Контрольная работа

Контрольная работа по Экологии 20

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024





План.

1. Сферы Земли. Биосфера, учение В.И.Вернадского о биосфере. Состав, структура и свойства биосферы. Функции живого вещества.

2. Экология экосистем. Понятие, состав, структура, типы экосистем, связи в экосистемах.


1.Сферы Земли. Биосфера, учение В.И.Вернадского о биосфере. Состав, структура и свойства биосферы. Функции живого вещества.

Сферы Земли.

 Земля имеет 6 оболочек: атмосферу, гидросферу, биосферу, литосферу, пиросферу и центросферу.

Атмосфера - внешняя газовая оболочка Земли. Ее нижняя граница проходит по литосфере и гидросфере, а верхняя—на высоте 1000 км. В атмосфере различают тропосферу (двигающийся слой), стратосферу (слой над тропосферой) и ионосферу (верхний слой).

Средняя высота тропосферы—10 км. Ее масса составляет 75% всей массы атмосферы. Воздух тропосферы перемещается как в горизонтальном, так и в вертикальном направлениях.

Над тропосферой на 80 км поднимается стратосфера. Ее воздух, перемещающийся лишь в горизонтальном направлении, образует слои.

Еще выше простирается ионосфера, получившая свое название в связи с тем, что ее воздух постоянно ионизируется под воздействием ультрафиолетовых и космических лучей.

Гидросфера занимает 71% поверхности Земли. Ее средняя соленость составляет 35 г/л. Температура океанической поверхности — от 3 до 32 °С, плотность — около 1. Солнечный свет проникает на глубину 200 м, а ультрафиолетовые лучи — на глубину до 800 м.

Биосфера, или сфера жизни, сливается с атмосферой, гидросферой и литосферой. Ее верхняя граница достигает верхних слоев тропосферы, нижняя — проходит по дну океанских впадин. Биосфера подразделяется на сферу растений (свыше 500 000 видов) и сферу животных (свыше 1 000 000 видов).

Литосфера - каменная оболочка Земли - толщиной от 40 до 100 км. Она включает материки, острова и дно океанов. Средняя высота материков над уровнем океана: Антарктиды - 2200 м, Азии - 960 м, Африки - 750 м, Северной Америки — 720 м, Южной Америки — 590 м, Европы — 340 м, Австралии — 340 м.

Под литосферой расположена пиросфера — огненная оболочка Земли. Ее температура повышается примерно на 1°С на каждые 33 м глубины. Породы на значительных глубинах вследствие высоких температур и большого давления, вероятно, находятся в расплавленном состоянии.

Центросфера, или ядро Земли, расположена на глуби не 1800 км. По мнению большинства ученых, она состоит из железа и никеля. Давление здесь достигает 300000000000 Па (3000000 атмосфер), температура - нескольких тысяч градусов, В каком состоянии находится ядро, пока неизвестно.

Огненная сфера Земли продолжает охлаждаться. Твердая оболочкой утолщается, огненная—сгущается. В свое время это привело к формированию твердых каменных глыб -   мтериков. Однако влияние огненной сферы на жизнь планеты Земля все еще очень' велико. Неоднократно менялись очертания материков и океанов, климат, состав атмосферы.

Экзогенные и эндогенные процессы беспрерывно изменяют твердую поверхность нашей планеты, что, в свою очередь, активно влияет на биосферу Земли.

Биосфера, учение В.И.Вернадского о биосфере.

Биосфера – сложная наружная оболочка Земли, населенная организмами, составляющими в совокупности живое вещество планеты. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Впервые термин «биосфера» был введен в науку геологом из Австрии Эдуардом Зюссом в 1875 г. Он понимал под биосферой тонкую пленку жизни на земной поверхности. Роль и значение биосферы для развития жизни на нашей планете оказалась настолько велика, что уже в первой трети XX в. возникло новое фундаментальное научное направление в естествознании - учение о биосфере, основоположником которого является великий русский ученый В. И. Вернадский.

Однако задолго до этого под другими названиями, в частности "пространство жизни", "картина природы", "живая оболочка Земли" и т.п., содержание термина биосфера рассматривалось многими другими естествоиспытателями.

