Контрольная работа

Контрольная работа Показатели эконометрики

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.1.2025





Башкирский Государственный Аграрный Университет

Факультет: экономический

Кафедра: статистики и информационных систем в экономике

Специальность: бухгалтерский учет, анализ и аудит

Форма обучения: заочная

Курс, группа: III, 4
Контрольная работа
Эконометрика
Уфа 2009


Введение
Эконометрика – наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов..

Этапами эконометрических исследований являются:

- постановка проблемы;

- получение данных, анализ их качества;

- спецификация модели;

- оценка параметров;

- интерпретация результатов.

Эконометрическое исследование включает решение следующих проблем:

- качественный анализ связей экономических переменных – выделение зависимых и независимых переменных;

- подбор данных;

- спецификация формы связи между у и х;

- оценка параметров модели;

- проверка ряда гипотез о свойствах распределения вероятностей для случайной компоненты;

- анализ мультиколлинеарности объясняющих переменных, оценка ее статистической значимости, выявление переменных, ответственных за мультиколлинеарность;

- введение фиктивных переменных;

- выявление автокорреляции, лагов;

- выявление тренда, циклической и случайной компонент;

- проверка остатков на гетероскедатичность;

- и др.

Целью данной контрольной работы является приобретение умения построения эконометрических моделей, принятие решений о спецификации и идентификации моделей, выбор метода оценки параметров модели, интерпретация результатов, получение прогнозных оценок.

Задачей данной работы является решение поставленных вопросов с помощью эконометрических методов. Данная работа позволит приобрести навыки использования различных эконометрических методов.


Задача 1
По данным, представленным в таблице выполнить следующие расчеты:

1.                 рассчитать параметры парной линейной регрессии.

2.                 оценить тесноту связи с помощью показателей корреляции и детерминации

3.                 оценить с помощью средней ошибки аппроксимации качество уравнений.

4.                 оценить статистическую зависимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдентов

5.                 рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 20% от его среднего уровня значимости α = 0,05

Решение.

Рассчитаем параметры парной линейной регрессии. Для этого выберем модель уравнения, построим уравнение тренда.

Для рассмотрения зависимости урожайности от дозы внесенных удобрений используем уравнение прямой:


y
=
a
+
bx


где х – независимый признак, доза внесенных удобрений

у – урожайность,

a, b – параметры уравнения регрессии.

Для расчетов параметров уравнения составим систему уравнений


na
+
b
∑х = ∑у


a
∑х +
b
∑х2 = ∑ух

где n – число наблюдений, n=25


25а +86,5
b
= 256,9


86,5
a
+ 844,941
b
= 995,969

Параметры а и b можно определить по формулам
 и a
=
y
-
bx



b
= (39,839 – 3,46∙10,276)/ (33,798-3,462) = 0,1960


а = 10,276 – 0,196∙3,46 = 9,598

ỹ = 9,598 + 0,196х
Коэффициент регрессии b= 0,196 ц/га показывает, насколько в среднем повысится урожайность при увеличении дозы внесения удобрений на 1 кг.        

Средняя ошибка аппроксимации
= 1/25 ∙494,486 = 19,780%
Ошибка аппроксимации 19,78 % > 12% – модель ненадежна и статистически незначима.

Оценим тесноту связи с помощью показателей корреляции и детерминации.

Тесноту связи показывает коэффициент корреляции:







δx - показывает, что в среднем фактор Х меняется в пределах
, 3,46 ± 4,672
δу - показывает, что в среднем фактор Y меняется в пределах
, 10,276 ± 2,289



rxy = 0,401, 0,3≤0,401≤0,5 – связь слабая
Коэффициент детерминации R = rxy2 ∙100% = 0,4012∙100% = 16,08.

y
зависит от выбранного x на 16,08%, на оставшиеся 100-16,08% y зависит от других факторов.

Оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

При α = 0,05, κ1 = n-1, κ2 = n-2 =25-2 =23

Fтабл. = 2,00, FФиш. = 4,414 > Fтабл. = 2,00 – модель значима и надежна

Рассчитаем прогнозное значение результата с вероятностью 0,95% при повышении дозы внесения удобрений от своего среднего уровня и определим доверительный интервал прогноза.

