Контрольная работа

Контрольная работа Работа деталей трактора

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024





ВВЕДЕНИЕ
Главная задача сельскохозяйственного машиностроения заключается в комплексной механизации сельскохозяйственного производства, что означает применение машин и орудий не только на основных, но и на всех промежуточных операциях при возделывании различных культур.

Земледелие, и в частности выращивание зерновых культур, - древнейшее занятие человека, а его орудия труда имеют многовековую историю развития и совершенствования. Однако наука о сельскохозяйственных машинах и орудиях зародилась сравнительно недавно. Возникновение этой новой прикладной дисциплины связано с именем выдающегося русского ученого, академика В. П. Горячкина (1868-1935).

Современные технологии возделывания культур, основанные на многократных проходах все более тяжелых машинно-тракторных агрегатов, ведут к распылению верхнего и уплотнению нижнего слоев почвы и, следовательно, к расширению зоны ветровой и водной эрозии, снижению вносимых минеральных удобрений и урожайности. Поэтому необходимо пересматривать технологию возделывания культур в направлении создания оптимального взаимодействия системы машина - почва.
плуг трактор гидросистема продольный устойчивость


1. ИСХОДНЫЕ ДАННЫЕ
Эксплуатационный вес трактора (Gтр) - 58500Н.

Длина опорной поверхности гусеницы – 1,740 м.

Расстояние от оси ведущего колеса до центра тяжести трактора - 1,205 м.

Наружный радиус заднего колеса - 0,375 м.

Координаты опорных подшипников: точка 1 (0,170;0); точка 2 (0,240;0,650); точка 3 (0,240; 0,650); точка 4 (0,170; 0).

Длина звеньев 1-5 = 0,815 м; 1-6 = 0,430 м; 3-7 = 0,400 м; 3-8 = 0,200 м;

4-8макс. - 0,810 м; 4-8 мин = 0,560 м; а=17°; 6-7 = 0,620 м.

Теоретическая производительность насоса (Qт) =10∙10-4 м3/с.

Диаметр силового цилиндра (d) = 0,11 м.

Высота стойки плуга 5-9 = 0,88 м.

Высота расположения оси подвеса над дном борозды - 0,635 м.

Диаметр опорного колеса (Dк)- 0,500 м.

Расстояние от оси подвеса - 0,920 м.

Координаты центра тяжести плуга:

-от оси подвеса по горизонтали - 0,1020 м

-от опорной поверхности корпуса по вертикали - 0,470 м.

Расстояние от оси подвеса до «среднего» корпуса в горизонтальной

плоскости - 0,1310 м.

Вес плуга- 5800Н.

Число корпусов - 4

Ширина захвата одного корпуса - 0,85 м.



2. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ОРУДИЕ
В процессе работы на навесной плуг действуют следующие силы:

-горизонтальная составляющая сил, действующих на рабочие органы
, (кН)
где к - удельное сопротивление почвы, кН/м ; а - глубина обработки, м; b - ширина захвата рабочего органа, м; n - число рабочих органов.
 (кН)
Rz - вертикальная составляющая
Rz= ± δ ∙RХ (кН).(2)
где  δ - коэффициент пропорциональности. Для рабочих органов составляет- 0,2.
Rz =0,2 ∙ 15,12= 3,024 (кН).
-составляющая, действующая в плоскости, перпендикулярной движению агрегата Яу


 (кН)  (3)




Складывание векторов сил RX и RZ даст силу RХZ:
 (кН)(4)
Так же на плуг действуют:

-сила тяжести, приложенная к центру тяжести орудия:

G =5,8  кН; - сила трения полевых досок о стенку борозды:
F=fRx, кН
где f- коэффициент трения почвы о сталь, f = 0,5.

F = 0,5 15,12 =7,56 (кН)

-усилие на ободе опорного колеса Q;

-усилие в верхней тяге механизма навески S.

Для дальнейших расчетов нам необходимы силы R1 и R2. Для этого построим план сил (смотри рисунок 1.1). В масштабе (1 мм = 100 Н) отложим (начиная от полюса Р) всем известные силы: G, Rz, Rх, F. Проведем вектор R1 соединив конец вектора Rх и полюс. Проведем вектор R2, соединив конец вектора F и полюс. Далее из полученных размеров возможно определить R1 = 17,5 кН и R2 = 24,3 кН.


Рисунок 1.1- План сил


Чтобы определить усилие Q нам поможет метод Жуковского. План скоростей, повернуты на 90°, совместим с механизмом навески. За полюс плана скоростей примем точку 1 крепления нижних тяг на тракторе. Масштаб зададим таким образом, чтобы длина вектора скорости точки 5 равнялась длине звена 1-5.

Чтобы определить скорость точки 9, на плане скоростей необходимо провести линию 1-9', параллельную звену 2-9, так как вектор скорости, точки 9, повернутый на 90 , будет располагаться именно по направлению звена 2-9.

Далее необходимо построить векторы точек приложения сил Q и R2. Для этого на плане скоростей провести линию 5-В и линию 9'-В', параллельно 9-В. Точка пересечения этих линий позволит определить, конец вектора скорости точки В. Аналогично находим и вектор скорости точки Е.

Так как активные силы приложены к одному звену, то получим


 кН.(6)
Где 1' - плечо силы R2 относительно полюса π, м;

h’ - плечо силы Q относительно полюса π, м.

Q = 4.139 (кН)

Получив числовое значение силы откладываем вектор. Значение угла μ =9°...12°, принимаем μ =  12°. Достроив план сил получим числовые значения силы Р=27,89 кН.