Земля и окружающая ее среда сформировалась в результате закономерного развития всей Солнечной системы. Около 4,7 млрд лет назад из рассеяного в протосолнечной системе газопылеватого вещества образовалась планета Земля. Как и другие планеты, Земля получает энергию от Солнца, достигающую земной поверхности в виде электромагнитного излучения. Солнечное тепло - одно из главных слагаемых климата Земли, основа для развития многих геологических процессов. Огромный тепловой поток исходит из глубины Земли.

Учение Вернадского о биосфере.


По современным представлениям, биосфера – это особая оболочка земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.

Эти представления базируются на учении В. И. Вернадского(1863 –1945) о биосфере, являющимся крупнейшим из обобщений в области естествознания в ХХ в. Важнейшая значимость его учения во весь рост проявилась лишь во второй половине века. Этому способствовало развитие экологии и, прежде всего глобальной экологии, где биосфера является основополагающим понятием.

Учение Вернадского о биосфере – это целостное фундаментальное учение, органично связанное с важнейшими проблемами сохранения и развития жизни на Земле, знаменующее собой принципиально новый подход к изучению планеты как развивающейся саморегулирующейся системы в прошлом, настоящем и будущем.

По представлениям В. И. Вернадского, биосфера включает в себя живое вещество, образованное совокупностью организмов; биогенное вещество, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество, которое формируется без участия живых организмов (магматические горные породы); биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы); а также радиоактивное вещество, вещество космического происхождения (метеориты и др.) и рассеяные атомы. Все эти семь типов веществ геологически связаны между собой.

Сущность учения В. И. Вернадского заключена в признании исключительной роли «живого вещества», преобразующего облик планеты. Суммарный результат его деятельности за геологический период времени огромен. По словам Вернадского, «на земной поверхности нет химической силы более постоянно действующей, а потому более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом». Именно живые организмы улавливают и преобразуют энергию Солнца и создают бесконечное разнообразие нашего мира.

Вторым главнейшим аспектом учения В. И. Вернадского является разработанное им представление об организованности биосферы, которая проявляется в согласованном взаимодействии живого и неживого, взаимной приспособляемости организма и среды. «Организм, - писал В. И. Вернадский, - имеет дело со средой, к которой он не только приспособлен, но которая приспособлена к нему».

Это взаимодействие сказывается прежде всего в создании многочисленных новых видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого.

По мнению В. И. Вернадского, в прошлом не придавали значения двум важным факторам, которые характеризуют живые тела и продукты их жизнедеятельности:

* открытию Пастера о преобладании оптически активных соединений, связанных с дисимметричностью пространственной структуры молекул, как отличительной особенности живых тел;

* явно недооценивался вклад живых организмов в энергетику биосферы и их влияние на неживые тела. Ведь в состав биосферы входит не только живое вещество, но и разнообразные неживые тела, которые В. И. Вернадский называет косными (атмосфера, горные породы, минералы и т. д.), а также и биокосные тела, образованные из разнородных живых и косных тел (почвы, поверхностные воды и т. п.). Хотя живое вещество по объему и весу составляет незначительную часть биосферы, но оно играет основную роль в геологических процессах, связанных с изменением облика нашей планеты.

Состав биосферы

Биосфера - сложная природная система. Она состоит из:

живого вещества;

биогенного вещества;

косного вещества;

биокосного вещества;

радиоактивных элементов;

вещества космического происхождения.

Живое вещество - это бесчисленного множество живых организмов.

Биогенное вещество - это вещество, созданное и переработанное жизнью (каменные угли, известняки, битумы).

Косное вещество - это вещество в образовании которого жизнь не участвует (горные породы, газы).

Биокосное вещество - это вещество, которое создаётся одновременно живыми организмами и косными процессами (природная вода, кора выветривания, тропосфера).

Радиоактивные элементы имеют сложный изотопный состав, идущий из глубины, дисперсно рассеянный, создающий и меняющий энергетику биосферы.

Главные свойства биосферы, на которые обращал внимание В.И. Вернадский:

- наличие в ней жизни;

- наличие энергии живого вещества.

Формы жизни чрезвычайно разнообразны. Известно до 500 тыс. видов растений и 1,5 млн. видов животных. Главная масса живого вещества сосредоточена в охваченной солнечным светом части планеты. При этом сгущения жизни тем выше, чем ярче её освещение. Коротковолновое ультрафиолетовое излучение убивает все формы жизни. Поражает не только разнообразие форм жизни, но и "всюдность жизни", распространение её на всевозможные пределы планеты. Каждый организм имеет свои пределы жизни.