Найдем точечный прогноз для хпрогноз = 1,2∙х , хр = 1,2 ∙3,46 = 4,152


ỹ =
a
+
bx
, ỹр = 9,598 + 0,196∙
хр = 9,598 + 0,196∙4,152 = 10,412


Найдем среднюю ошибку прогнозного значения



Fтабл. Стьюдента для α = 0,05, df = n-2 = 25-2 = 23

tтабл.=2,0687,
ур = tтабл∙станд.ошибка = 2,0687∙2,188 = 4,526
Доверительный интервал прогноза по урожайности
γур = yp ± ∆ур = 10,412 ± 4,526, от 5,886 до 14,938




Таблица 1. Исходные данные для задачи 1



Внесено мин.удобрений, ц

Урожайность,

ц/га

Х2

у∙х

У2

Урожайность расчетная,Ỹ

(Y-Ỹ)

(Y-)/100

(Y-)2

(Х-¯Х)2

1

13,9

9,4

193,21

130,66

88,36

12,322

-2,922

31,085

8,538

108,994

2

8,8

15

77,44

132

225

11,323

3,677

100,245

13,52

28,516

3

4

8,2

16

32,8

67,24

10,382

-2,182

26,610

4,761

0,292

4

0,01

8,2

0,0001

0,082

67,24

9,6

-1,4

17,073

1,96

11,903

5

4,2

13,7

17,64

57,54

187,69

10,421

3,279

23,934

10,752

0,548

6

0,7

9,2

0,49

6,44

84,64

9,735

-0,535

5,815

0,286

7,618

7

6,7

12,4

44,89

83,08

153,76

10,911

1,489

12,008

2,217

10,498

8

15,9

14

252,81

222,6

196

12,714

1,286

9,186

1,654

154,754

9

1,9

8,6

3,61

16,34

73,96

9,97

-1,37

15,930

1,877

2,434

10

1,9

14,7

3,61

27,93

216,09

9,97

4,73

32,177

22,373

2,434

11

0,01

6,3

0,0001

0,063

39,69

9,6

-3,3

52,381

10,89

11,903

12

0,01

8,5

0,0001

0,085

72,25

9,6

-1,1

12,941

1,21

11,903

13

0,01

8,8

0,0001

0,088

77,44

9,6

-0,8

9,091

0,64

11,903

14

1,2

10,9

1,44

13,08

118,81

9,833

1,067

9,789

1,138

5,108

15

0,01

9,2

0,0001

0,092

84,64

9,6

-0,4

4,348

0,16

11,903

16

0,01

13,4

0,0001

0,134

179,56

9,6

3,8

28,358

14,44

11,903

17

3,7

10,8

13,69

39,69

116,64

10,323

0,477

4,417

0,288

0,058

18

0,01

7,9

0,0001

0,079

62,41

9,6

-1,7

21,519

2,89

11,903

19

0,01

9,1

0,0001

0,091

82,81

9,6

-0,5

5,495

0,25

11,903

20

1,6

9,2

2,56

14,72

84,64

9,912

-0,712

7,739

0,507

3,460

21

2,5

10,3

6,25

25,75

106,09

10,088

0,212

2,058

0,045

0,922

22

0,01

11,1

0,0001

0,111

123,21

9,6

1,5

13,514

2,25

11,903

23

6,3

9,5

39,69

59,85

90,25

10,833

-1,333

14,032

1,777

8,066

24

0,01

8,4

0,0001

0,084

70,56

9,6

-1,2

14,286

1,44

11,903

25

13,1

10,1

171,61

132,31

102,01

12,166

-2,066

20,455

4,268

92,930

Итого

86,5

256,9

844,941

995,969

2770,99

256,903

0,003

494,486

110,071

545,662

Среднее значение

3,46

10,276

33,798

39,839

110,84









21,826




Задача 2
По данным представленным в таблице 3 изучается зависимость бонитировочного балла (У) от трех факторов.

С помощью ППП MS Excel:

1. Построить матрицу парных коэффициентов корреляции. Установить, какие факторы мультиколлинеарны.

2. Построить уравнение множественной регрессии в линейной форме с полным набором факторов.

3. Оценить статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

4. Отобрать информативные факторы. Построить уравнение регрессии со статитически значимыми факторами.

5. Оценить полученные результаты, выводы оформить в аналитической записке.

В ППП MS Excel построим матрицу парных коэффициентов корреляции (сделать вставку из ексель зад.2).

