Контрольная работа на тему Кинетика действия ферментов
Работа добавлена на сайт bukvasha.net: 2014-11-17Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Кинетика действия ферментов
Кинетические исследования ферментативных реакций необходимы не только для количественного определения ферментов и сравнения скоростей их функционирования, но, в еще большей степени, для расшифровки механизмов ферментативных реакций. В этих целях, прежде всего, необходимо уметь корректно вычислять кинетические параметры ферментативных реакций, оценивать конкурентный или неконкурентный характер действия ингибиторов. Рассмотрим основные уравнения, описывающие ферментативную кинетику и способы вычислений. Основное внимание будет уделено не строгости математического вывода уравнений, а правильному их использованию для получения достоверных результатов.
При выводе кинетических уравнений количественно характеризующих ферментативную активность, обычно делают следующие допущения.
1. Фермент и субстрат образуют фермент-субстратный комплекс за счет сил физической природы. Из этого комплекса в дальнейшем освобождаются фермент и продукт. Таким образом, химической реакцией является только второй этап – распад фермент-субстратного комплекса:
2. Концентрация субстрата обычно значительно выше концентрации фермента. Поэтому при рассмотрении начальных скоростей реакции, когда
3. Константа диссоциации определяется соотношением:
концентрация продукта очень низка, обратимостью второй стадии можно пренебречь. Следовательно, – const., а скорость образования продукта равна:
Поскольку общая концентрация фермента равна сумме концентраций свободного фермента и фермента, связанного в комплекс, то + или = –.
Подставляя значение [Е] = [Е0] — [ES] из (4), получаем:
С другой стороны, из уравнения следует:
В уравнении выражение к+2 можно рассматривать как максимальную скорость, достигаемую, когда концентрация фермент-субстратного комплекса численно равна общей концентрации фермента. Следовательно:
Выражение есть не что иное, как уравнение Михаэлиса–Ментен для ферментативной кинетики, а величина Кга = Ks представляет собой меру сродства фермента к субстрату. Численно она равна такой концентрации субстрата, при которой начальная скорость ферментативной реакции составляет половину максимальной скорости. Уравнение графически выражается гиперболой.
Для практического определения кинетических параметров этот график неудобен, к тому же требует использования концентраций субстрата, «насыщающих» фермент, что не всегда достижимо при ограниченной растворимости субстрата. Поэтому обычно стремятся преобразовать уравнение Михаэлиса–Ментен в такую форму, чтобы графически оно изображалось прямой линией. Чаще всего для этого используют метод Лайнуивера–Берка, представляя уравнение Михаэлиса–Ментен в виде уравнения прямой линии:
Последнее выражение называют уравнением Лайнуивера–Берка и для расчета кинетических параметров используют график, построенный в координатах: 1/V против 1/S. В результате получается прямая, отсекающая на оси ординат отрезок, равный 1/V, а на продолжении оси абсцисс отрезок, равный – 1/Кга. Однако следует отметить, что при использовании графика Лайнуивера–Берка точки в области высоких концентраций субстрата располагаются слишком густо, а положение прямой линии во многом зависит от точек в области низких концентраций субстрата, где определение скорости менее надежно. Кроме того, реальные экспериментальные данные не всегда адекватно аппроксимируются в виде прямой линии.
Поэтому предложено еще несколько приемов для определения кинетических параметров. Метод Эди–Хофсти также основан на преобразовании уравнения Михаэлиса–Ментен. Умножив обе части уравнения на и преобразовав, получим:
График этого уравнения в координатах V против V/S представляет собой прямую линию, отсекающую на осях ординат и абсцисс отрезки, равные VmaxH Vm>x/ Кго соответственно.
В некоторых случаях для вычисления кинетических параметров удобнее использовать метод Эйзенталя и Корниш–Боуден, основанный на преобразованном уравнении Михаэлиса–Ментен:
В этом случае для каждого значения V и S строится прямая в координатах V и S. Точка пересечения всех этих прямых имеет координаты: Vmax и Кт.
Ингибирование ферментов
Изучение подавления активности ферментов служит одним из способов расшифровки механизма их действия. Подходом к решению последней задачи является изучение специфичности действия ферментов. В свою очередь, это требует корректного измерения кинетических параметров в присутствии изучаемого аналога субстрата. Рассмотрим способы определения характера взаимоотношений субстратов, их аналогов и ингибиторов ферментативной активности путем вычисления ряда кинетических параметров.