Верхний предел жизни можно провести в стратосфере, на уровне озонового экрана, поглощающего космическое коротковолновое излучение. Фактически организмы распространяются ниже его границы. До 5 км, в редких случаях до 10 км, с потоками воздуха, с пылью могут подниматься в атмосферу споры и микроорганизмы. На 7 км в высоту из птиц поднимается кондор. В горах на 8-километровой высоте наблюдались тли, на 6-километровой высоте встречались бабочки, цветковые растения - на высоте 6,5 км.

Нижняя граница жизни определяется температурными условиями (1000C - температура кипения воды) Глубже 3 км от земной поверхности живые существа не могут существовать в современном виде. В океане жизнь возможна на всю глубину. В почвах граница жизни определяется глубиной проникновения свободного кислорода - несколько глубже 10 м (на болотах только 30 см).

Если принять эти границы распространения живого по В.И. Вернадскому, то тогда границы биосферы близки к границам географической оболочки.

Основные свойства биосферы


Биосфера - глобальная экологическая система с прямыми и обратными связями, обеспечивающими механизмы ее функционирования и устойчивости.

1. Биосфера - централизованная система. Центральным звеном биосферы является живое вещество, что подтверждается его свойствами и функциями.

2. Биосфера - открытая система. Ее существование невозможно без поступления энергии извне.

3. Биосфера - саморегулирующаяся система, характеризующаяся гомеостазом. Гомеостаз биосферы, как и экосистемы, подчиняется принципу ЛеШателье-Брауна: Если на систему действуют силы, выводящие ее из состояния устойчивого равновесия, то равновесие смещается в том направлении, при котором эффект этого воздействия ослабляется.

4. Биосфера - это система, характеризующаяся большим разнообразием, которое обусловлено:

разными средами жизни

разнообразием природных зон

наличие регионов, сильно отличающихся от большинства других химическим составом литосферы

объединение в рамках биосферы большого количества элементарных экосистем со свойственным им видовым разнообразием.

Для биосферы, как для глобальной экосистемы, применим закон Эшби.

5. Наличие механизмов, обеспечивающих круговорот веществ и связанную с ним неисчерпаемость отдельных химических элементов и их соединений.

Структура.

Биосферу, как местообитание организмов, можно разделить на три подсферы (которые, в свою очередь, имеют составные части):

1) геобиосферу (верхнюю часть литосферы, населенную геобионтами):

* террабиосферу (поверхность суши с наземными организмами – террабионтами);

- гипотеррабиосферу (слой, где возможна жизнь аэробных организмов, до 1,5 км);

- теллуробиосферу (слой, где возможна жизнь анаэробных организмов, до 6 км);

* литобиосферу (толщу земной коры с литобионтами);

- фитосферу (пространства от 0 до 150 м., т.е. до верхушек деревьев);

- педосферу (почвенный покров до 2 – 3 метров с педобионтами);

2) гидробиосферу:

* маринобиосферу (океаны и моря, населенные маринобионтами);

* аквабиосферу (континентальные, в основном пресные воды);

* фотосферу (до 200 м – соответствует эвфотической зоне);

* дисфотосферу (до 1,5 – 2 км, проходит до 1 % солнечного света);

* афотосфера (более 2 км, солнечный свет не проходит);

3) аэробиосферу:

* тропобиосферу (от верхушек деревьев до 5 – 6 км, с тропобионтами)

* стратобиосферу (от 6 до 22 – 24 км, где располагается основная масса озона).

Выше аэробиосферы расплагается парабиосфера (до высоты 60 – 80 км.), куда жизнь проникает лишь случайно в виде спор и микроорганизмов. Ниже геобиосферы располагается гипобиосфера (аналог парабиосферы), а еще ниже до глубины 10 – 15 км простирается метабиосфера – слой пород, преобразованный жизнью, но в котором организмы на данный момент не присутствуют. Вертикальная мощь собственно биосферы (эубиосферы) – арены активной современной жизни – более 17 км в океанической области и 12 км в сухопутной области.

Функции живого вещества.

Живое вещество играет наиболее важную роль по сравнению с другими веществами биосферы, и выполняет рад важнейших функций.

