Контрольная работа

Контрольная работа на тему Математические методы в психологии

Работа добавлена на сайт bukvasha.net: 2014-11-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024


Задание №1
Определите, к какому типу измерений и к какой шкале относятся следующие данные:
a)     Числа, кодирующие темперамент человека.
b)     Академический ранг (ассистент, доцент, профессор) как мера продвижения по службе.
c)      Числа, показывающие выраженность экстра – интраверсии, нейротизма, психотизма, полученные по методике PEN Г. и С. Айзенк.
d)     Метрическая система измерения расстояний.
e)      Номера истории болезни.
f)       Латентный период решения перцептивной задачи.
Решение:
a)     Числа, кодирующие темперамент человека.
Эти числа по типу измерений относятся к номинальной шкале.
Номинальная шкала позволяет подсчитывать частоты встречаемости разных наименований или значений признака и затем работать с этими частотами. Единица измерения, которой мы оперируем – это одно наблюдение.
b)     Академический ранг (ассистент, доцент, профессор) как мера продвижения по службе.
В данном случае имеет место употребление порядковой шкалы. Порядковая шкала – это шкала, классифицирующая по принципу «больше – меньше».
Если в шкале наименований было безразлично, в каком порядке расположены классификационные ячейки, то в порядковой шкале они образуют последовательность от ячейки «самое малое значение» к ячейке «самое большое значение» (или наоборот).
Это полностью упорядоченная шкала наименований, она устанавливает отношения равенства между явлениями в каждом классе и отношения последовательности в понятиях больше, меньше между всеми без исключения классами.
Упорядоченные номинальные шкалы общеупотребимы при опросах общественного мнения. С их помощью измеряют интенсивность оценок каких-то психологических свойств, суждений, событий, степени согласия или несогласия с предложенными утверждениями. Весьма часто употребляемая разновидность шкал этого типа – ранговые[1]. Они предполагают полное упорядочение каких-то объектов.
с) Числа, показывающие выраженность экстра – интраверсии, нейротизма, психотизма, полученные по методике PEN Г. и С. Айзенк.
Интервальная шкала – это шкала, классифицирующая по принципу «больше на определенное количество единиц – меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии[2].
Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля)[3].
d)     Метрическая система измерения расстояний.
В данном случае также имеет место интервальная шкала.
Интервальная шкала – это шкала, классифицирующая по принципу «больше на определенное количество единиц – меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии.
Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля).
e) Номера истории болезни.
Эти числа по типу измерений относятся к номинальной шкале.
Номинальная шкала позволяет подсчитывать частоты встречаемости разных наименований или значений признака и затем работать с этими частотами. Единица измерения, которой мы оперируем – это одно наблюдение.
f) Латентный период решения перцептивной задачи.
В данном случае также имеет место интервальная шкала.
Интервальная шкала – это шкала, классифицирующая по принципу «больше на определенное количество единиц – меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии.
Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля).

Задание №2
В результате исследования понимания прочитанного у учащихся 7-х,
8-х и 9-х классов были получены следующие распределения тестовых оценок:
Интервал
оценок Хi
7 класс (N=29)
8 класс (N=37)
9 класс (N=36)
fi
fi
fi
200-219


3
180-199
1
4
5
160-179
3
3
7
140-159
4
9
7
120-139
11
7
11
100-119
4
7
2
80-99
4
2
1
60-79
1
3

40-59

1

20-39
1
1

Необходимо:
1.                Определить меры положения для каждого распределения.
2.                Построив по приведенным данным полигоны частот дифференциального и интегрального распределений для каждого класса, решить, какой из двух типов графиков нагляднее отражает различия между распределениями оценок в каждом классе.
Решение:
1.                Первый столбец интервал оценок, остальные – балл за выраженность качества (реализована шкала интервалов).
При распределении испытуемых по классам в один класс попадают сильно различающиеся по первичным оценкам испытуемые. Мы рассмотрели различные приемы перевода качественных психологических признаков в количественные выражения. Следует отметить, что при описании психологических явлений необходимо всегда отдавать себе отчет в том, какая именно шкала используется, поскольку каждый способ обработки экспериментальных данных рассчитан на определенный тип шкал.
Применение математических методов к неадекватным данным приводит к странным, а часто и ложным результатам. Квантификация сложных и далеко не однозначных психологических характеристик накладывает немало ограничений на математические операции с их измерениями.
Математик работает с простыми числами, психолог обязан помнить, что в действительности скрывается за величинами, которыми он оперирует.
1) Первое ограничение – соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.
2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным. Для нормального распределения оценки меры рассеяния совпадают: Мо=Ме=М, в скошенном хвосты распределения не влияют на среднюю (М).
Таким образом, необходимо внимательно изучать форму распределения с точки зрения его отклонения от нормального.
II. Используя понятия интегральной функции распределения и определенного интеграла можно записать
¦ (x) = F¢ (x) или F (x) = p (x1 < X < x2) = .
Если  определяет заштрихованную область в соответствующих пределах, то
p (х < Х < х + Dх) » ¦ (х) Dх.
Это соотношение можно представить в виде простого геометрического толкования для каждого класса.