При этом, если константа диссоциации комплекса Ks = Km равна:
Ингибиторы ферментов можно разделить на две основные группы: обратимые и необратимые. После удаления ингибитора первого типа активность фермента восстанавливается; во втором случае ингибитор удалить не удается или активность фермента не восстанавливается даже после удаления ингибитора. Необратимое ингибирование достигает максимума, когда весь фермент связан с ингибитором. Обратимое ингибирование достигает состояния равновесия, положение которого определяется константой ингибирования, характеризующей сродство фермента к ингибитору. Схема обратимого ингибирования приведена ниже:
При конкурентном ингибировании субстрат и ингибитор связываются с одним и тем же активным центром фермента. В присутствии ингибитора снижается сродство фермента к субстрату. Величина не изменяется, так как при «насыщающей» концентрации субстрат вытесняет ингибитор из комплекса с ферментом.
При неконкурентном ингибировании субстрат и ингибитор связываются с разными центрами фермента. При этом величина Кга не изменяется, а величина Vmax снижается.
Возможны также промежуточные или альтернативные случаи, например, когда ингибитор связывается не с ферментом, а с фермент-субстратным комплексом, как в случае бесконкурентного ингибирования, при котором изменяются оба кинетических параметра.
Для определения типа ингибирования обычно используют график Лайнуивера–Берка, полученный для данного субстрата в отсутствие и в присутствии ингибитора.
При конкурентном ингибировании, если определена величина Кт в присутствии ингибитора, можно рассчитать константу ингибирования по следующей формуле:
При неконкурентном ингибировании с помощью определения измененной величины V можно рассчитать К. по следующей формуле:
Все биохимические процессы в клетке взаимосвязаны и взаимозависимы, тем не менее часть из них преимущественно выполняет функцию построения клеточного материала, а часть – снабжения источниками энергии этих «строительных работ». Поэтому принято разделять биохимические процессы на два основных типа: ассимиляционные, называемые анаболизмом, включающим синтез низкомолекулярных предшественников и построения из них молекул биополимеров, и диссимиляционные, называемые катаболизмом, состоящим в обеспечение источника энергии, «энергетического привода», приводящего в движение анаболизм.
Рассмотрим основные механизмы процессов трансформации энергии в клетке, т.е. механизмы катаболических процессов.
Пути и механизмы преобразования энергии в живых системах
Главная задача энергетического метаболизма – аккумуляция энергии, полученной в результате окислительно-восстановительных превращений субстратов в такую форму, которая может быть использована для роста клеток и осуществления всех их функций.
Основными формами аккумуляции энергии в клетках являются трансмембранная разность электрохимических потенциалов ионов, а также «макроэргические» химические соединения.
В клетках, как и в неживых системах, самопроизвольно протекают только те химические процессы, которые приводят к уменьшению свободной энергии системы, т.е. той доли общей энергии, которая может быть превращена в работу. Такие реакции называют экзэргоническими. Напротив, если ДОО, то реакция не может протекать самопроизвольно, так как требует притока энергии.
Уравнение Гиббса описывает взаимосвязь между свободной энергией, энтальпией и энтропией.
Кратко рассмотрим основные уравнения химической термодинамики.
где ДН – изменение энтальпии; AS – изменение энтропии.
При реакциях в растворах изменение свободной энергии определяется уравнением:
где R – газовая постоянная; Т – абсолютная температура;
– константа равновесия химической реакции.
При стандартных условиях каждая химическая реакция характеризуется свободной энергией, вычисляемой по формуле:
AG° = -2,303 RT lgK или AG = -1,363 lgKeq ккал/моль-1 при 25C.
При окислительно-восстановительных реакциях изменение свободной энергии определяется уравнением:
где п – количество перенесенных электронов:
F – число Фарадея: заряд одного моля электронов; Е «' – стандартный окислительно-восстановительный потенциал для окислителя и восстановителя, В.
Эти уравнения удобно применять при расчетах. Например, можно подсчитать, сколько энергии выделяется в результате дыхания;
Таким образом, AG = 2 • 23062 кал • моль-1 - В-[0,815 - (-0,32)] В = 52351 кал/моль.