Энергетическая функция

Энергетическая функция выполняется, прежде всего, растениями, которые в процессе фотосинтеза аккумулируют солнечную энергию в виде разнообразных органических соединений.   Чтобы биосфера могла существовать и развиваться, ей необходима энергия. Собственных источников энергии она не имеет и может потреблять энергию только от внешних источников. Главным источником для биосферы является Солнце. По сравнению с Солнцем, энергетический вклад других поставщиков (внутреннее тепло Земли, энергия приливов, излучение космоса) в функционирование биосферы ничтожно мал (около 0,5% от всей энергии, поступающей в биосферу). Солнечный свет для биосферы является рассеянной лучистой энергией электромагнитной природы. Почти 99% этой энергии, поступившей в биосферу, поглощается атмосферой, гидросферой и литосферой, а также участвует в вызванных ею физических и химических процессах (движение воздуха и воды, выветривание и др.) Только около 1% накапливается на первичном звене ее поглощения и передается потребителям уже в концентрированном виде.  По словам Вернадского, зеленые хлорофилльные организмы, зеленые растения, являются главным механизмом биосферы, который улавливает солнечный луч и создает фотосинтезом химические тела - своеобразные солнечные консервы, энергия которых в дальнейшем становится источником действенной химической энергии биосферы, а в значительной мере - всей земной коры. Без этого процесса накопления и передачи энергии живым веществом невозможно было бы развитие жизни на Земле и образование современной биосферы.

Каждый последующий этап развития жизни сопровождался все более интенсивным поглощением биосферой солнечной энергии. Одновременно нарастала энергоемкость жизнедеятельности организмов в изменяющейся природной среде, и всегда накопление и передачу энергии осуществляло живое вещество. Современная биосфера образовалась в результате длительной эволюции под влиянием совокупности космических, геофизических и геохимических факторов. Первоначальным источником всех процессов, протекавших на Земле, было Солнце, но главную роль в становлении и последующем развитии биосферы сыграл фотосинтез. Биологическая основа генезиса биосферы связана с появлением организмов, способных использовать внешний источник энергии, в данном случае энергию Солнца, для образования из простейших соединений органических веществ, необходимых для жизни.

Деструктивная функция

Минерализация органических веществ, разложение отмершей органики до простых неорганических соединений, химическое разложение горных пород, вовлечение образовавшихся минералов в биотический круговорот определяет деструктивную (разрушительную) функцию живого вещества. Данную функцию в основном выполняют грибы, бактерии. Мертвое органическое вещество разлагается до простых неорганических соединений (углекислого газа, воды, сероводорода, метана, аммиака и т. д.), которые вновь используются в начальном звене круговорота. Этим занимается специальная группа организмов - редуценты (деструкторы).

Особо следует сказать о химическом разложении горных пород. Благодаря живому веществу биотический круговорот пополняется минералами, высвобождаемыми из литосферы. Например, плесневый грибок в лабораторных условиях за неделю высвобождал из вулканической горной породы 3 % содержащегося в ней кремния, 11% алюминия, 59 % магния, 64 % железа. Сильнейшее химическое воздействие на горные породы растворами целого комплекса кислот - угольной, азотной, серной и разнообразных органических оказывают бактерии, сине-зеленые водоросли, грибы и лишайники. Разлагая с их помощью те или иные минералы, организмы избирательно извлекают и включают в биотический круговорот важнейшие питательные элементы - кальций, калий, натрий, фосфор, кремний, микроэлементы. Общая масса зольных элементов, вовлекаемая ежегодно в биотический круговорот только на суше, составляет около восьми миллиардов тонн, что в несколько раз превышает массу продуктов извержения всех вулканов мира на протяжении года. Благодаря жизнедеятельности организмов-деструкторов создается уникальное свойство почв – их плодородие.

Концентрационная функция

Концентрационная (накопительная) функция - избирательное накопление определенных веществ, рассеянных в природе - водорода, углерода, азота, кислорода, кальция, магния, натрия, калия, фосфора и многих других, включая тяжелые металлы, в живых существах. Раковины моллюсков, панцири диатомовых водорослей, скелеты животных — все это примеры проявления концентрационной функции живого вещества.

Способность концентрировать элементы из разбавленных растворов - это характерная особенность живого вещества. Наиболее активными концентраторами многих элементов являются микроорганизмы. Например, в продуктах жизнедеятельности некоторых из них по сравнению с природной средой содержание марганца увеличено в 1 200 000 раз, железа - в 65 000, ванадия - в 420 000, серебра - в 240 000 раз.