По данным матрицы, определим мультиколлинеарность факторов, когда более чем два фактора связаны между собой линейной зависимостью. Из полученной матрицы видно, что зависимости между тремя данными факторами нет. Так rx2x1= -0,0732, rx3x1= 0,0427, rx3x2= -0,0886. Из всех трех факторов наиболее тесно связан с результатом фактор Х1 – доза внесения удобрения на посевную площадь, ryx1= 0,4004, затем фактор Х2 – коэффициент износа основных средств, , ryx2= 0,3858 и очень слабая зависимость от 3-го фактора Х3 , ryx3= 0,0264.

Построим уравнение множественной регрессии с полным набором факторов. Так как факторы не коррелируют между собой, то для включающего три объекта переменных уравнение множественной регрессии выглядит следующим образом:


y = a + b1x1 + b2x2 + b3x3+ ξ
С помощью ППП MS Excel найдем значения а и b:
b = 13,9661, а1 = 0,1837, а2= - 0,0917, а3 = 0,0022
Итак, уравнение множественной регрессии с полным набором факторов будет следующим:
y = 13,9661 + 0,1837х1 - 0,0917x2 + 0,0022x3
Оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Значимость уравнения множественной регрессии оценивается с помощью F-критерия Фишера:

где R2 – коэффициент множественной регрессии,

m – число параметров при переменных х,

n – число наблюдений.

R = 0,5369

Fтаб= при 5%-ном уровне значимости для числа степеней свободы 1 и 21 равно 4,32.

Fфакт < Fтаб – модель незначима и ненадежна.

Для того чтобы модель была надежна уберем из нее фактор х3, так как он меньше всего коррелирует с у. Получим уравнение:
y = 14,1136 + 0,1837х1 - 0,0917x2
Значимость уравнения множественной регрессии по F-критерию составляет Fфакт = 4,45. Так как Fфакт = 4,45 > Fтаб = 4,35, то модель значима и надежна.

Итак, составив уравнение множественной регрессии и включив в него три фактора, определила, что с помощью F-критерия Фишера полученная модель незначима и ненадежна. Затем исключила из модели наиболее незначимый признак X3, так как он имеет наименьший коэффициент корреляции с результативным показателем. По полученному уравнению регрессии видно, что средняя урожайность составляет 14,1136 ц/га увеличится на 0,1837 ц/га при повышении дозы внесения удобрения на 1 ц, и уменьшится на 0,0917 ц/га при повышении коэффициента износа основных средств на 1 единицу.
Задача 3
По учебнику задача №37

1.Найти коэффициенты автокорреляции разного порядка и выберите величину лага.

2.Построить авторегрессионную функцию.

3. Рассчитать прогнозные значения на три года вперед.

В таблице 4 приводятся сведения об уровне среднегодовых цен на говядину из США на рынках Нью-Йорка, амер.центы за фунт.

Данная задача относится к типу задач на моделирование временных рядов. Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно разделить на три группы:

- факторы, формирующие тенденцию ряда;

- факторы, формирующие циклические колебания ряда;

- случайные факторы.

Нанесем значения нашей задачи на график (рисунок 1).

Из структуры графика видно, что основной компонентой временного ряда является возрастающая компонента.

Найдем коэффициенты автокорреляции разного порядка и выберем величину лага.
Расчет коэффициента автокорреляции первого порядка для временного ряда расходов на конечное потребление

t

yt

Yt-1

yt-y1

Yt-1-y2

(yt-y1)( Yt-1-y2)