3. АНАЛИЗ ПРОЦЕССА ПЕРЕВОДА ПЛУГА ИЗ РАБОЧЕГО В

ТРАНСПОРТНОЕ ПОЛОЖЕНИЕ
Процесс перевода плуга из рабочего в транспортное положение, осуществляется гидросистемой трактора. Если считать, что объёмный коэффициент полезного действия насоса в процессе подъёма - величина неизменная, то продолжительность подъёма в секундах можно рассчитать следующим образом:

Q= 10∙10-4 - производительность насоса, м3/с

Определим действительную производительность:
, м3/c
Зная действительную  производительность  можно  определить скорость выдвижения штока гидроцилиндра:


 м/сI
Зная скорость и длину штока гидроцилиндра можно определить время подъема навесного орудия:
 c.
Усилие S, возникающее на штоке гидроцилиндра при подъёме машины, вычисляют по выражению:



где Мс - момент сопротивления от сил, действующих на плуг при подъёме (относительно мгновенного центра вращения плуга); L - плечо силы относительно оси вращения звена 4- 3, к которому приложена сила; η- КПД механизма (в приближённых вычисленьях η = 1); u - передаточное отношение механизма
u = u1∙u2;

u1 = а' / b' - передаточное отношение четырёхзвенника 1- 6 - 7- 2;

u2 = λ' /l'  - передаточное отношение четырёхзвенника 1-5 -9-2.
Если же мгновенный центр вращения машины на чертеже не располагается, то значение S удобнее определить, пользуясь методом Жуковского.

Чтобы разгрузить чертёж, план скоростей построен вновь вне механзма навески.

Скорость точки 5 в произвольном масштабе изображена отрезком V - 5' (вектор скорости проведён из полюса V параллельно звену 1- 5). Затем из полюса плана проведена линия v - 9', параллельная звену 2- 9, а из точки 5' линия 5' - 9', параллельная звену 5-9. Точка 9' пересечения этих линий определяет конец вектора скорости точки 9 механизма навески. На отрезке 5' - 9' построен треугольник, подобный треугольнику 5 - 9 - М. Вектор УМ1 представляет собой скорость центра тяжести плуга.

Вектор скорости точки 6 будет меньше вектора скорости точки 5 настолько, насколько звено 1-6 меньше звена 1 -5.

Скорость точки 7 можно рассматривать как составляющую:
V7 = V6 + V7- 6


потому из полюса плана скоростей проведена линия V-7', параллельная звену 3- 7, до пересечения с линией 6' - 7', проведённой из точки 6 параллельно звену 6- 7. На отрезке V- Т построен треугольник, подобный треугольнику 3-7-8. так определён вектор скорости точки 8, к которой приложена сила 8.

Без учёта сопротивления пластов
SМу = SL'- GН' = О
Откуда
S = (GН) / L, кН.
Мощность, потребная на привод насоса
N = (Qт∙Р)/(η∙η0),Вт,
где Р - давление в гидросистеме, Па;
Р = (4S)//(р d2).
Далее подсчитаем необходимые величины
а'=72,5; b’=27,03



λ'=114,9·l'=160






Передаточное отношение механизма:
u=uu2 = 1,93
Сила S в начале подъема (метод Жуковского):
H=281,43

L=31,57





кН.
Давление в гидросистеме:






Мощность потребляемая на привод насоса:

Сила S в конце подъема (аналитический метод):
H’=171,34

L’=15,28

Мс = G·Н' – момент сопротивления

S=Мс/η·u·L’=37,1 кН.


4. ОПРЕДЕЛЕНИЕ ПРОДОЛЬНОЙ УСТОЙЧИВОСТИ АГРЕГАТА
Устойчивость навесного агрегата оценивается коэффициентом запаса продольной устойчивости X который представляет из себя отношение опрокидывающего момента, создаваемого весом навесного орудия, поднятого в транспортное положение к моменту, способному вызвать отрыв от земли передних колес трактора, находящегося в горизонтальном положении.




где Gм - сила тяжести навесного агрегата;

Gт - сила тяжести трактора;

а" - вылет центра тяжести трактора относительно оси задних колес;

b" - вылет центра тяжести навесной машины относительно оси задних

колес.




Коэффициент запаса продольной устойчивости равен χ= 0.15.



СПИСОК ЛИТЕРАТУРЫ
1. Методическое указание к курсовой работе «Обоснование конструктивных схем и параметров почвообрабатывающих и посадочных машин» / А.И. Любимов, Р.С. Рахимов, В.А. Стрижов, А.Ф. Кокорин. Учеб. пос/ ЧГАУ. - Челябинск, 2004. - 40с. :ил.

2. Справочник технолога-машиностроителя: Т.1/ Под ред. А.Г. Косиловой и Р.К. Мещерякова. - 4-е изд., перераб. и доп. - М.: Машиностроение, 1985.

3. Анурьев В.И.  Справочник конструктора-машиностроителя.  5-е изд., перераб. и доп. - М.: Машиностроение, 1979. -Т.1 - 3.

Размещено на Allbest.ru

1. Реферат на тему The Relationship Between Rufus Griswold And Edgar
2. Сочинение на тему Островский а. н. - В чем заключается символический смысл заглавия пьесы
3. Курсовая на тему Оптимізація міжпредметних зв язків як умова підвищення ефективності процесу загальнотехнічної підготовки
4. Курсовая на тему Виды наказаний назначаемых несовершеннолетним
5. Реферат Дали государство
6. Доклад на тему Храм Саграда Фамилиа
7. Реферат на тему Меркурий - горячая планета
8. Практическая работа на тему Расположение элементов в матрице
9. Реферат на тему Marcus Garvey Essay Research Paper We declare
10. Реферат на тему Fall Of Comunims Essay Research Paper During