Для построения своих скелетов или покровов активно концентрируют рассеянные минералы морские организмы. Так, существуют кальциевые организмы - известковые водоросли, моллюски, кораллы, мшанки, иглокожие, и т. п., и кремниевые - диатомовые водоросли, кремниевые губки, радиолярии. Особого внимания заслуживает способность морских организмов накапливать микроэлементы, тяжелые металлы, в том числе ядовитые (ртуть, свинец, мышьяк), радиоактивные элементы. В теле беспозвоночных и рыб их концентрация может в сотни тысяч раз превосходить содержание в морской воде. Вследствие этого морские организмы полезны как источник микроэлементов, но вместе с тем употребление их в пищу может грозить отравлением тяжелыми металлами или быть опасным в связи с повышенной радиоактивностью.

Средообразующая функция

Живое вещество преобразует физико-химические параметры среды в условия, благоприятные для существования организмов. В этом проявляется еще одна главная функция живого вещества — средообразующая. Например, леса регулируют поверхностный сток, увеличивают влажность воздуха, обогащают атмосферу кислородом.

Можно сказать, что средообразующая функция - совместный результат всех рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья биологического круговорота (в ходе фотосинтеза растения выполняют газовую функцию: поглощают углекислый газ и выделяют кислород); деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для организмов элементов.

Газовые функции заключаются в участии живых организмов в миграции газов и их превращениях. В зависимости от того, о каких газах идет речь, выделяется несколько газовых функций.

1. Кислородно-диоксидуглеродная – создание основной массы свободного кислорода на планете. Носителем данной функции является каждый зеленый организм. Выделение кислорода идет только при солнечном свете, ночью этот фотохимический процесс сменяется выделением зелеными растениями углекислого газа.

2. Диоксидуглеродная, не зависимая от кислородной – образование биогенной угольной кислоты как следствие дыхания животных, грибов и бактерий. Значение функции возрастает в области подземной тропосферы, не имеющей кислорода.

3. Озонная и пероксидводородная – образование озона (и, возможно, пероксида водорода). Биогенный кислород, переходя в озон, предохраняет жизнь от разрушительного действия радиации Солнца. Выполнение этой функции вызвало образование защитного озонового экрана.

4. Азотная – создание основной массы свободного азота тропосферы за счет выделения его азотовыделяющими бактериями при разложении органического вещества. Реакция происходит в условиях как суши, так и океана.

5. Углеводородная – осуществление превращений многих биогенных газов, роль которых в биосфере огромна. К их числу относятся, например, природный газ, терпены, содержащиеся в эфирных маслах, скипидаре и обусловливающие аромат цветов, запах хвойных.

Вследствие выполнения живым веществом газовых биогеохимических функций в течение геологического развития Земли сложились современный химический состав атмосферы с уникально высоким содержанием кислорода и низким содержанием углекислого газа, а также умеренные температурные условия. В соответствии с гипотезой О. Г. Сорохтина, не весь кислород атмосферы имеет биогенное происхождение, 30% его поступило в воздушный бассейн в результате дегазации недр. Рассмотрим влияние средообразующей функции организмов на содержание кислорода и углекислого газа в атмосфере. Повышение концентрации кислорода в атмосфере вызывает "парниковый эффект" и способствует потеплению климата. Свободный кислород выделяется при фотосинтезе. Впервые на Земле массовое развитие фотосинтезирующих организмов - сине-зеленых водорослей - имело место два с половиной миллиарда лет назад. Благодаря этому в атмосфере появился кислород, что дало импульс быстрому развитию животных. Однако интенсивный фотосинтез сопровождался усиленным потреблением кислорода и уменьшением его содержания в атмосфере. Это привело к ослаблению "парникового эффекта", резкому похолоданию и первому в истории планеты (гуронскому) оледенению.

Биохимические функции связаны с жизнедеятельностью живых организмов – их питанием, дыханием, размножением, смертью и последующим разрушением тел. В результате происходит химическое превращение живого вещества сначала в биокосное, а затем, после умирания, в косное. Следует различать разрушение тел организмов после их смерти, идущее повсеместно и вызываемое микробами, грибами и некоторыми насекомыми, и разрушение, связанное с массовым захоронением растительных и животных остатков после их смерти или гибели. В последнем случае совместное или последовательное выполнение живым веществом концентрационных и биохимических функций приводит к геохимическому преобразованию литосферы.