Рис. 1 График дифференциального распределения результатов проверки техники чтения в 7 классе

Рис. 2 Результаты дифференциального распределения результатов проверки техники чтения в 8 классе

Рис. 3 Результаты дифференциального распределения результатов проверки техники чтения в 9 классе.
Для дискретной случайной величины справедливо следующее равенство:
F (x) = P (X < x) = P (-¥ < X < x) = ,
где суммирование распространяется на хi < х.
В промежутке между двумя последовательными значениями Х функция F (х) постоянна. При переходе аргумента х через значение хi F (х) скачком возрастает на величину p (Х = хi).
Рассмотрим p (х1 £ Х < х2). Если х2 > х1, то очевидно, что
p (Х < х2) = p (Х < х1) + p (х1 £ Х < х2).
Тогда
p (х1 £ Х < х2) = p (Х < х2) - p (Х < х1) = F (х2) - F (х1),
т.е. вероятность попадания случайной величины в интервал [х1; х2) равен разности значений интегральной функции граничных точек.
Последнее условие можно использовать для нахождения вероятности p (Х = х1) для непрерывной случайной величины. Для этого рассмотрим предел
p (X = x1) = ,
т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.
Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х = х1 (где х1- заранее выбранное число) равна нулю, это событие не является невозможным.
В этой связи невозможно построение графика интегрального распределения поэтому нами будет построена кривая интегрального распределения для 7,8, 9 классов.

Рис. 4 График интегрального распределения результатов техники чтения для 7,8, 9 класса.
Таким образом, можно сделать следующий вывод, что наиболее достоверна дифференциальное распределение полученных результатов.

Задание №3.
Выборка объемом 30 человек, разбитая на две равные группы по признаку пола, прошла функциональную диагностику мозговой активности, в результате которой у 13 женщин и 4 мужчин было выявлено доминирование правого полушария, а у 2 женщин и 11 мужчин — доминирование левого полушария. Проверьте гипотезу о связи функциональной асимметрии головного мозга с полом.
Решение:
Поскольку в обеих выборках n1 и n2> 11 и диапазоны разброса значений в двух выборках не совпадают между собой, мы можем воспользоваться самым простым критерием для сопоставления двух выборок – критерием Q Розенбаума. Объемы выборок различаются менее чем на 10 человек, так, что ограничение о примерном равенстве выборок также не препятствует нам.
Таблица 1. Показатели выраженности функциональной асимметрии у мужчин и женщин
Группа 1 – мужчины
(n=15 человек)
Группа 2 – женщины (n=15 человек)
Доминирование правового полушария
4
13
Доминирование левого
полушария
11
2
Данные в таблице 1 расположены по степени доминирования того или иного полушария в мужской или женской выборке. Первым более высоким является ряд значений в женской выборке.
Средняя величина в мужской и женской выборке идентична и равна 7,5.
Сформулируем гипотезы.
Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде [5; с. 24]. Статистические гипотезы подразделяются на нулевые и альтернативные.
Нулевая гипотеза – это гипотеза об отсутствии различий. Она обозначается как Н0 и называется нулевой потому, что содержит число 0:
X1-X2 =0, где X1, X2 – сопоставления значение признаков. Таким образом, нулевая гипотеза – это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.
Альтернативная гипотеза – это гипотеза о значимости различий. Она обозначается как Н1. Альтернативная гипотеза – это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.
Сформулируем основные гипотезы:
Н0: Функциональная асимметрия головного мозга у мужчин не выражена в большей степени, чем у женщин.
Н1: Функциональная асимметрия головного мозга у мужчин выражена в большей степени, чем у женщин.
Сопоставим ряды значений для определения S1 и S2.
max 2 = 13
S1 =0
min 1 =4
S2 =1
Производим подсчет эмпирического значения Qэмп = S1+S2 = 0+1 = 1
По таблице 1 Приложения I [5; с. 316] определяем критическое значение Q для данных n1 и n2. Если Qэмп равно Q0,05 или превышает его, Н0 отвергается.
В данном случае Qкр =       6
6 (p≤0,01)
Qэмп<Qкр
Следовательно принимается гипотеза Н0 и отвергается гипотеза Н1.
Функциональная асимметрия головного мозга у мужчин не выражена в большей степени, чем у женщин, следовательно, функциональная асимметрия головного мозга не зависит от признака пола.

Список используемой литературы
1.    Ермолаев О.Ю. Математическая статистика для психологов/ О.Ю. Ермолаев.- М.: МПСИ, Флинта, 2002. - 336 с.
2.    Кутейников А.Н., Математические методы в психологии/А.Н. Кутейников.- М.: Речь, 2008. - 172 с.
3.    Митина О.В., Математические методы в психологии. Практикум: Учебное пособие/О.В. Митина.- М.: Издательство Аспект – пресс, 2008. - 238 с.
4.    Наследов А.Д., Математические методы в психологии: Учебное пособие/ А.Д. Наследов.- Спб: Речь, 2004. - 232 с.
5.     Сидоренко Е.В., Методы математической обработки в психологии/ Е.В. Сидоренко.- М.: Речь, 2006. - 350 с.
6.    Суходольский Г.В., Математические методы в психологии: Учебное пособие/ Г.В. Суходольский.- М.: Гуманитарный центр, 2008. - 284 с.
7.    Титкова Л.С., Математические методы в психологии/ Л.С. Титкова.- Владивосток: Издательство ДВГУ, 2002. - 140 с.


1. Титкова Л. С., Математические методы в психологии/ Л. С. Титкова.- Владивосток: Издательство ДВГУ, 2002.- с. 12.
2 Там же, с. 12
3 Там же, с. 12

1. Контрольная работа на тему Вирусы возбудители внутриутробных инфекций Таксономия
2. Реферат Инвестиции и кап вложения в СПК Пушкинский
3. Диплом на тему Анализ современных технологий обучения истории
4. Реферат Озоновый слой
5. Реферат Олигополия понятие и сущность
6. Реферат Вклад Галена в развитие анатомии
7. Реферат Организация труда и его оплаты на малом предприятии
8. Реферат Меню
9. Курсовая Доходы бюджетов муниципальных образований и пути их повышения
10. Реферат Социальный налог 2