(Yt-1-y1)2

(Yt-1-y2)2

1

41

-

-

-

-

-

-

2

42

41

-36,07

-35,41

1277,24

1301,04

1253,87

3

49

42

-29,07

-34,41

1000,29

845,06

1184,05

4

64

49

-14,07

-27,41

385,66

197,9

751,31

5

53

64

-25,07

-12,41

311,12

628,5

154

6

44

53

-34,07

-23,41

797,58

1160,76

548,03

7

52

44

-26,07

-32,41

844,93

679,6

1050,41

8

51

52

-27,07

-24,41

660,78

732,8

595,85

9

71

51

-7,07

-25,41

179,65

50

645,67

10

92

71

13,93

-5,41

-75,36

194,04

29,27

11

87

92

8,93

15,59

139,22

79,75

243,05

12

86

87

7,93

10,59

83,98

62,89

112,15

13

99

86

20,93

9,59

200,72

438,06

91,97

14

96

99

17,93

22,59

359,86

321,48

510,31

15

97

96

18,93

19,59

370,84

358,34

383,77

16

89

97

10,93

20,59

225,05

119,46

423,95

17

77

89

-1,07

12,59

-13,47

1,14

383,77

18

81

77

2,93

0,59

1,73

8,58

0,35

19

82

81

3,93

4,59

18,04

15,44

21,07

20

87

82

8,93

5,59

49,92

79,74

31,25

21

94

87

15,93

10,59

168,7

253,76

112,15

22

90

94

11,93

17,59

209,85

142,32

309,41

23

90

90

11,93

13,59

162,13

142,32

184,69

24

93

90

14,93

13,59

202,9

222,9

184,69

25

87

93

15,93

16,59

264,28

253,76

275,23

26

84

87

5,93

10,59

62,8

35,16

112,15

27

85

84

6,93

7,59

52,6

48,02

57,61

28

86

85

7,93

8,59

68,12

62,88

73,79



2149

2063

9,25

11,02

8016,65

8435,7

9723,82



y1 = ∑ уt / (n-1) =

(42+49+64+53+44+52+51+71+92+87+86+99+96+97+89+77+81+82+87+9

4+90+90+93+87+84+85+86)/27= 2149/27 = 78,07

у2 = ∑ уt-1 / (n-1) =

(41+42+49+64+53+44+52+51+71+92+87+86+99+96+97+89+77+81+82+8

7+94+90+90+93+87+84+85)/27 = 2063/27 = 76,41



r1= 8016.65/ √(8435,7 х 9723,82) = 0,8951


Таблица Расчет коэффициента автокорреляции второго порядка для временного ряда расходов на конечное потребление

t

yt

Yt-2

yt-y2

Yt-2-y2

(yt-y2)( Yt-2-y2)

(Yt-2-y2)2

(Yt-2-y2)2

1

41

-

-

-

-

-

-

2

42

-

-

-

-

-

-

3

49

41

-33,65

-35,08

1180,44

1132,32

1230.60

4

64

42

-18,65

-34,08

635,6

347,82

1161.45

5

53

49

-29,65

-27,08

802,92

879,12

733.33

6

44

64

-38,65

-12,08

466,89

1493,82

145,93

7

52

53

-30,65

-23,08

707,4

939,42

532,69

8

51

44

-31,65

-32,08

1015,33

1001,72

1029,13

9

71

52

-11,65

-24,08

280,53

135,72

579,85

10

92

51

9,35

-25,08

-234,5

87,42

629,01

11

87

71

4,35

-5,08

-22,1

18,92

25,81

12

86

92

3,35

15,92

53,33

11,22

253,45

13

99

87

16,35

10,92

178,54

267,32

119,25

14

96

86

13,35

9,92

132,43

178,22

98,41

15

97

99

14,35

22,92

328,9

205,92

525,33

16

89

96

6,35

19,92

126,5

40,32

396,81

17

77

97

-5,65

20,92

-118,2

31,92

437,65

18

81

89

-1,65

12,92

-21,32

2,72

166,93

19

82

77

-0,65

0,92

-0,6

0,42

085

20

87

81

4,35

4,92

21,4

18,92

24,21

21

94

82

11,35

5,92

67,2

128,82

35,05

22

90

87

7,35

10,92

80,26

54,02

119,25

23

90

94

7,35

17,92

131,71

54,02

321,13

24

93

90

10,35

13,92

144,07

107,12

193,77

25

87

90

4,35

13,92

60,55

18,92

193,77

26

84

93

1,35

16,92

22,84

1,82

286,29

27

85

87

2,35

10,92

25,66

5,52

119,25

28

86

84

3,35

7,92

26,53

11,22

62,73



2149

1978





6092,31

7174,72

9422,38



y1 = ∑ уt / (n-1) =

(42+49+64+53+44+52+51+71+92+87+86+99+96+97+89+77+81+82+87+9

4+90+90+93+87+84+85+86)/27= 2149/26 = 82,65

у2 = ∑ уt-1 / (n-1) =

(41+42+49+64+53+44+52+51+71+92+87+86+99+96+97+89+77+81+82+8

7+94+90+90+93+87+84)/27 = 1978/26 = 76,08

r2 = 6092,31/√ (7174,72 х 9422,38) = 0,7410
Итак, коэффициент корреляции первого порядка r1 = 0,8961

коэффициент корреляции второго порядка r2 = 0,7550

Автоматически в ППП Exel рассчитаем коэффициент корреляции третьего порядка r3 = 0,6546, и коэффициент корреляции четвертого порядка r4 = 0,5461

Как видно из полученных данных, наиболее тесная зависимость между среднегодовыми ценами на говядину в США и текущим или предшествующими годами происходит при сдвиге ряда данных на 1 год ( или 1 лаг) r1 = 0,8951.