2.Экология экосистем. Понятие, состав, структура, типы экосистем, связи в экосистемах.
Понятии, структура и состав экосистем.

Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени.

Таким образом, для естественной экосистемы характерны три признака:

1) экосистема обязательно представляет собой совокупность живых и неживых компонентов;

2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;

3) экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов.

Примерами природных экосистем являются озеро, лес, пустыня, тундра, суша, океан, биосфера.

Устройство природы следует рассматривать как системное целое, состоящее из вложенных одна в другую экосистем, высшей из которых является уникальная глобальная экосистема - биосфера. В ее рамках происходит обмен энергией и веществом между всеми живыми и неживыми составляющими в масштабах планеты.

Экосистема основана на единстве живого и неживого вещества. Суть этого единства проявляется в следующем. Из элементов неживой природы, главным образом молекул CO2 и H2O, под воздействием энергии солнца синтезируются органические вещества, составляющие все живое на планете. Процесс создания органического вещества в природе происходит одновременно с противоположным процессом - потреблением и разложением этого вещества вновь на исходные неорганические соединения. Совокупность этих процессов протекает в рамках экосистем различных уровней иерархии.

Все растения и хемосинтетики (это такие бактерии), являющиеся продуцентами, создают органическое вещество из неорганических составляющих с помощью энергии окружающей среды. Их называют продуцентами или автотрофами. Высвобождение запасенной продуцентами потенциальной энергии обеспечивает существование всех остальных видов живого на планете. Виды, потребляющие созданную продуцентами органику как источник вещества и энергии для своей жизнедеятельности, называются консументами или гетеротрофами.

Консументы - это самые разнообразные организмы (от микроорганизмов до синих китов): простейшие, насекомые, пресмыкающиеся, рыбы, птицы и, наконец, млекопитающие, включая человека.

Консументы, в свою очередь, подразделяются на ряд подгрупп в соответствии с различиями в источниках их питания.

Несмотря на многообразие экосистем, все они обладают структурным сходством. В каждой из них можно выделить фотосинтезирующие растения - продуценты, различные уровни консументов, детритофагов и редуцентов. Они и составляют биотическую структуру экосистем.

Жизнь в экосистеме поддерживается благодаря непрекращающемуся прохождению через живое вещество энергии, передаваемой от одного трофического уровня к другому; при этом происходит постоянное превращение энергии из одних форм в другие. Кроме того, при превращениях энергии часть ее теряется в виде тепла. Весь запас энергии сосредоточен в массе органического вещества - биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему (биомассу всегда можно выразить в единицах энергии).

Типы экосистем.

Экосистемы разнообразны, различают по происхождению: их состав зависит от многих факторов, в первую очередь, от климата, геологических условий и влияния человека. Экосистемы формируются естественным путем или создаются человеком.

Естественные экосистемы - формируются под влиянием природных факторов, хотя на них может оказывать влияние человек; но его воздействие в этих экосистемах меньше, чем влияние природных факторов.

Антропогенные экосистемы создаются человеком в процессе хозяйственной деятельности. В их состав могут входить сохранившиеся более мелкие экосистемы ( лес или озеро на территории сельскохозяйственных экосистем, лесопарк в городе). И природные и антропогенные экосистемы различаются: по источнику энергии, который обеспечивает их жизнедеятельность.

Автотрофные - экосистемы находятся на энергетическом самообеспечении. Они разделяются на фототрофные — потребляющие солнечную энергию, которую усваивают растения, и хемотрофные - использующие химическую энергию, железа и т.д.

Фототрофными являются большинство экосистем, включая и сельскохозяйственные. В сельскохозяйственные экосистемы человек вносит энергию удобрений, горючего для тракторов и т.д. Эту энергию называют антропогенной, её роль незначительна по сравнению с солнечной энергией, потребляемой экосистемой.

Естественные хемотрофные экосистемы формируются в подземных водах.

Антропогенные хемотрофные экосистемы человек создаёт в биологических очистных сооружениях для очистки воды от загрязнений.

Гетеротрофные экосистемы получают энергию, уже накопленную ранее организмами других экосистем или созданными человеком энергетическими устройствами.