Классификация энергетических процессов
Энергетические процессы в нефототрофных организмах подразделяются на аэробные и анаэробные в зависимости от участия или не участия в них молекулярного кислорода.
Аэробное дыхание – энергетический процесс, при котором конечным акцептором электронов окисляемого субстрата, передающихся по электрон-транспортной цепи, является молекулярный кислород.
В анаэробном дыхании конечными акцепторами электронов становятся другие окислители: нитрат-, сульфат-анионы, катионы металлов, органические вещества.
Брожение – энергетический процесс, при котором электроны передаются непосредственно от донора к акцептору без участия электрон-транспортной цепи: гликолиз, молочнокислое брожение и др.
Перечисленные процессы можно классифицировать на основе механизма образования АТР, являющегося основным макроэр-гическим соединением, запасающим энергию в своих химических связях. Различают образование АТР в результате переноса электронов по дыхательной цепи – окислительное фосфорилирование, а также образование АТР в процессах, не связанных с переносом электронов по цепи – субстратное фосфорилирование. В настоящее время первый тип процессов правильнее называть образованием АТР за счет трансформации энергии трансмембранного электрохимического потенциала или сокращенно – мембранным фос-форилированием.
У фототрофных организмов основным способом запасания энергии является фо-тофосфорилирование, т.е. образование АТР за счет трансформации энергии ТЭП, формируемого путем утилизации световой энергии.
Роль АТР и ТЭП в запасании энергии
АТР был открыт в 1929 г. К. Фиске и И. Суббароу, а в 1930 г. В. Энгельгард показал возможность его образования в процессе переноса электронов по дыхательной цепи. В 1941 г. Ф. Липман выдвинул концепцию, рассматривающую АТР как «конвертируемую энергетическую валюту».
Почему в процессе эволюции именно АТР выпала такая роль? Для этого есть несколько причин, обусловленных свойствами данного соединения.
Если необходима энергия ненамного большая, чем 10 ккал/моль — по реакции Б. При необходимости энергии, значительно превышающей 10 ккал/моль, используется несколько молекул АТР в одном процессе. Иногда дополнительная энергия выделяется при сорбции АТР на ферменте.
1. Изменение свободной энергии при гидролизе фосфоангидридных связей довольно велико – около 10 ккал / моль. Когда необходима энергия меньшая или равная 10 ккал / моль, гидролиз идет по
2. Скорость неферментативного гидролиза АТР мала, т.е. молекула химически стабильна, и запасенная в ней энергия не рассеивается в виде тепла при спонтанном гидролизе. Однако замена Р на As резко повышает лабильность. Этим обстоятельством объясняется ингибиторное действие арсената на энергетический метаболизм: конкурируя с ортофосфатом, он включается вместо него в АТР, а образовавшееся соединение подвергается спонтанному гидролизу.
3. Малые размеры молекулы АТР позволяют ей свободно проникать в различные участки клетки, в то же время цитоплазматическая мембрана для нее непроницаема, следовательно, «утечка» АТР не происходит.
4. «Выбор» АТР как нуклеотида был вызван, по-видимому, необходимостью взаимодействия с белками, так как взаимодействие белков с моно- и полинуклеотидами лежит в основе жизнедеятельности.
5. «Выбор» в качестве пуриновой части молекулы аденозина, вероятно, обусловлен его промежуточными электроннодонорными и акцепторными свойствами, что обеспечивает взаимодействие с широким кругом партнеров. Кроме того, среди азотистых оснований аденин наиболее устойчив к действию ультрафиолета, что могло иметь значение на ранних этапах формирования живых систем.
При описании механизма образования АТР путем мембранного фосфорилирования в настоящее время общепринятой является хемиосмотическая теория сопряжения окисления и фосфорилирования, предложенная П. Митчеллом в 1961 г. Согласно этой теории в «сопрягающих» мембранах локализованы два типа систем, способных к транслокации протонов: электрон-транспортная цепь и Н+-АТРаза, координированная работа которых приводит к формированию трансмембранной разности электрохимического потенциала протонов, – а затем АТР. Таким образом, первичной формой запасания энергии при дыхании является ТЭП.
Количество энергии, запасенной в форме ТЭП, прямо пропорционально количеству транслоцированных протонов: AG – пДцн+ и складывается из двух составляющих: химической и электрической:
где 2,3RT/ F = Z = 59 мВ при 25°С;
Др – протондвижущая сила.
