Контрольная работа

Контрольная работа на тему Метод наименьших квадратов для однофакторной линейной регрессии

Работа добавлена на сайт bukvasha.net: 2014-11-16

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ
«ЭКОНОМЕТРИКА»

 

 

 

 

2007


Задания к контрольной работе:
1. Метод наименьших квадратов для однофакторной линейной регрессии
2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.
Модель: Y = (2/X) + 5; X = 0;

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района
Фактор
Уровень убыточности, %
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
1
93,2
2,3
8,8
2
65,9
26,8
39,4
3
44,6
22,8
26,2
4
18,7
56,6
78,8
5
64,6
16,4
34
6
25,6
26,5
47,6
7
47,2
26
43,7
8
48,2
12,4
23,6
9
64,1
10
19,9
10
30,3
41,7
50
11
28,4
47,9
63,1
12
47,8
32,4
44,2
13
101,3
20,2
11,2
14
31,4
39,6
52,8
15
67,6
18,4
20,2
Нелинейную зависимость принять

1. Метод наименьших квадратов для однофакторной линейной регрессии
Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида:
Ŷ = а + bx или Ŷ = a + bx + ε;
Уравнение вида Ŷ = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X. На графике теоретические значения представляют линию регрессии.
dy
Y
a
dx

X
 
 

Рисунок 1 – Графическая оценка параметров линейной регрессии
Построение линейной регрессии сводится к оценке ее параметров – а и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию. Далее по графику можно определить значения параметров. Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy – приращение результата y, а dx – приращение фактора x, т.е. Ŷ = а + bx.
Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК).
МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:
∑(Yi – Ŷ xi)2 → min
Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной.
εi = Yi – Ŷ xi.
следовательно ∑εi2 → min
εi
a
Y
 
 

X
 
Рисунок 2 – Линия регрессии с минимальной дисперсией остатков
Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю.
Обозначим ∑εi2 через S, тогда

S = ∑ (Y –Ŷ xi)2 =∑(Y-a-bx)2;
Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:
b = (ух – у•x)/(x2-x2).
Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Например, если в функции издержек Ŷ = 3000 + 2x (где x – количество единиц продукции, у – издержки, тыс. грн.) с увеличением объема продукции на 1 ед. издержки производства возрастают в среднем на 2 тыс. грн., т.е. дополнительный прирост продукции на ед. потребует увеличения затрат в среднем на 2 тыс. грн.
Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.
2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.
Модель: Y = (2/X) + 5; X = 0;
Известно, что коэффициент эластичности показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%. Формула расчета коэффициента эластичности:
Э = f′(x) X/Y,
где f′(x) – первая производная, характеризующая соотношение прироста результата и фактора для соответствующей формы связи.

Y = (2/X) + 5,
f′(x) = -2/x2;
Следовательно получим следующее математическое выражение
X2 ((2/x)+5)
-2 X
-2
 
 

2 + 5X
 
Э = =
При заданном значении X = 0 получим, что коэффициент эластичности равен Э = -1.
Допустим, что заданная функция Y = (2/X) + 5 определяет зависимость спроса от цены. В этом случае с ростом цены на 1% спрос снижается в среднем на 1%.

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района
Фактор
Уровень убыточности, %
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
1
93,2
2,3
8,8
2
65,9
26,8
39,4
3
44,6
22,8
26,2
4
18,7
56,6
78,8
5
64,6
16,4
34
6
25,6
26,5
47,6
7
47,2
26
43,7
8
48,2
12,4
23,6
9
64,1
10
19,9
10
30,3
41,7
50
11
28,4
47,9
63,1
12
47,8
32,4
44,2
13
101,3
20,2
11,2
14
31,4
39,6
52,8
15
67,6
18,4
20,2
Нелинейную зависимость принять
Задание №1
Построим линейную зависимость показателя от первого фактора.
Обозначим: сбор овощей с 1 Га как X1, а уровень убыточности как Y.
Сбор овощей с 1 га, ц
Уровень убыточности, %
X1
Y
93,2
8,8
65,9
39,4
44,6
26,2
18,7
78,8
64,6
34
25,6
47,6
47,2
43,7
48,2
23,6
64,1
19,9
30,3
50
28,4
63,1
47,8
44,2
101,3
11,2
31,4
52,8
67,6
20,2
Найдем основные числовые характеристики.
1.                Объем выборки n = 15 – суммарное число наблюдений.
2.                Минимальное значение величины сбора овощей Х=18,7;
Максимальное значение сбора овощей Х=101,3;
Минимальное значение величины уровня убыточности Y=8,8;
Максимальное значение величины уровня убыточности Y=78,8;
3.               
1
n
Среднее значение:
X = ∑xi.
Среднее значение величины сбора овощей X = 778,9/15 = 51,926.
Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.
4.                Дисперсия
1
N - 1
1
N - 1
 

