.

Итак, преобразование системы (3. ) свелось к замене двух уравнений (первого горизонтального и первого вертикального) уравнением (3. ). Остальные уравнения остаются неизменными. Система приняла вид





(3. )
 





В системе (3. ) выделен указанный выше базис: базисные неизвестные из первых т уравнений образуют первый столбец матрицы перевозок, а базисные неизвестные остальных уравнений образуют первую строку матрицы перевозок без первого неизвестного  [она входит в первое уравнение системы (3. )]. В системе (3. ) имеется  уравнений, выделенный базис содержит  неизвестных, а, следовательно, и ранг системы (3. ) .

Для решения транспортной задачи необходимо кроме запасов и потребностей знать также и тарифы , т. е. стоимость перевозки единицы груза с базы  потребителю .

Совокупность тарифов  также образует матрицу, которую можно объединить с матрицей перевозок и данными о запасах и потребностях в одну таблицу 3.:
Таблица 3. - Совокупность тарифов данные о запасах и потребностях

Пункты

Отправления

Пункты назначения

Запасы





























































































Потребности











или





Сумма всех затрат, т. е. стоимость реализации данного плана перевозок, является линейной функцией переменных :


(3. )
 

Требуется в области допустимых решений системы уравнений (3. ) и (3.) найти решение, минимизирующее линейную функцию (3. ).

Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без симплекс-таблиц. Решение можно получить путем некоторых преобразований таблицы перевозок. Эти преобразования соответствуют переходу от одного плана перевозок к другому. Но, как и в общем случае, оптимальное решение ищется среди базисных решений. Следовательно, мы будем иметь дело только с базисными (или опорными) планами. Так как в данном случае ранг системы ограничений-уравнений равен  то среди всех  неизвестных  выделяется  базисных неизвестных, а остальные · неизвестных являются свободными. В базисном решении свободные неизвестные равны нулю. Обычно эти нули в таблицу не вписывают, оставляя соответствующие клетки пустыми. Таким образом, в таблице перевозок, представляющей опорный план, мы имеем  заполненных и · пустых клеток.

На предприятии ОАО «Электросигнал» имеется 4 транзитных склада Аi, на которых хранятся сборочные узлы и 5 цехов Bj, занимающихся сборкой готовой продукции. Ниже, в таблице 3., приведены данные по количеству сборочных узлов на каждом складе, запросы цехов и стоимость перевозки одного агрегата из Аi в Bj. Необходимо составить такой план перевозок, при котором запросы цехов будут удовлетворены при минимальной суммарной стоимости перевозок.




Таблица 3. – Исходные данные по количеству сборочных узлов и стоимость перевозки

Цеха
Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

А1 1=50)

1,0

2,0

3,0

2,5

3,5

А22=20)

0,4

3,0

1,0

2,0

3,0

А33=75)

0,7

1,0

1,0

0,8

1,5

А44=80)

1,2

2,0

2,0

1,5

2,5



В данном случае Σai=225 >Σbj=220 => имеем дело с открытой моделью транспортной задачи. Сведем ее к закрытой введением фиктивного цеха B6 с потребностью b5=225-220=5 и стоимостью перевозок сi6=0.Имеем таблицу 3. :
Таблица 3. -

Цеха
Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 1=50)

1,0

2,0

3,0

2,5

3,5

0

А22=20)

0,4

3,0

1,0

2,0

3,0

0

А33=75)

0,7

1,0

1,0

0,8

1,5

0

А44=80)

1,2

2,0

2,0

1,5

2,5

0



Математическая модель: обозначим xij – количество товара, перевозимого из Аi в Bj. Тогда
x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

X = x31 x32 x33 x34 x35 x36 - матрица перевозок.

