Контрольная работа на тему Системы линейных уравнений
Работа добавлена на сайт bukvasha.net: 2014-11-15Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Вариант №9
№1. Решить систему линейных уравнений по правилу Крамера, с помощью обратной матрицы
a) По правилу Крамера.
;
б) С помощью обратной матрицы.
Алгебраические дополнения:
№ 2. Вычислить определитель
а) С помощью теоремы Лапласа. б) Предварительно упростив, получив нули в какой либо строке (столбце).
№3. Найти ранг матрицы
a) С помощью элементарных преобразований
б) Найти ранг матрицы методом окаймления миноров
Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2= , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2. Их всего два (можно добавить второй столбец или четвертый). Вычисляем их:
Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.
№4. Дана система уравнений:
a) исследовать на совместимость б) Найти общее решение методом Гауса и записать два частных.
Частные решения:
№5. Найти фундаментальную систему решений однородной системы уравнений
№ 6
a) Найти площадь ABC
Найдем векторное произведение :
б) Составим уравнение плоскости ABC:
Объем параллелепипеда, построенного на трёх некомпланарных векторах , равен абсолютной величине их смешанного произведения, т.е. 18. Объем тетраэдра
e) Найти величину плоского угла при вершине С плоскости ABC
№1. Решить систему линейных уравнений по правилу Крамера, с помощью обратной матрицы
a) По правилу Крамера.
б) С помощью обратной матрицы.
Алгебраические дополнения:
№ 2. Вычислить определитель
а) С помощью теоремы Лапласа. б) Предварительно упростив, получив нули в какой либо строке (столбце).
№3. Найти ранг матрицы
a) С помощью элементарных преобразований
б) Найти ранг матрицы методом окаймления миноров
Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2=
Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.
№4. Дана система уравнений:
a) исследовать на совместимость б) Найти общее решение методом Гауса и записать два частных.
Частные решения:
№5. Найти фундаментальную систему решений однородной системы уравнений
№ 6
a) Найти площадь ABC
Найдем векторное произведение
б) Составим уравнение плоскости ABC:
Объем параллелепипеда, построенного на трёх некомпланарных векторах
e) Найти величину плоского угла при вершине С плоскости ABC