D(X) =         ∑      (Xi – X)2 = 588.35 D(Y) =       ∑(Yi – Y)2 = 385,57.
5.                Среднеквадратическое отклонение:
σx=√588.35 = 24.25, значит среднее сбора овощей в среднем от среднего значения составляет 24,25%.
σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.
Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (51,926; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y линейная (стр.). Для определения тесноты линейной связи найдем коэффициент корреляции:
1
n
 

∑(Xi – X) (Yi – Y)
σx σy
 
rxy =                               = 403.64 / 24.25 х 19,63 = 0,856;

Так как 0,6 ≤ ‌‌rxy ‌<0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.
b1 = rxy σx σy = -0,856 х 19,63. 24,25 = -0,696;
b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70
Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.
Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:
tнабл = b0b0 = 73.70/6.53 = 11.28;
Значимость tнабл равна 0,00000007, т.е. 0,000007%. Так как это значение меньше 5%, то коэффициент b0 статистически значим.
tнабл = b1b1 = -0,696/0,1146 = -6,0716;
Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.
Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:
Y = 73.70 – 0.6960X
После того, как была построена модель, необходимо проверить ее на адекватность.
Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;
Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;
Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;
Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;
Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.
Вывод: Качество модели хорошее
Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:
MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.
MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.
Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.
Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.
Найдем полуширину доверительного интервала в каждой точке выборки Xпр
Отсюда получим, что δ = 23,22.
В приведенной формуле:
σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.
ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.
SX = ∑(xi-x)2 или
SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;
Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).
Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.
Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.
Найдем эластичность Y = 73.70 – 0.6960X.
В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).
В численном выражении это составит:
Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;
Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.
Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.
Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.
Задание №2
Построим нелинейную зависимость показателя от второго фактора.
Обозначим: затраты труда, человеко-часов на 1 ц – X2, а уровень убыточности как Y.
Затраты труда, человеко-часов на 1 ц
Уровень убыточности
X2
Y
2,3
8,8
26,8
39,4
22,8
26,2
56,6
78,8
16,4
34
26,5
47,6
26
43,7
12,4
23,6
10
19,9
41,7
50
47,9
63,1
32,4
44,2
20,2
11,2
39,6
52,8
18,4
20,2
Найдем основные числовые характеристики.
6.                Объем выборки n = 15 – суммарное число наблюдений.
7.                Минимальное значение величины трудоемкости Х2=2,3;
Максимальное значение трудоемкости Х2=56,6;
Минимальное значение величины уровня убыточности Y=8,8;
Максимальное значение величины уровня убыточности Y=78,8;
8.               
1
n
Среднее значение:
X = ∑xi.
Среднее значение величины трудоемкости X2 = 321,8/15 = 26,816.
Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.
9.               
1
N - 1
Дисперсия
1
N - 1
 

D(X) =         ∑      (Xi – X)2 = 254,66 D(Y) =       ∑(Yi – Y)2 = 385,56
10.           Среднеквадратическое отклонение:
σx=√254,66 = 15,95 значит среднее трудоемкости в среднем от среднего значения составляет 15,95%.
σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.
Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (26,816; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y нелинейная (стр.), а именно имеет зависимость .
Путем преобразования нелинейную зависимость приведем к линейной V = b0 + b1U.
Для начала заменим переменные U = x, а V = ln(Y).
Найдем конкретные значения V и U (стр.), затем строим корреляционное поле (стр.) и находим результаты регрессивной статистики.
Для определения тесноты линейной связи V = b0 + b1U найдем коэффициент корреляции:
1
n
 

∑(Ui – U) (Vi – V)
σv σu
 
rvu =                               = 403.64 / 24.25 х 19,63 = 0,856;
Так как 0,6 ≤ ‌‌rxy ‌ <0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.
b1 = rvu σv σu = -0,856 х 19,63. 24,25 = -0,696;
b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70

Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.
Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:
tнабл = b0b0 = 73.70/6.53 = 11.28;
Значимость tнабл равна 0,00000007, т.е. 0,000007%. Так как это значение меньше 5%, то коэффициент b0 статистически значим.
tнабл = b1b1 = -0,696/0,1146 = -6,0716;
Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.
Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:
Y = 73.70 – 0.6960X
После того, как была построена модель, необходимо проверить ее на адекватность.
Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;
Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;
Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;
Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;
Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.
Вывод: Качество модели хорошее
Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:
MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.
MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.
Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.
Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.
Найдем полуширину доверительного интервала в каждой точке выборки Xпр
Отсюда получим, что δ = 23,20.
В приведенной формуле:
σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.
ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.
SX = ∑(xi-x)2 или
SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;
Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).
Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.
Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.
Найдем эластичность Y = 73.70 – 0.6960X.
В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).
В численном выражении это составит:
Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;
Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.
Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.
Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.
Задание №3
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
Уровень убыточности
X1
X2
Y
93,2
2,3
8,8
65,9
26,8
39,4
44,6
22,8
26,2
18,7
56,6
78,8
64,6
16,4
34
25,6
26,5
47,6
47,2
26
43,7
48,2
12,4
23,6
64,1
10
19,9
30,3
41,7
50
28,4
47,9
63,1
47,8
32,4
44,2
101,3
20,2
11,2
31,4
39,6
52,8
67,6
18,4
20,2
Построим линейную зависимость показателя от двух факторов.
Обозначим: сбор овощей с 1 га как X1, затраты труда, человеко-часов на 1 ц – X2, а уровень убыточности как Y.
Найдем основные числовые характеристики.
1.                Объем выборки n = 15 – суммарное число наблюдений
2. Минимальное значение величины сбора овощей Х1=18,7;
Максимальное значение сбора овощей Х1=101,3;
Минимальное значение величины трудоемкости Х2=2,3;
Максимальное значение трудоемкости Х2=56,6;
Минимальное значение величины уровня убыточности Y=8,8;
Максимальное значение величины уровня убыточности Y=78,8;
3.                Среднее значение:
1
n
 

X = ∑xi.
Среднее значение величины сбора овощей X = 778,9/15 = 51,926.
Среднее значение величины трудоемкости X2 = 321,8/15 = 26,816.
Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.
4.                Дисперсия
1
N - 1
1
N - 1
 

D(X) =         ∑      (Xi – X)2 = 254,66 D(Y) =       ∑(Yi – Y)2 = 385,56
5.                Среднеквадратическое отклонение:
σx=√254,66 = 15,95 значит среднее трудоемкости в среднем от среднего значения составляет 15,95%.
σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.
Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (26,816; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y нелинейная (стр.), а именно имеет зависимость .
Путем преобразования нелинейную зависимость приведем к линейной V = b0 + b1U.
Для начала заменим переменные U = x, а V = ln(Y).
Найдем конкретные значения V и U (стр.), затем строим корреляционное поле (стр.) и находим результаты регрессивной статистики.
Для определения тесноты линейной связи V = b0 + b1U найдем коэффициент корреляции:
1
n
 

∑(Ui – U) (Vi – V)
σv σu
 
rvu =                               = 403.64 / 24.25 х 19,63 = 0,856;
Так как 0,6 ≤ ‌‌rxy ‌ <0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.
и1 = кчн σн. σч = -0,856 х 19,63. 24,25 = -0,696;
b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70
Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.
Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:
tнабл = b0b0 = 73.70/6.53 = 11.28;

tнабл = b1b1 = -0,696/0,1146 = -6,0716;
Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.
Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:
Y = 73.70 – 0.6960X
После того, как была построена модель, необходимо проверить ее на адекватность.
Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;
Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;
Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;
Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;
Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.
Вывод: Качество модели хорошее
Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:
MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.
MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.
Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.
Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.
Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.
Найдем полуширину доверительного интервала в каждой точке выборки Xпр
SX
пр-Х)2
n
1
8237.46
(50 – 51.92)2
15
1
 

δ = σе ty 1 + + = 10.4 × 2.016 1 + +
Отсюда получим, что δ = 23,20.
В приведенной формуле:
σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.
ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.
SX = ∑(xi-x)2 или
SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;
Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).
Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.
Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.
Найдем эластичность Y = 73.70 – 0.6960X.
В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).
В численном выражении это составит:
Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;
Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.
Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.
Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.

1. Реферат на тему Позакласна та позашкільна виховна робота з народознавства
2. Реферат Логика. Ответы
3. Реферат Красноплечий чёрный трупиал
4. Диплом на тему Особенности воспитания осознанного правильного отношения к природе дошкольников 4 5 лет
5. Реферат на тему Morgana Essay Research Paper Morgana fe lay
6. Курсовая на тему Отчет о прибылях и убытках и его значение
7. Сочинение на тему Публий Теренций Афр
8. Диплом Разработка системы управления запасами в логистике закупок строительной организации
9. Курсовая Природа геохимической зональности вкрест простирания Камчатской островной дуги
10. Курсовая Совершенствование управления персоналом 2