x41 x42 x43 x44 x45 x46

min(x11+2x12+3x13+2,5x14+3,5x15+0,4x21+3x22+x23+2x24+3x25+0,7x31+x32+x33+0,8x34+1,5x35++1,2x41+2x42+2x43+1,5x44+2,5x45) (3. )


x11+x12+x13+x14+x15+x16=50

x21+x22+x23+x24+x25+x26=20

x31+x32+x33+x34+x35+x36=75

x41+x42+x43+x44+x45+x46=80


(3. )
 
 x11+x21+x31+x41=40  

 x12+x22+x32+x42=50

 x13+x23+x33+x43=15

 x14+x24+x34+x44=75

 x15+x25+x35+x45=40

 x16+x26+x36+x46=5

 xij≥0 (i=1,2,3,4 ; j=1,2,3,4,5,6 ) (3. )
Двойственная ЗЛП:
max(50u1+20u2+75u3+80u4+40v1+50v2+15v3+75v4+40v5+5v6) (3. )


u2+v1≤0,4

u2+v2≤3

u2+v3≤1

u2+v4≤2

u2+v5≤3

u2+v6≤0
 

u3+v1≤0,7

u3+v2≤1

u3+v3≤1

u3+v4≤0,8

u3+v5≤1,5

u3+v6≤0
 

u4+v1≤1,2

u4+v2≤2

u4+v3≤2

u4+v4≤1,5

u4+v5≤2,5

u4+v6≤0
 



u1+v1≤1

u1+v2≤2

u1+v3≤3   (3. )

u1+v4≤2,5

u1+v5≤3,5

u1+v6≤0
ui,vj – произвольные (i=1,2,3,4 ; j=1,2,3,4,5,6 ) 

Будем искать первоначальный план по методу наименьшей стоимости:

1) x21=20 и 2-ую строку исключаем;

2) x31=20 и 1-ый столбец исключаем;

3) x34=55 и 3-ю строку исключаем;

4) x44=20 и 4-ый столбец исключаем;

5) x12=50 и 1-ю строку и 2-ой столбец исключаем и x32=0;

6) x43=150 и 3-ий столбец исключаем;

7) x45=40 и 5-ый столбец исключаем и x46=5.

Составим таблицу 3. . Здесь и далее в нижнем правом углу записываем значение перевозки.
Таблица 3. – Проведение итераций

 Цеха
Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 1=50)

1,0




 50
 
2,0

3,0

2,5

3,5

0

А22=20)

0,4


 20
 


3,0

1,0

2,0

3,0

0

А33=75)

0,7


 20
 



 0
 
1,0

1,0


 55
 
0,8

1,5

0


 5
 

 15
 
А44=80)

1,2



2,0

2,0


 20
 
1,5


 40
 
2,5

0



Стоимость 1-ого плана:
D1=2•50+0,4•20+0,7•20+0,8•55+2•15+1,5•20+2,5•40=326.
Будем улучшать этот план методом потенциалов: ui- потенциал Аi ,vj- потенциал Bj. Тогда u1+v2=2,u2+v1=0,4, u3+v1=0,7, u3+v2=1, u3+v4=0,8, u4+v3=2, u4+v4=1,5, u4+v5=2,5 ,u4+v6=0.Положим u1=0,тогда v2=2,u3=-1,v1=1,7,v4=1,8, u2=-1,3,u4=-0,3, v3=2,3,v5=2,8,v6=0,3.Составим таблицу 3. :
Таблица 3. - Проведение итераций

 Цеха
Склад

B1

(b1=40)

v1=1,7

B2

(b2=50)

v2=2

B3

(b3=15)

v3=2,3

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3

Овал: +

 0
,7

 
А1 1=50)

U1=0


 0
 
1,0



Овал: -

 - 0,7
 

 50
 
2,0


 - 0,7
 
3,0


 - 0,7
 
2,5


 0
,3

 
3,5

0


 0
 
А22=20)

U2=-1,3


 - 2,3
 

 20
 
0,4




 0
 
3,0


 - 1,5
 
1,0


 - 1,5
 
2,0


 - 1
 
3,0

0


 0
 
А33=75)

U3=-1

Овал: -

 0
 
0,7


 20
 


Овал: +

 0
,3

 

 0
 
1,0


 0
 
1,0


 0
,3

 

 55
 
0,8


 - 0,7
 
1,5

0


 0
,2

 
А44=80)

