Контрольная работа

Контрольная работа на тему Метод наименьших квадратов для однофакторной линейной регрессии

Работа добавлена на сайт bukvasha.net: 2014-11-16

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 17.2.2025


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ
«ЭКОНОМЕТРИКА»

 

 

 

 

2007


Задания к контрольной работе:
1. Метод наименьших квадратов для однофакторной линейной регрессии
2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.
Модель: Y = (2/X) + 5; X = 0;

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района
Фактор
Уровень убыточности, %
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
1
93,2
2,3
8,8
2
65,9
26,8
39,4
3
44,6
22,8
26,2
4
18,7
56,6
78,8
5
64,6
16,4
34
6
25,6
26,5
47,6
7
47,2
26
43,7
8
48,2
12,4
23,6
9
64,1
10
19,9
10
30,3
41,7
50
11
28,4
47,9
63,1
12
47,8
32,4
44,2
13
101,3
20,2
11,2
14
31,4
39,6
52,8
15
67,6
18,4
20,2
Нелинейную зависимость принять

1. Метод наименьших квадратов для однофакторной линейной регрессии
Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида:
Ŷ = а + bx или Ŷ = a + bx + ε;
Уравнение вида Ŷ = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X. На графике теоретические значения представляют линию регрессии.
dy
Y
a
dx

X
 
 

Рисунок 1 – Графическая оценка параметров линейной регрессии
Построение линейной регрессии сводится к оценке ее параметров – а и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию. Далее по графику можно определить значения параметров. Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy – приращение результата y, а dx – приращение фактора x, т.е. Ŷ = а + bx.
Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК).
МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:
∑(Yi – Ŷ xi)2 → min
Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной.
εi = Yi – Ŷ xi.
следовательно ∑εi2 → min
εi
a
Y
 
 

X
 
Рисунок 2 – Линия регрессии с минимальной дисперсией остатков
Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю.
Обозначим ∑εi2 через S, тогда

S = ∑ (Y –Ŷ xi)2 =∑(Y-a-bx)2;
Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:
b = (ух – у•x)/(x2-x2).
Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Например, если в функции издержек Ŷ = 3000 + 2x (где x – количество единиц продукции, у – издержки, тыс. грн.) с увеличением объема продукции на 1 ед. издержки производства возрастают в среднем на 2 тыс. грн., т.е. дополнительный прирост продукции на ед. потребует увеличения затрат в среднем на 2 тыс. грн.
Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.
2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.
Модель: Y = (2/X) + 5; X = 0;
Известно, что коэффициент эластичности показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%. Формула расчета коэффициента эластичности:
Э = f′(x) X/Y,
где f′(x) – первая производная, характеризующая соотношение прироста результата и фактора для соответствующей формы связи.

Y = (2/X) + 5,
f′(x) = -2/x2;
Следовательно получим следующее математическое выражение
X2 ((2/x)+5)
-2 X
-2
 
 

2 + 5X
 
Э = =
При заданном значении X = 0 получим, что коэффициент эластичности равен Э = -1.
Допустим, что заданная функция Y = (2/X) + 5 определяет зависимость спроса от цены. В этом случае с ростом цены на 1% спрос снижается в среднем на 1%.

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района
Фактор
Уровень убыточности, %
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
1
93,2
2,3
8,8
2
65,9
26,8
39,4
3
44,6
22,8
26,2
4
18,7
56,6
78,8
5
64,6
16,4
34
6
25,6
26,5
47,6
7
47,2
26
43,7
8
48,2
12,4
23,6
9
64,1
10
19,9
10
30,3
41,7
50
11
28,4
47,9
63,1
12
47,8
32,4
44,2
13
101,3
20,2
11,2
14
31,4
39,6
52,8
15
67,6
18,4
20,2
Нелинейную зависимость принять
Задание №1
Построим линейную зависимость показателя от первого фактора.
Обозначим: сбор овощей с 1 Га как X1, а уровень убыточности как Y.
Сбор овощей с 1 га, ц
Уровень убыточности, %
X1
Y
93,2
8,8
65,9
39,4
44,6
26,2
18,7
78,8
64,6
34
25,6
47,6
47,2
43,7
48,2
23,6
64,1
19,9
30,3
50
28,4
63,1
47,8
44,2
101,3
11,2
31,4
52,8
67,6
20,2
Найдем основные числовые характеристики.
1.                Объем выборки n = 15 – суммарное число наблюдений.
2.                Минимальное значение величины сбора овощей Х=18,7;
Максимальное значение сбора овощей Х=101,3;
Минимальное значение величины уровня убыточности Y=8,8;
Максимальное значение величины уровня убыточности Y=78,8;
3.               
1
n
Среднее значение:
X = ∑xi.
Среднее значение величины сбора овощей X = 778,9/15 = 51,926.
Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.
4.                Дисперсия
1
N - 1
1
N - 1
 