Рассчитав коэффициенты автокорреляции 1, 2, 3, 4-го порядков получили автокорреляционную функцию этого ряда. Анализ значений автокорреляционной функции позволяет сделать выводы о наличии в изучаемом временном ряде тенденции.

Для того, чтобы рассчитать прогноз цен на три года вперед, составим уравнение тренда для временного ряда показателей среднегодовых цен на говядину.
У = а + bt,
Где У – выравненное значение среднегодовой цены,

b
,
t
- неизвестные параметры,

а – начальный уровень временного ряда в момент времени t=0.

b – ежегодный прирост (снижение) цены на говядину,

t – значение дат.

Для определения неизвестных параметров a и b в соответствии с требованием способа наименьших квадратов необходимо решить систему нормальных уравнений:


na
+
b

t
= ∑
Y



a

t
+
b

t
2
= ∑
Yxt


Для упрощения системы воспользуемся способом отсчета от условного начала.

Поскольку t
= 0,
система уравнений примет вид:


na
= ∑
Y



b

t
2
= ∑
Yxt
,


,

a=(41+42+49+64+53+44+52+51+71+92+87+86+99+96+97+89+77+81+82

+87+94+90+90+93+87+84+85+86) / 28 = 76,75

b = 12920/ 1638 = 7,8877

y = 76,75 + 7,89t
Т.е. уравнение линейного тренда имеет вид y = 76,75 + 7,89t. Это означает, что средняя фактическая и выровненная цена, отнесенная к середине периода, т.е. к 1983 г. равна 76,75 амер.центов за фунт, а среднегодовой прирост цены составляет 7,89 центов за фунт.
Таблица 3. Расчет параметров уравнения тренда



года

Годы

Среднегодовая цена на говядину, У

Условное обозначение периодов,

T

t2

Y x t

1

1970

41

-13

169

533

2

1971

42

-12

144

504

3

1972

49

-11

121

539

4

1973

64

-10

100

640

5

1974

53

-9

81

477

6

1975

44

-8

64

352

7

1976

52

-7

49

364

8

1977

51

-6

36

306

9

1978

71

-5

25

355

10

1979

92

-4

16

368

11

1980

87

-3

9

261

12

1981

86

-2

4

172

13

1982

99

-1

1

99

14

1983

96

0

0

0

15

1984

97

1

1

97

16

1985

89

2

4

178

17

1986

77

3

9

231

18

1987

81

4

16

324

19

1988

82

5

25

410

20

1989

87

6

36

522

21

1990

94

7

49

658

22

1991

90

8

64

720

23

1992

90

9

81

810

24

1993

93

10

100

930

25

1994

87

11

121

957

26

1995

84

12

144

1008

27

1996

85

13

169

1105

Итого

2063

0

1638

12920



По полученному уравнению (функции) можно составить прогнозные оценки: точечные прогнозы и доверительные интервалы прогноза.

Номер прогнозируемого периода будем отсчитывать от 1983 года, когда t=0, тогда t1999 = 16 (1999г.), тогда точечный прогноз удоя молока на 1 гол. на 2000 год составит
У31 = 76,75 + 7,89 х 16 = 202,99
Таким образом, по уравнению тренда стоимость 1 фунта говядины в 1999 г. составила 202,99 американских центов.


Библиографический список

1.       Эконометрика/ Под ред. И.И. Елисеевой.- М.: Финансы и статистика, 2004. – 344 с.

2.       Практикум по эконометрике/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2001. – 192 с.

3.       Общая теория статистики/ Под ред. И.И. Елисеевой.- М.: Финансы и статистика, 2001. – 480 с.

4.       Бакирова Р.Р. Эконометрика. Методические указания по выполнению контрольных работ, - БГАУ, 2007. – 7 с.

1. Шпаргалка Шпоры по финансам организации
2. Реферат на тему A Comparitive Study Of The Work Of
3. Реферат на тему Ecommerce Market Essay Research Paper The firms
4. Реферат Сущность,необходимость и функции денег
5. Реферат на тему Psychology Differences Between Siblings Essay Research Paper
6. Реферат Т.Парсонс Аналитический реализм и понимание задач социологической теории Доклад
7. Реферат на тему People Believes About Church Essay Research Paper
8. Контрольная работа на тему Молодежная политика в Республике Беларусь
9. Реферат Гостинично-ресторанная деятельность и перспективы её развития в России
10. Реферат Основные компаненты культуры