U4=-0,3


 - 0,3
 
1,2




 0
 
2,0


 0
 

 15
 
2,0


 0
 

 20
 
1,5


 0
 

 40
 
2,5


 5
 
0



В верхнем левом углу здесь и далее записываем значение ui+vj-cij. Имеем: u1+v1--c11 =0,7>0, u1+v6-c16 =0,3>0, u3+v3-c33 =0,3>0, u3+v5-c35 =0,3>0,

u4+v1-c41 =0,2>0. => По критерию оптимальности, первый план не оптимален. Далее max(0,7;0,3;0,3;0,3;0,2)=0,7. => Поместим перевозку в клетку А1В1, сместив 20=min(20,50) по циклу, указанному в таблице штрихом. Получим новую таблицу. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u3+v4=0,8, u4+v3=2, u4+v4=1,5, u4+v5=2,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,8, u3=-1, u4=-0,3,v3=2,3,v5=2,8,v6=0,3. Составим таблицу 3. :
Таблица 3. - Проведение итераций

 Цеха
Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=2,3

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3


 0
 
А1 1=50)

U1=0

Овал: +

 0
 
1,0


 20
 


Овал: -

 - 0,7
 

 30
 
2,0


 - 0,7
 
3,0


 - 0,7
 
2,5


 0
,3

 
3,5

0


 0
 
А22=20)

U2=-0,6

Овал: -

 - 1,6
 

 20
 
0,4




 0
,7

 
3,0

Овал: +

 - 0,8
 
1,0


 - 0,8
 
2,0


 - 0,3
 
3,0

0


 -0,7
 
А33=75)

U3=-1


 0
 
0,7



Овал: +

 0
,3

 

 20
 
1,0


 0
 
1,0

Овал: -

 0
,3

 

 55
 
0,8


 - 0,7
 
1,5

0


 -0,5

 
А44=80)

U4=-0,3


 - 0,3
 
1,2




 0
 
2,0

Овал: -

 0
 

 15
 
2,0

Овал: +

 0
 

 20
 
1,5


 0
 

 40
 
2,5


 5
 
0



Стоимость 2-ого плана:
D2=1•20+2•30+0,4•20+1•20+0,8•55+2•15+1,5•20+2,5•40=312.
Имеем:u1+v6-c16 =0,3>0, u2+v3-c23 =0,7>0, u3+v3-c33 =0,3>0, u3+v5-c35 =0,3>0. => По критерию оптимальности, второй план не оптимален. Далее max(0,3;0,7;0,3;0,3)=0,7 => Поместим перевозку в клетку А2В3, сместив 15=min(20,30,55,15) по циклу, указанному в таблице штрихом. Получим новую таблицу. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u3+v4=0,8, u2+v3=1, u4+v4=1,5, u4+v5=2,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,8, u3=-1, u4=-0,3,v3=1,6, v5=2,8, v6=0,3. Составим таблицу 3.:
Таблица 3. - Проведение итераций

 Цеха
Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=1,6

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3


 0
 
А1 1=50)

U1=0


 0
 
1,0


 35
 



 -1,4
 

 15
 
2,0


 - 0,7
 
3,0


 - 0,7
 
2,5


 0
,3

 
3,5

0


 0
 
А22=20)

U2=-0,6


 - 1,6
 

 5
 
0,4




 0
 
3,0


 15
 

 - 0,8
 
1,0


 - 0,8
 
2,0


 - 0,3
 
3,0

0


 -0,7
 
А33=75)

U3=-1


 0
 
0,7




 -0,4
 

 35
 
1,0


 0
 
1,0

Овал: -

 0
,3

 

 40
 
0,8

Овал: +

 - 0,7
 
1,5

0


 -0,5

 
А44=80)

U4=-0,3


 - 0,3
 
1,2




-0,7
 
2,0


 0
 
2,0

Овал: +

 0
 

 35
 
1,5

Овал: -

 0
 

 40
 
2,5


 5
 
0



Стоимость 3-его плана:
D3=1•35+2•15+0,4•5+1•15+0,8•40+1•35+1,5•35+2,5•40=301,5.
Имеем:u1+v6-c16 =0,3>0,u3+v5-c35 =0,3>0. => По критерию оптимальности, третий план не оптимален. Далее max(0,3;0,3)=0,3. => Поместим перевозку в клетку А3В5, сместив 40=min(40,40) по циклу, указанному в таблице штрихом. Получим новую таблицу. Чтобы 4-ый план был невырожденным, оставим в клетке А4В5 нулевую перевозку. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u4+v5=2,5, u2+v3=1, u4+v4=1,5, u3+v5=1,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,5, u3=-1,u4=0, v3=1,6, v5=2,5, v6=0. Составим таблицу 3. :