Антропогенная гетеротрофная экосистема - город и промышленное предприятие. Энергия в эти экосистемы поступает по линиям электропередач, по трубам нефте – газопроводов, в цистернах автомашин и железнодорожных вагонах.

Гетеротрофными экосистемами являются рыборазводные пруды, фермы на которых разводят дождевых червей или шампиньоны, биологические очистные сооружения Организмы этих экосистем используют для жизни готовые органические вещества.

Связи в экосистемах.

Ни один организм в природе не существует вне экосистем. И проявляется это в первую очередь в наличии огромного количества взаимосвязей данного организма с другими организмами и с абиотическими факторами. Эти связи – основное условие жизни организмов и их сообществ. Через эти связи реализуются механизмы круговорота биогенных веществ, механизмы передачи энергии, механизмы устойчивости экосистем. Эти связи настолько отточены ходом эволюционного процесса, что нарушение хотя бы одной из них может повлечь за собой цепь необратимых последствий вплоть до гибели экосистемы, точнее, вплоть до коренной перестройки ее структуры или замене другой экосистемой, как правило, более бедной. Это обязательно должен помнить человек, вмешиваясь в природу своей производственной деятельностью. Согласно третьему закону Коммонера, любое такое вмешательство, как правило, неблагоприятно для природы. Поэтому мы должны знать, что, преобразуя природу, мы очень часто выступаем в роли “убийц надсистем”, которые в некоторых случаях по сложности связей намного превышают сложность организации любого живого организма (в общепринятом понимании этого термина).

Взаимосвязи между организмами можно разделить на межвидовые и внутривидовые. Внутривидовые связи мы будем рассматривать более подробно при изучении динамики популяций. Здесь же мы остановимся на межвидовых отношениях, которые оказывают наибольшее влияние на организацию экосистем. Эти взаимосвязи обычно классифицируются по “интересам”, на базе которых организмы строят свои отношения:

1) пищевые (трофические) связи - формируют трофическую структуру экосистемы, которую мы уже рассмотрели ранее; помимо отношений, когда одни организмы служат пищей другим, сюда же можно отнести отношения между растениями и насекомыми-опылителями цветов, конкурентные отношения из-за похожей пищи. Это самый распространенный тип связей;

2) топические связи (от греческого слова топос - место) - основаны на особенностях местообитания, например, отношения между деревьями и гнездящимися на них птицами, живущими на них насекомыми, отношения между организмами и их паразитами и т.п.;

3) форические связи (от латинского слова форас - наружу) - отношения по распространению семян, плодов и т.п.;

4) фабрические связи (от латинского слова фабрикато - изготовление) - использование растений, пуха, шерсти для постройки гнезд, убежищ и т.п.

Воздействие популяций двух видов друг на друга теоретически можно выразить в виде следующих комбинаций символов: (0,0), (-,-), (+,+), (+,0),

(-,0), (+,-). Здесь «0» - отсутствие какого-либо воздействия, «+» - положительное волдействие одного вида на другой, «-» - отрицательное воздействие. В результате мы получаем следующие основные виды взаимодействий.

·        (+,+) – симбиоз (протокооперация и мутуализм)

Эти отношения взаимовыгодны для обоих партнеров. Подобные ассоциации между разными видами очень распространены в природе и играют крайне важную роль в эволюции разрозненного сообщества живых организмов в целостную надсистему вплоть до единого живого организма. Именно в этих отношениях формируется наибольшее количество синергетических эффектов, перерастающих в конечном итоге в ярко выраженные эмерджентные свойства надсистемы.

·        (+,0) – комменсализм

Это слово произошло от французского слова комменсал - сотрапезник. Отношения комменсализма положительны для одного партнера и безразличны для другого. Частные случаями комменсализма:

1) нахлебничество – один организм питается остатками пищи другого, например, взаимоотношения львов и гиен, акул и рыб-прилипал и т.п.;

2) сотрапезничество – потребление разных частей или веществ одной и той же пищи или последовательная переработка одного и того же вещества; примером могут служить отношения между сапротрофами, разлагающими органику до минеральных веществ, и высшими растениями, которые потребляют эти вещества; другими примером являются копрофаги, питающиеся экскрементами других животных;

3) квартирантство (сожительство) – одни организмы используют другие как убежища или транспорт, например, рыба горчак откладывает икру в мантию двустворчатого моллюска, не принося ему вреда, многие насекомые обитают в гнездах птиц и норах грызунов, и т.п.

