Контрольная работа Уравнения, содержащие параметр
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Городская конференция учащихся муниципальных образовательных учреждений, занимающихся учебно-воспитательной деятельностью
«Шаги в науку»
Научное общество учащихся «Поиск»
Муниципального образовательного учреждения
«Средняя общеобразовательная школа №86 г.Омска»
Научное направление: «Математика»
Уравнения, содержащие параметр
Соколова Александра Михайловна
ученица 10 класса МОУ
«СОШ №86 г.Омска»
Руководитель: Дощанова Тиштых Мухановна,
учитель математики
Омск 2011
Содержание
Введение
1. Знакомство с параметрами
1.1 Решение уравнений первой степени с одним неизвестным
1.2 Решение линейных уравнений с модулем
1.3 Решение квадратных уравнений
2. Примеры решений уравнений с параметром из ГИА и ЕГЭ части С
Заключение
Введение
В настоящее время различные задачи с параметрами – это одни из самых сложных заданий на экзаменах. А ведь в экзаменационных заданиях они есть как за 9 класс, так и за 11, но многие ученики даже не берутся решать эти задания, так как заведомо считают, что не смогут их решить, даже не попробовав. А на деле, чтобы справиться с ними, нужно всего лишь проявить логику, включить смекалку и ничего сложного не окажется.
Свою работу я захотела посвятить заданиям с параметрами, так как именно они вызывают у большинства учеников наибольшие затруднения. Мне самой нужно будет сдавать ЕГЭ, и поэтому, обращаясь к этой теме, я хотела бы облегчить и себе, и своим слушателям, тяжесть решения задач с параметрами.
Цель моей работы - научиться решать уравнения с параметрами и познакомить учеников с методами решения подобных заданий.
Я поставила перед собой следующие задачи:
1. Самой научиться решать уравнения с параметрами различных видов.
2. Познакомить учащихся с разными методами решения подобных уравнений.
3. Вызвать интерес учеников к дальнейшему изучению задач с параметрами.
В моей работе я рассмотрю следующие виды заданий с параметрами:
1) решение уравнений первой степени с одним неизвестным;
2) решение линейных уравнений с модулем;
3) решение квадратных уравнений.
уравнение параметр неизвестное модуль
1. Знакомство с параметрами
Для начала, стоило бы пояснить, что собой представляют уравнения с параметрами, которым посвящена моя работа. Итак, если уравнение (или неравенство), кроме неизвестных, содержит числа, обозначенные буквами, то оно называется параметрическим, а эти буквы – параметрами.
Если параметру, содержащемуся в уравнении (неравенстве), придать некоторое значение, то возможен один из двух следующих случаев:
1) получится уравнение (неравенство), содержащее лишь данные числа и неизвестные (т.е. без параметров);
2) получится условие, лишенное смысла.
В первом случае значение параметра считается допустимым, во втором – недопустимым.
Решить уравнение (неравенство), содержащее параметр, - это значит, для каждого допустимого значения параметра найти множество всех значений данного уравнения (неравенства).
К сожалению, не редко при решении примеров с параметрами многие ограничиваются тем, что составляют формулы, выражающие значения неизвестных через параметры. Например, при решении уравнения
Пример 1. Решить уравнение
Сразу видно, что при решении этого уравнения стоит рассмотреть следующие случаи:
1) a=1, тогда уравнение принимает вид
2) при а=-1 получаем
3) при
Ответ: при a=1 решений нет, при а=-1 х любое, при
Пример 2. Решить уравнение
Очевидно, что
Ответ: при b
Пример 3. При каких а уравнение
Сразу хочу обратить внимание на распространенную ошибку – считать данное уравнение квадратным. На самом деле это уравнение степени не выше второй! При а – 2=0, а = 2, уравнение вырождается в линейное имеет единственный корень х=1/4. Если же а
Ответ: при а=2, а=1, а=6.
1.1 Решение уравнений первой степени с одним неизвестным
Решить такое уравнение – это значит:
1) определить множество допустимых значений неизвестного и параметров;
2) для каждой допустимой системы значений параметров найти соответствующие множества решений уравнений.
Простейшее уравнение первой степени с одним неизвестным имеет вид ах-b=0.
Если а=0, то при b=0 бесчисленное множество решений, а при b
Пример 1. Для каждого значения а решить уравнение
Это уравнение не является линейным уравнением (т.е. представляет собой дробь), но при х
Мы уже выявили допустимые значения икс (х
а-1-х=0
Из этого видно, что при х
Таким образом, при а
Ответ: при а<0 х=а-1; при
Пример 2. Решить уравнение
Допустимыми значениями k и x будут значения, при которых
Приведём уравнение к простейшему виду:
9х-3k=kx-12
(9 – k)x =3k-12 (2)
Найдём k, при которых изначальное уравнение не имеет смысла:
Подставив в (2)
Если подставим
Таким образом, при
1. Если
а) положительным, если
б) нулевым, если
в) отрицательным, если
2. Если
Ответ: а)
б) при
1.2 Решение линейных уравнений с модулем
Для начала, стоит вспомнить, что такое модуль числа. Итак, абсолютной величиной или модулем числа называется само число х, если х положителен, число (-х), если х отрицателен, или нуль, если х=0. Значение модуля может быть только положительным.
Чтобы понять решение параметрических уравнений, содержащих знак модуля, лучше всего продемонстрировать решение наглядно, т.е. привести примеры:
Пример 1. Решить уравнение |x-2|=b.