D(X) =         ∑      (Xi – X)2 = 588.35 D(Y) =       ∑(Yi – Y)2 = 385,57.
5.                Среднеквадратическое отклонение:
σx=√588.35 = 24.25, значит среднее сбора овощей в среднем от среднего значения составляет 24,25%.
σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.
Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (51,926; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y линейная (стр.). Для определения тесноты линейной связи найдем коэффициент корреляции:
1
n
 

∑(Xi – X) (Yi – Y)
σx σy
 
rxy =                               = 403.64 / 24.25 х 19,63 = 0,856;

Так как 0,6 ≤ ‌‌rxy ‌<0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.
b1 = rxy σx σy = -0,856 х 19,63. 24,25 = -0,696;
b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70
Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.
Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:
tнабл = b0b0 = 73.70/6.53 = 11.28;
Значимость tнабл равна 0,00000007, т.е. 0,000007%. Так как это значение меньше 5%, то коэффициент b0 статистически значим.
tнабл = b1b1 = -0,696/0,1146 = -6,0716;
Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.
Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:
Y = 73.70 – 0.6960X
После того, как была построена модель, необходимо проверить ее на адекватность.
Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;
Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;
Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;
Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;
Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.
Вывод: Качество модели хорошее
Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:
MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.
MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.
Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.
Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.
Найдем полуширину доверительного интервала в каждой точке выборки Xпр
Отсюда получим, что δ = 23,22.
В приведенной формуле:
σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.
ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.
SX = ∑(xi-x)2 или
SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;
Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).
Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.
Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.
Найдем эластичность Y = 73.70 – 0.6960X.
В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).
В численном выражении это составит:
Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;
Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.
Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.
Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.
Задание №2
Построим нелинейную зависимость показателя от второго фактора.
Обозначим: затраты труда, человеко-часов на 1 ц – X2, а уровень убыточности как Y.
Затраты труда, человеко-часов на 1 ц
Уровень убыточности
X2
Y
2,3
8,8
26,8
39,4
22,8
26,2
56,6
78,8
16,4
34
26,5
47,6
26
43,7
12,4
23,6
10
19,9
41,7
50
47,9
63,1
32,4
44,2
20,2
11,2
39,6
52,8
18,4
20,2
Найдем основные числовые характеристики.
6.                Объем выборки n = 15 – суммарное число наблюдений.
7.                Минимальное значение величины трудоемкости Х2=2,3;
Максимальное значение трудоемкости Х2=56,6;
Минимальное значение величины уровня убыточности Y=8,8;
Максимальное значение величины уровня убыточности Y=78,8;
8.               
1
n
Среднее значение:
X = ∑xi.
Среднее значение величины трудоемкости X2 = 321,8/15 = 26,816.
Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.
9.               
1
N - 1
Дисперсия
1
N - 1
 

D(X) =         ∑      (Xi – X)2 = 254,66 D(Y) =       ∑(Yi – Y)2 = 385,56
10.           Среднеквадратическое отклонение:
σx=√254,66 = 15,95 значит среднее трудоемкости в среднем от среднего значения составляет 15,95%.
σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.
Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (26,816; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y нелинейная (стр.), а именно имеет зависимость .
Путем преобразования нелинейную зависимость приведем к линейной V = b0 + b1U.
Для начала заменим переменные U = x, а V = ln(Y).
Найдем конкретные значения V и U (стр.), затем строим корреляционное поле (стр.) и находим результаты регрессивной статистики.
Для определения тесноты линейной связи V = b0 + b1U найдем коэффициент корреляции:
1
n
 

∑(Ui – U) (Vi – V)
σv σu
 
rvu =                               = 403.64 / 24.25 х 19,63 = 0,856;
Так как 0,6 ≤ ‌‌rxy ‌ <0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.
b1 = rvu σv σu = -0,856 х 19,63. 24,25 = -0,696;
b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70

Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.
Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:
tнабл = b0b0 = 73.70/6.53 = 11.28;
Значимость tнабл равна 0,00000007, т.е. 0,000007%. Так как это значение меньше 5%, то коэффициент b0 статистически значим.
tнабл = b1b1 = -0,696/0,1146 = -6,0716;
Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.
Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:
Y = 73.70 – 0.6960X
После того, как была построена модель, необходимо проверить ее на адекватность.
Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;
Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;
Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;
Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;
Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.
Вывод: Качество модели хорошее
Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:
MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.
MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.
Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.
Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.
Найдем полуширину доверительного интервала в каждой точке выборки Xпр
Отсюда получим, что δ = 23,20.
В приведенной формуле:
σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.
ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.
SX = ∑(xi-x)2 или
SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;
Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).
Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.
Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.
Найдем эластичность Y = 73.70 – 0.6960X.
В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).
В численном выражении это составит:
Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;
Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.
Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.
Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.
Задание №3
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
Уровень убыточности
X1
X2
Y
93,2
2,3
8,8
65,9
26,8
39,4
44,6
22,8
26,2
18,7
56,6
78,8
64,6
16,4
34
25,6
26,5
47,6
47,2
26
43,7
48,2
12,4
23,6
64,1
10
19,9
30,3
41,7
50
28,4
47,9
63,1
47,8
32,4
44,2
101,3
20,2
11,2
31,4
39,6
52,8
67,6
18,4
20,2
Построим линейную зависимость показателя от двух факторов.
Обозначим: сбор овощей с 1 га как X1, затраты труда, человеко-часов на 1 ц – X2, а уровень убыточности как Y.
Найдем основные числовые характеристики.
1.                Объем выборки n = 15 – суммарное число наблюдений
2. Минимальное значение величины сбора овощей Х1=18,7;
Максимальное значение сбора овощей Х1=101,3;
Минимальное значение величины трудоемкости Х2=2,3;
Максимальное значение трудоемкости Х2=56,6;
Минимальное значение величины уровня убыточности Y=8,8;
Максимальное значение величины уровня убыточности Y=78,8;
3.                Среднее значение:
1
n
 

X = ∑xi.
Среднее значение величины сбора овощей X = 778,9/15 = 51,926.
Среднее значение величины трудоемкости X2 = 321,8/15 = 26,816.
Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.
4.                Дисперсия
1
N - 1
1
N - 1
 

D(X) =         ∑      (Xi – X)2 = 254,66 D(Y) =       ∑(Yi – Y)2 = 385,56
5.                Среднеквадратическое отклонение:
σx=√254,66 = 15,95 значит среднее трудоемкости в среднем от среднего значения составляет 15,95%.
σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.
Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (26,816; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y нелинейная (стр.), а именно имеет зависимость .
Путем преобразования нелинейную зависимость приведем к линейной V = b0 + b1U.
Для начала заменим переменные U = x, а V = ln(Y).
Найдем конкретные значения V и U (стр.), затем строим корреляционное поле (стр.) и находим результаты регрессивной статистики.
Для определения тесноты линейной связи V = b0 + b1U найдем коэффициент корреляции:
1
n
 

∑(Ui – U) (Vi – V)
σv σu
 
rvu =                               = 403.64 / 24.25 х 19,63 = 0,856;
Так как 0,6 ≤ ‌‌rxy ‌ <0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.
и1 = кчн σн. σч = -0,856 х 19,63. 24,25 = -0,696;
b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70
Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.
Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:
tнабл = b0b0 = 73.70/6.53 = 11.28;

tнабл = b1b1 = -0,696/0,1146 = -6,0716;
Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.
Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:
Y = 73.70 – 0.6960X
После того, как была построена модель, необходимо проверить ее на адекватность.
Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;
Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;
Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;
Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;
Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.
Вывод: Качество модели хорошее
Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:
MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.
MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.
Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.
Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.
Найдем полуширину доверительного интервала в каждой точке выборки Xпр
SX
пр-Х)2
n
1
8237.46
(50 – 51.92)2
15
1
 

δ = σе ty 1 + + = 10.4 × 2.016 1 + +
Отсюда получим, что δ = 23,20.
В приведенной формуле:
σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.
ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.
SX = ∑(xi-x)2 или
SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;
Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).
Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.
Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.
Найдем эластичность Y = 73.70 – 0.6960X.
В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).
В численном выражении это составит:
Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;
Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.
Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.
Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.

1. Реферат Идеи Генри Форда
2. Научная работа Особливості методики розвязування фізичних задач у 78 класах 12річної школи
3. Реферат на тему Immunology Of Aids Essay Research Paper TheImmunology
4. Курсовая Залог недвижимости ипотека форма договора, регистрация, особенности правового регулирования
5. Реферат Аппаратная часть ПО
6. Реферат на тему Beowulf Essay Research Paper Beowulf Heroes
7. Сочинение на тему О великой отчественной войне «людям память нужна как бы трудно им ни было с нею... »
8. Реферат Історико-архітектурний огляд Візантії
9. Реферат Эпоха Просвещения и развитие научного знания
10. Реферат на тему Wonderful Life Essay Research Paper You have