Для образования АТР необходима AG около 250 мВ. Примерно такая величина ТЭП и создается на мембранах митохондрий и прокариотических клеток, хотя вклад каждой из составляющих различен. Например, у ацидофильных бактерий ТЭП практически полностью состоит из ЛрН, а у алкалофилов – из Л<р.
Важно отметить, что АТРазный комплекс может не только утилизировать ТЭП с образованием АТР, но и формировать его за счет гидролиза АТР, осуществляя таким образом взаимное превращение этих двух форм энергии.
Первичные и вторичные генераторы ТЭП
Первичные генераторы используют энергию света или химических связей субстратов для формирования ТЭП. АТР в этих процессах не участвует. К первичным генераторам ТЭП относятся:
дыхательная цепь, содержащая от 1 до 3 протонных насосов;
фотосинтетическая цепь, содержащая 1–2 протонных насоса;
бактериродопсин галофильных архебактерий;
системы экскреции кислых продуктов брожения у бактерий в неионизированной форме.
Вторичные генераторы используют энергию АТР для формирования ТЭП. Они представляют собой Н+-АТФазы, основной функцией которых является не синтез, а гидролиз АТР. Такие АТРазы характерны для цитоплазматической мембраны анаэробных бактерий, плаз-малеммы клеток эукариот, мембраны вакуолей растений и грибов.
Таким образом, основные пути трансформации энергии в клетке можно суммировать в виде схемы.
Энергетический заряд и энергетическая эффективность роста
Количество АТР, образующегося в разных метаболических путях, различается во много раз. Так, при катаболизме глюкозы по гликолитическому пути с последующим включением цикла трикарбоновых кислот и дыхания образуется 38 моль АТР на моль глюкозы.
У некоторых бактерий в дыхательной цепи существует лишь два пункта сопряжения и количество образованного АТР составит 26 моль на моль глюкозы. Сам по себе гликолиз в анаэробных условиях приводит к образованию лишь 2 молей АТР на моль глюкозы.
Не только общее количество синтезированного АТР, но и расход АТР на образование единицы биомассы сильно зависит от типа метаболизма. Так, например, при выращивании бактерий на среде с глюкозой 1 моль АТР обеспечивает образование 27 г. биомассы, тогда как на среде с С02 1 моль АТР – только 5 г биомассы. При различных типах анаэробных брожений выход биомассы на моль синтезированного АТР все же достаточно постоянен и составляет около 10. Этот показатель получил обозначение YATp и используется для характеристики роста наряду с экономическим коэффициентом.
Определенная часть клеточной энергии затрачивается на процессы, не связанные непосредственно с ростом. Их называют процессами поддержания жизнедеятельности. Затраты на поддержание жизнедеятельности составляют 10–20% всех энергетических расходов.
Кинетические исследования ферментативных реакций необходимы не только для количественного определения ферментов и сравнения скоростей их функционирования, но, в еще большей степени, для расшифровки механизмов ферментативных реакций. В этих целях, прежде всего, необходимо уметь корректно вычислять кинетические параметры ферментативных реакций, оценивать конкурентный или неконкурентный характер действия ингибиторов. Рассмотрим основные уравнения, описывающие ферментативную кинетику и способы вычислений. Основное внимание будет уделено не строгости математического вывода уравнений, а правильному их использованию для получения достоверных результатов.
При выводе кинетических уравнений количественно характеризующих ферментативную активность, обычно делают следующие допущения.
1. Фермент и субстрат образуют фермент-субстратный комплекс за счет сил физической природы. Из этого комплекса в дальнейшем освобождаются фермент и продукт. Таким образом, химической реакцией является только второй этап – распад фермент-субстратного комплекса:
2. Концентрация субстрата обычно значительно выше концентрации фермента. Поэтому при рассмотрении начальных скоростей реакции, когда
3. Константа диссоциации определяется соотношением:
концентрация продукта очень низка, обратимостью второй стадии можно пренебречь. Следовательно, – const., а скорость образования продукта равна:
Поскольку общая концентрация фермента равна сумме концентраций свободного фермента и фермента, связанного в комплекс, то + или = –.