Так как, по определению модуля, |x-2|
Если b>0, то решениями уравнения являются числа x=2+b и x=2-b.
Ответ: при b<0 решений нет, при b=0 х=2, при b>0 х=2+b и x=2-b.
Пример 2. Решить уравнение |x-a|=|x-4|. Удобнее всего данное уравнение решить методом интервалов, для двух случаев:
1) a
2) 4
1. Первый интервал:
Второй интервал:
Третий интервал:
2. Первый интервал:
Третий интервал:
Ответ: при а=4 х-любое;, при а<4
Пример 3. Для каждого значения параметра а найти все значения х, удовлетворяющие уравнению |x+3|– a| x – 1| =4.
Рассмотрим 3 промежутка: 1)
1.
При а=1 уравнение не имеет решений, но при а
2.
При а= – 1 решением уравнения является любое х; но мы решаем на промежутке
3.
При а=1 решением является любое число, но мы решаем на
Ответ: при
1.3 Решение квадратных уравнений с параметром
Для начала напомню, что квадратное уравнение – это уравнение вида
Условия параметрических квадратных уравнений могут быть различны, но для решений всех их нужно применять свойства обыкновенного квадратного уравнения
а) Если D>0, а>0, то уравнение имеет два действительных различных корня, знаки которых при с>0 одинаковые и противоположны по знаку коэффициента b, а при с<0, причем по абсолютной величине больше тот, знак которого противоположен коэффициенту b.
б) Если D=0, а>0, то уравнение имеет два действительных и равных между собой корня, знак которых противоположен знаку коэффициента b.
в) Если D<0, а>0, то уравнение не имеет действительных корней.
Аналогично можно представить свойства корней при а<0. Кроме того, в квадратных уравнениях справедливы следующие утверждения:
1. Если поменять местами коэффициенты а и с, то корни полученного квадратного уравнения будут обратны корням данного.
2. Если поменять знак коэффициента b, корни полученного квадратного уравнения будут противоположны корням данного.
3. Если коэффициенты а и с разных знаков, то уравнение имеет действительные корни.
Пример1. Найти все значения параметра а, для которых квадратное уравнение
Данное уравнение по условию является квадратным, поэтому а
При а>-1 уравнение имеет два различных корня, т.к. D>0, при a<-1 уравнение корней не имеет, т.к. D<0, а двух одинаковых корней это уравнение иметь не может, т.к. D=0 при а=-1, а это противоречит условию задачи.
Пример2. Решить уравнение
При а=0 уравнение является линейным 2х+1=0, которое имеет единственное решение х=-0.5. А при а
При а>1 D<0 поэтому уравнение корней не имеет. При а=1 D=0, поэтому уравнение имеет два совпадающих корня
При a<1, но а
Ответ:
Пример3. Корни уравнения
По теореме Виета
Ответ:
2. Примеры решений уравнений с параметром из ГИА и ЕГЭ части С
Узнав всю теоретическую основу и методы решений различных уравнений, содержащих параметр, я решила применить свои знания на практике. Мы выбрали несколько вариантов заданий ГИА и ЕГЭ из части С, представляющих собой именно те виды уравнений, которые были представлены в моей работе, а именно: уравнение первой степени с одним неизвестным, уравнение с модулем и квадратное уравнение. Ниже будут предложены решения этих уравнений.
1. Определить значения k, при которых корни уравнения
Сразу можно выделить, что
В уравнение х(3k-8)=6-k подставим недопустимые значения х, чтобы узнать, при каких k уравнение не имеет смысла:
Итак, мы выяснили, что
Выразим х:
Учитывая, что
2. При каких значениях а уравнение
Уравнение имеет равные корни в том случае, если дискриминант равен нулю. Найдем дискриминант данного уравнения и приравняем его к нулю:
Ответ: при а=2 и а=2/35.
3. Для каждого значения параметра а найти все значения х, удовлетворяющие уравнению a|x+3|+2|x+4|=2.
1) х+3=0 2) х+4=0
х= – 3 х= – 4 .
х+3 – – +
х+4 – -4 + -3 +
Рассмотрим 3 промежутка.
1.
а(-(х+3)+2(-(х+4)=2
-ах – 3а –2х – 8=2
х(- а – 2)=10+3а (при а
Теперь надо выяснить, при каких а х попадает на промежуток
Следовательно, на промежутке
2.
=> При а
При а=2
3.
=> При а
При а= -2
Ответ: 1. при
2. при а
при а=2
3. при а
при а= -2
Заключение
Итак, проделав эту работу, я действительно поняла, как решаются уравнения с параметрами, приобрела навык решения и, надеюсь, теперь не столкнусь с трудностями при решении подобных заданий на экзамене. Я надеюсь, что моя работа поможет ученикам успешнее и смелее решать различные задачи с параметрами.
Конечно, не все далось сразу и легко – чтобы научиться решать уравнения с параметрами, нужно выйти за рамки представлений об уравнении, при этом не забывая о свойствах того или иного типа уравнения. Удаётся это не сразу. К тому же, в школьной программе задачам с параметрами не уделяется должного внимания, поэтому, увидев такое на экзамене, конечно, можно растеряться. Но я надеюсь, что вызвала интерес учащихся к изучению таких интересных и нестандартных заданий, как уравнения, содержащие параметр.
Размещено на Allbest.ru