Комменсализм является наиболее простым типом положительных взаимодействий, являющимся, по-видимому, первым шагом к симбиозу.

·        (+,-) - хищничество и паразитизм

Эти отношения положительны для одного вида и отрицательны для другого. Несмотря на кажущиеся отличия между хищниками и паразитами, их объединяет главное - они на кого-то отрицательно воздействуют, получая от этого выгоду. Отличия состоят лишь в том, что в отношениях хищник-жертва оба организма постоянно совершенствуются, а в отношениях паразит-хозяин адаптации паразита часто направлены на упрощение внутренней организации и приспособление к конкретному местообитанию на теле или в теле хозяина. Наверное, поэтому хищники нам более симпатичны, чем паразиты, но суть их одна и та же.

·        (-,-) – конкуренция

Эти взаимоотношения невыгодны обоим партнерам. Они возникают обычно между организмами, претендующими на один и тот же ресурс. То есть конкуренция абсолютно противоположна симбиозу, возникающему, как правило, на почве противоположных потребностей. Конкуренция может возникать по поводу пространства, пищи или биогенных элементов, света, зависимости от хищников, подверженности болезням и т.д. Любая конкуренция приводит к тому, что в виду одинакового взаимного неприятия партнеров, они стремятся отдалиться друг от друга.

·        (-,0) – аменсализм

Слово аменсализм происходит от латинского слова аменс- безрассудный. Эти отношения отрицательны для одного вида, который угнетается другими видом, для которого эти отношения безразличны. Примером могут служить отношения между светолюбивыми растениями, случайно попавшими под полог елового леса, растение может погибнуть, деревьям же такое соседство безразлично.

·        (0,0) – нейтрализм

Это такой вид отношений, когда организмы практически не влияют друг на друга, например, отношения белок и лосей в лесу. По большому счету, чистого нейтрализма в природе не бывает, так как все в природе взаимосвязано и все мы косвенно как-то влияем друг на друга.

Экологическая ниша

Любой вид организмов приспособлен для определенных условий существования и не может произвольно менять среду обитания, пищевой рацион, время питания, место размножения, убежища и т.п. Весь комплекс отношений к подобным факторам определяет место, которое природа выделила данному организму, и роль, которую он должен сыграть во всеобщем жизненном процессе. Все это объединяется в понятии экологической ниши.

Под экологической нишей понимают место организма в природе и весь образ его жизнедеятельности, его жизненный статус, закрепленный в его организации и адаптациях.
Список литературы
1.    Экология / Под ред. В. В. Денисова. – Ростов-на-Дону: МарТ, 2002. – 640 с.

2.    Шамилева И. А. Экология. – М.: ВЛАДОС, 2004. – 144 с.

3.    Потапов А. Д. Экология. – М.: Высшая школа, 2004. – 528 с.

4.    Коробкин В. И., Передельский Л. В. Экология в вопро-сах и ответах. – Ростов-на-Дону: Феникс, 2005. – 384 с.

5.    Пивоваров Ю. П., Королик В. В., Зиневич Л. С. Гигиена и основы экологии человека. – М.: Академия, 2004. – 528 с.

6.    Розанов С. Основы экологии. – СПб.: Лань, 2004. – 288 с.

7.    Кривошеин Д. А., Муравей Л. А., Роева Н. Н. и др. Экология и безопасность жизнедеятельности. – М.: ЮНИТИ – ДАНА, 2002. – 447 с.


1. Сочинение на тему Некрасов н. а. - Картины подневольного труда в стихотворении н. а. некрасова железная дорога
2. Реферат на тему Compare And Contrast Martin Luther King J
3. Реферат на тему Задачи и правила делания науки
4. Реферат Методы совершенствования взаимоотношений коммерческих банков с клиентами
5. Реферат Темперамент личности, понятие и сущность
6. Лекция на тему Демографическая основа формирования и функционирования рынка труда
7. Книга Толкование на молитву Господню, Преподобный Максим Исповедник
8. Реферат на тему Description Of Hbo Advertisement Essay Research Paper
9. Реферат Морфолого-анатомическое изучение нектарников у представителей семейства лютиковых Ярославской об
10. Реферат на тему Stir The Coffee Essay Research Paper Through