Подставляя значение [Е] = [Е0] — [ES] из (4), получаем:
С другой стороны, из уравнения следует:
В уравнении выражение к+2 можно рассматривать как максимальную скорость, достигаемую, когда концентрация фермент-субстратного комплекса численно равна общей концентрации фермента. Следовательно:
Выражение есть не что иное, как уравнение Михаэлиса–Ментен для ферментативной кинетики, а величина Кга = Ks представляет собой меру сродства фермента к субстрату. Численно она равна такой концентрации субстрата, при которой начальная скорость ферментативной реакции составляет половину максимальной скорости. Уравнение графически выражается гиперболой.
Для практического определения кинетических параметров этот график неудобен, к тому же требует использования концентраций субстрата, «насыщающих» фермент, что не всегда достижимо при ограниченной растворимости субстрата. Поэтому обычно стремятся преобразовать уравнение Михаэлиса–Ментен в такую форму, чтобы графически оно изображалось прямой линией. Чаще всего для этого используют метод Лайнуивера–Берка, представляя уравнение Михаэлиса–Ментен в виде уравнения прямой линии:
Последнее выражение называют уравнением Лайнуивера–Берка и для расчета кинетических параметров используют график, построенный в координатах: 1/V против 1/S. В результате получается прямая, отсекающая на оси ординат отрезок, равный 1/V, а на продолжении оси абсцисс отрезок, равный – 1/Кга. Однако следует отметить, что при использовании графика Лайнуивера–Берка точки в области высоких концентраций субстрата располагаются слишком густо, а положение прямой линии во многом зависит от точек в области низких концентраций субстрата, где определение скорости менее надежно. Кроме того, реальные экспериментальные данные не всегда адекватно аппроксимируются в виде прямой линии.
Поэтому предложено еще несколько приемов для определения кинетических параметров. Метод Эди–Хофсти также основан на преобразовании уравнения Михаэлиса–Ментен. Умножив обе части уравнения на и преобразовав, получим:
График этого уравнения в координатах V против V/S представляет собой прямую линию, отсекающую на осях ординат и абсцисс отрезки, равные VmaxH Vm>x/ Кго соответственно.
В некоторых случаях для вычисления кинетических параметров удобнее использовать метод Эйзенталя и Корниш–Боуден, основанный на преобразованном уравнении Михаэлиса–Ментен:
В этом случае для каждого значения V и S строится прямая в координатах V и S. Точка пересечения всех этих прямых имеет координаты: Vmax и Кт.
|
Ингибирование ферментов
Изучение подавления активности ферментов служит одним из способов расшифровки механизма их действия. Подходом к решению последней задачи является изучение специфичности действия ферментов. В свою очередь, это требует корректного измерения кинетических параметров в присутствии изучаемого аналога субстрата. Рассмотрим способы определения характера взаимоотношений субстратов, их аналогов и ингибиторов ферментативной активности путем вычисления ряда кинетических параметров.
При этом, если константа диссоциации комплекса Ks = Km равна:
Ингибиторы ферментов можно разделить на две основные группы: обратимые и необратимые. После удаления ингибитора первого типа активность фермента восстанавливается; во втором случае ингибитор удалить не удается или активность фермента не восстанавливается даже после удаления ингибитора. Необратимое ингибирование достигает максимума, когда весь фермент связан с ингибитором. Обратимое ингибирование достигает состояния равновесия, положение которого определяется константой ингибирования, характеризующей сродство фермента к ингибитору. Схема обратимого ингибирования приведена ниже:
При конкурентном ингибировании субстрат и ингибитор связываются с одним и тем же активным центром фермента. В присутствии ингибитора снижается сродство фермента к субстрату. Величина не изменяется, так как при «насыщающей» концентрации субстрат вытесняет ингибитор из комплекса с ферментом.
При неконкурентном ингибировании субстрат и ингибитор связываются с разными центрами фермента. При этом величина Кга не изменяется, а величина Vmax снижается.
Возможны также промежуточные или альтернативные случаи, например, когда ингибитор связывается не с ферментом, а с фермент-субстратным комплексом, как в случае бесконкурентного ингибирования, при котором изменяются оба кинетических параметра.
Для определения типа ингибирования обычно используют график Лайнуивера–Берка, полученный для данного субстрата в отсутствие и в присутствии ингибитора.