Таблица 3. - Проведение итераций

 Цеха
Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=1,6

B4

(b4=75)

v4=1,5

B5

(b5=40)

v5=2,5

B6

(b6=5)

v6=0


 0
 
А1 1=50)

U1=0


 0
 
1,0


 35
 



 - 1,4
 

 15
 
2,0


 - 1
 
3,0


 - 1
 
2,5


0
 
3,5

0


 0
 
А22=20)

U2=-0,6


 - 1,6
 

 5
 
0,4




 0
 
3,0


 15
 

 - 1,1
 
1,0


 - 1,1
 
2,0


 - 0,6
 
3,0

0


 -0,7
 
А33=75)

U3=-1


 0
 
0,7




 -0,4
 

 35
 
1,0


 -0,3
 
1,0


0
 
0,8


 40
 

 - 1
 
1,5

0


 -0,2

 
А44=80)

U4=0


 0
 
1,2




-0,4
 
2,0


 0
 
2,0


 0
 

 75
 
1,5


 0
 

 0
 
2,5


 5
 
0



Стоимость 4-ого плана:
D4=1•35+2•15+0,4•5+1•15+1•35+1,5•40+1,5•75=289,5.
Для всех клеток последней таблицы выполнены условия оптимальности:
1) ui+vjij=0 для клеток, занятых перевозками;

2) ui+vjij ≤0 для свободных клеток.
Несодержательные ответы:

Прямой ЗЛП:
 35 15 0 0 0 0

 5 0 15 0 0 0

 X = 0 35 0 0 40 0

 0 0 0 75 0 5

 min=289,5.
Двойственной ЗЛП:




U1=0 ; U2=-0,6 ; U3=-1 ; U4=0 ; V1=1 ; V2=2 ; V3=1,6 ; V4=1,5 ; V5=2,5 ; V6=0.

max=289,5.
Так как min=max, то по критерию оптимальности найдены оптимальные решения прямой и двойственной ЗЛП. Содержательный ответ: Оптимально перевозить так:

Из А1 в B1 – 35 сборочных агрегатов;

Из А1 в B2 – 15 сборочных агрегатов;

Из А2 в B1 – 5 сборочных агрегатов;

Из А2 в B3 – 15 сборочных агрегатов;

Из А3 в B2 – 35 сборочных агрегатов;

Из А3 в B5 – 40 сборочных агрегатов;

Из А4 в B4 – 75 сборочных агрегатов.

При этом стоимость минимальна и составит Dmin=289,5. 5 сборочных агрегатов необходимо оставить на складе А4 для их последующей перевозки в другие Цеха.




Список использованной литературы
1. Е.Г. Гольштейн, Д.Б. Юдин «Задачи линейного программирования транспортного типа», Москва, 2007.

2. И.Л. Акулич, В.Ф. Стрельчонок «Математические методы и компьютерные технологии решения оптимизационных задач», Рига, 2006.

3. Астафуров В.Г., Колодникова Н. - Компьютерное учебное пособие, раздел “Анализ на чувствительность с помощью двойственной задачи”, Томск-2004.

4. Алесинская Т.В. - Задачи по исследованию операций с решениями. Москва, 2008.

5. Смородинский С.С., Батин Н.В. - Оптимизация решений на основе методов и моделей математического программирования: Учебное пособие. Воронеж, 2009

1. Реферат на тему Abortion The Murder Of The Innocent Essay
2. Реферат концепция культуры и цивилизации по О. Шпенглеру
3. Реферат на тему Экономическая и социальная эволюция Киевской Руси в годы господства
4. Реферат Философия Канта Формирование немецкой
5. Реферат на тему Explication Of
6. Курсовая Денежная система и её типы
7. Курсовая на тему Производство керамического кирпича
8. Диплом Реконструкция электроснабжения зоны подстанции Рождественское и Василево Шарьинских электрических
9. Реферат Организация строительства на производстве
10. Реферат Тест по Уголовному праву