При конкурентном ингибировании, если определена величина Кт в присутствии ингибитора, можно рассчитать константу ингибирования по следующей формуле:
При неконкурентном ингибировании с помощью определения измененной величины V можно рассчитать К. по следующей формуле:
Все биохимические процессы в клетке взаимосвязаны и взаимозависимы, тем не менее часть из них преимущественно выполняет функцию построения клеточного материала, а часть – снабжения источниками энергии этих «строительных работ». Поэтому принято разделять биохимические процессы на два основных типа: ассимиляционные, называемые анаболизмом, включающим синтез низкомолекулярных предшественников и построения из них молекул биополимеров, и диссимиляционные, называемые катаболизмом, состоящим в обеспечение источника энергии, «энергетического привода», приводящего в движение анаболизм.
Рассмотрим основные механизмы процессов трансформации энергии в клетке, т.е. механизмы катаболических процессов.
Пути и механизмы преобразования энергии в живых системах
Главная задача энергетического метаболизма – аккумуляция энергии, полученной в результате окислительно-восстановительных превращений субстратов в такую форму, которая может быть использована для роста клеток и осуществления всех их функций.
Основными формами аккумуляции энергии в клетках являются трансмембранная разность электрохимических потенциалов ионов, а также «макроэргические» химические соединения.
В клетках, как и в неживых системах, самопроизвольно протекают только те химические процессы, которые приводят к уменьшению свободной энергии системы, т.е. той доли общей энергии, которая может быть превращена в работу. Такие реакции называют экзэргоническими. Напротив, если ДОО, то реакция не может протекать самопроизвольно, так как требует притока энергии.
Уравнение Гиббса описывает взаимосвязь между свободной энергией, энтальпией и энтропией.
Кратко рассмотрим основные уравнения химической термодинамики.
где ДН – изменение энтальпии; AS – изменение энтропии.
При реакциях в растворах изменение свободной энергии определяется уравнением:
где R – газовая постоянная; Т – абсолютная температура;
– константа равновесия химической реакции.
При стандартных условиях каждая химическая реакция характеризуется свободной энергией, вычисляемой по формуле:
AG° = -2,303 RT lgK или AG = -1,363 lgKeq ккал/моль-1 при 25C.
При окислительно-восстановительных реакциях изменение свободной энергии определяется уравнением:
где п – количество перенесенных электронов:
F – число Фарадея: заряд одного моля электронов; Е «' – стандартный окислительно-восстановительный потенциал для окислителя и восстановителя, В.
Эти уравнения удобно применять при расчетах. Например, можно подсчитать, сколько энергии выделяется в результате дыхания;
Таким образом, AG = 2 • 23062 кал • моль-1 - В-[0,815 - (-0,32)] В = 52351 кал/моль.
Классификация энергетических процессов
Энергетические процессы в нефототрофных организмах подразделяются на аэробные и анаэробные в зависимости от участия или не участия в них молекулярного кислорода.
Аэробное дыхание – энергетический процесс, при котором конечным акцептором электронов окисляемого субстрата, передающихся по электрон-транспортной цепи, является молекулярный кислород.
В анаэробном дыхании конечными акцепторами электронов становятся другие окислители: нитрат-, сульфат-анионы, катионы металлов, органические вещества.
Брожение – энергетический процесс, при котором электроны передаются непосредственно от донора к акцептору без участия электрон-транспортной цепи: гликолиз, молочнокислое брожение и др.
Перечисленные процессы можно классифицировать на основе механизма образования АТР, являющегося основным макроэр-гическим соединением, запасающим энергию в своих химических связях. Различают образование АТР в результате переноса электронов по дыхательной цепи – окислительное фосфорилирование, а также образование АТР в процессах, не связанных с переносом электронов по цепи – субстратное фосфорилирование. В настоящее время первый тип процессов правильнее называть образованием АТР за счет трансформации энергии трансмембранного электрохимического потенциала или сокращенно – мембранным фос-форилированием.
У фототрофных организмов основным способом запасания энергии является фо-тофосфорилирование, т.е. образование АТР за счет трансформации энергии ТЭП, формируемого путем утилизации световой энергии.
Роль АТР и ТЭП в запасании энергии
АТР был открыт в 1929 г. К. Фиске и И. Суббароу, а в 1930 г. В. Энгельгард показал возможность его образования в процессе переноса электронов по дыхательной цепи. В 1941 г. Ф. Липман выдвинул концепцию, рассматривающую АТР как «конвертируемую энергетическую валюту».
Почему в процессе эволюции именно АТР выпала такая роль? Для этого есть несколько причин, обусловленных свойствами данного соединения.
Если необходима энергия ненамного большая, чем 10 ккал/моль — по реакции Б. При необходимости энергии, значительно превышающей 10 ккал/моль, используется несколько молекул АТР в одном процессе. Иногда дополнительная энергия выделяется при сорбции АТР на ферменте.
1. Изменение свободной энергии при гидролизе фосфоангидридных связей довольно велико – около 10 ккал / моль. Когда необходима энергия меньшая или равная 10 ккал / моль, гидролиз идет по
2. Скорость неферментативного гидролиза АТР мала, т.е. молекула химически стабильна, и запасенная в ней энергия не рассеивается в виде тепла при спонтанном гидролизе. Однако замена Р на As резко повышает лабильность. Этим обстоятельством объясняется ингибиторное действие арсената на энергетический метаболизм: конкурируя с ортофосфатом, он включается вместо него в АТР, а образовавшееся соединение подвергается спонтанному гидролизу.
3. Малые размеры молекулы АТР позволяют ей свободно проникать в различные участки клетки, в то же время цитоплазматическая мембрана для нее непроницаема, следовательно, «утечка» АТР не происходит.
4. «Выбор» АТР как нуклеотида был вызван, по-видимому, необходимостью взаимодействия с белками, так как взаимодействие белков с моно- и полинуклеотидами лежит в основе жизнедеятельности.
5. «Выбор» в качестве пуриновой части молекулы аденозина, вероятно, обусловлен его промежуточными электроннодонорными и акцепторными свойствами, что обеспечивает взаимодействие с широким кругом партнеров. Кроме того, среди азотистых оснований аденин наиболее устойчив к действию ультрафиолета, что могло иметь значение на ранних этапах формирования живых систем.
При описании механизма образования АТР путем мембранного фосфорилирования в настоящее время общепринятой является хемиосмотическая теория сопряжения окисления и фосфорилирования, предложенная П. Митчеллом в 1961 г. Согласно этой теории в «сопрягающих» мембранах локализованы два типа систем, способных к транслокации протонов: электрон-транспортная цепь и Н+-АТРаза, координированная работа которых приводит к формированию трансмембранной разности электрохимического потенциала протонов, – а затем АТР. Таким образом, первичной формой запасания энергии при дыхании является ТЭП.
Количество энергии, запасенной в форме ТЭП, прямо пропорционально количеству транслоцированных протонов: AG – пДцн+ и складывается из двух составляющих: химической и электрической:
где 2,3RT/ F = Z = 59 мВ при 25°С;
Др – протондвижущая сила.
Для образования АТР необходима AG около 250 мВ. Примерно такая величина ТЭП и создается на мембранах митохондрий и прокариотических клеток, хотя вклад каждой из составляющих различен. Например, у ацидофильных бактерий ТЭП практически полностью состоит из ЛрН, а у алкалофилов – из Л<р.
Важно отметить, что АТРазный комплекс может не только утилизировать ТЭП с образованием АТР, но и формировать его за счет гидролиза АТР, осуществляя таким образом взаимное превращение этих двух форм энергии.
Первичные и вторичные генераторы ТЭП
Первичные генераторы используют энергию света или химических связей субстратов для формирования ТЭП. АТР в этих процессах не участвует. К первичным генераторам ТЭП относятся:
дыхательная цепь, содержащая от 1 до 3 протонных насосов;
фотосинтетическая цепь, содержащая 1–2 протонных насоса;
бактериродопсин галофильных архебактерий;
системы экскреции кислых продуктов брожения у бактерий в неионизированной форме.
Вторичные генераторы используют энергию АТР для формирования ТЭП. Они представляют собой Н+-АТФазы, основной функцией которых является не синтез, а гидролиз АТР. Такие АТРазы характерны для цитоплазматической мембраны анаэробных бактерий, плаз-малеммы клеток эукариот, мембраны вакуолей растений и грибов.
Таким образом, основные пути трансформации энергии в клетке можно суммировать в виде схемы.
Энергетический заряд и энергетическая эффективность роста
Количество АТР, образующегося в разных метаболических путях, различается во много раз. Так, при катаболизме глюкозы по гликолитическому пути с последующим включением цикла трикарбоновых кислот и дыхания образуется 38 моль АТР на моль глюкозы.
У некоторых бактерий в дыхательной цепи существует лишь два пункта сопряжения и количество образованного АТР составит 26 моль на моль глюкозы. Сам по себе гликолиз в анаэробных условиях приводит к образованию лишь 2 молей АТР на моль глюкозы.
Не только общее количество синтезированного АТР, но и расход АТР на образование единицы биомассы сильно зависит от типа метаболизма. Так, например, при выращивании бактерий на среде с глюкозой 1 моль АТР обеспечивает образование 27 г. биомассы, тогда как на среде с С02 1 моль АТР – только 5 г биомассы. При различных типах анаэробных брожений выход биомассы на моль синтезированного АТР все же достаточно постоянен и составляет около 10. Этот показатель получил обозначение YATp и используется для характеристики роста наряду с экономическим коэффициентом.
Определенная часть клеточной энергии затрачивается на процессы, не связанные непосредственно с ростом. Их называют процессами поддержания жизнедеятельности. Затраты на поддержание жизнедеятельности составляют 10–20% всех энергетических расходов.
Важное значение имеет не только абсолютное количество АТР в клетке, но и соотношение компонентов аденилатной системы, так как АТР, ADP и AMP являются мощными регуляторами метаболических процессов.
Д. Аткинсон ввел понятие энергетического заряда, как меры «заполнения» аденилатной системы макроэргами.
Теоретически ЭЗ может варьировать от 0 до 1, однако реально в экспоненциально растущих клетках он составляет 0,8–0,9, а при снижении его величины до 0,5 клетка погибает.
Основные типы сопряжения энергетических и конструктивных процессов
Первоначально биологи подразделяли все живые организмы по типу питания на две группы: автотрофов и гетеротрофов.
В настоящее время применяется более детальная классификация, основанная на указании природы источника энергии и природы источника углерода.
Таким образом, растения следует отнести к фото-лито-автотрофам, а животных – к хемооргана – гетеротрофам. Всего же при сочетании этих характеристик возможны восемь основных типов соотношений между энергетическими и конструктивными процессами.
Некоторые организмы способны осуществлять только одни из перечисленных типов питания, тогда как другие могут переключаться с одного типа питания на другой. Последние организмы называют факультативными.
Таблица 1. Основные типы питания
Д. Аткинсон ввел понятие энергетического заряда, как меры «заполнения» аденилатной системы макроэргами.
Теоретически ЭЗ может варьировать от 0 до 1, однако реально в экспоненциально растущих клетках он составляет 0,8–0,9, а при снижении его величины до 0,5 клетка погибает.
Основные типы сопряжения энергетических и конструктивных процессов
Первоначально биологи подразделяли все живые организмы по типу питания на две группы: автотрофов и гетеротрофов.
В настоящее время применяется более детальная классификация, основанная на указании природы источника энергии и природы источника углерода.
Таким образом, растения следует отнести к фото-лито-автотрофам, а животных – к хемооргана – гетеротрофам. Всего же при сочетании этих характеристик возможны восемь основных типов соотношений между энергетическими и конструктивными процессами.
Некоторые организмы способны осуществлять только одни из перечисленных типов питания, тогда как другие могут переключаться с одного типа питания на другой. Последние организмы называют факультативными.
Таблица 1. Основные типы питания
Источник энергии | Донор электронов | Источник углерода | Тип питания | Организмы-представители | ||||
Неорганические вещества | С02 | Хемолитоавтотрофия | Прокариоты | |||||
Химические | Органич. вещества | Хемолитогетеротрофия | Прокариоты | |||||
реакции | Органические вещества | С02 | Хеморганоавто-трофия | Прокариоты | ||||
Органич. вещества | Хемоорганоге-теротрофия | Животные и многие прокариоты | ||||||
Источник энергии | Донор электронов | Источник углерода | Тип питания | Организмы-представители | ||||
Неорганические вещества | со2 | Фотолитоавтотрофия | Растения, цианобакте-рии, пурпурные и зеленые бактерии | |||||
Свет | Органич. вещества | Фотолитогетеротрофия | Прокариоты | |||||
Органические вещества | со2 | Фотоорганоавтотрофия | Прокариоты | |||||
Органич. вещества | Фотоорганогетеротрофия | Прокариоты | ||||||