Контрольная работа

Контрольная работа на тему Многоэлектронные атомы 2

Работа добавлена на сайт bukvasha.net: 2014-11-21

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


Контрольная работа по физике

Многоэлектронные атомы
В атоме водорода электрон находится в силовом поле, которое создается только ядром. В многоэлектронных атомах на каждый электрон действует не только ядро, но и все остальные электроны. При этом электронные облака отдельных электронов как бы сливаются в одно общее многоэлектронное облако. Точное решение уравнения Шредингера для таких сложных систем связано с большими затруднениями и, как правило, недостижимо. Поэтому состояние электронов в сложных атомах и в молекулах определяют путем приближенного решения уравнения Шредингера.
Общим для всех приближенных методов решения этого уравнения является так называемое одноэлектронное приближение, т.е. предположение, что волновая функция многоэлектронной системы может быть представлена в виде суммы волновых функций отдельных электронов. Тогда уравнение Шредингера может решаться отдельно для каждого находящегося в атоме электрона, состояние которого, как и в атоме водорода, будет определяться значениями квантовых чисел n, l, m и s. Однако и при этом упрощении решение уравнения Шредингера для многоэлектронных атомов и молекул представляет весьма сложную задачу и требует большого объема трудоемких вычислений. В последние годы подобные вычисления выполняются, как правило, с помощью быстродействующих электронных вычислительных машин, что позволило произвести необходимые расчеты для атомов всех элементов и для многих молекул.
Исследование спектров многоэлектронных атомов показало, что здесь энергетическое состояние электронов зависит не только от главного квантового числа n, но и от орбитального квантового числа l. Это связано с тем, что электрон в атоме не только притягивается ядром, но и испытывает отталкивание со стороны электронов, расположенных между данным электроном и ядром. Внутренние электронные слои как бы образуют своеобразный экран, ослабляющий притяжение электрона к ядру, или, как принято говорить, экранируют внешний электрон от ядерного заряда. При этом для электронов, различающихся значением орбитального квантового числа l, экранирование оказывается неодинаковым.
Так, в атоме натрия (порядковый номер Z=11) ближайшие к ядру К- шли L-слои заняты десятью электронами; одиннадцатый электрон принадлежит к M-слою (n = 3). На рис. 1 кривая 1 изображает радиальное распределение вероятности для суммарного электронного облака десяти «внутренних» электронов атома натрия: ближайший к ядру максимум электронной плотности соответствует К-слою, второй максимум- L-слою. Преобладающая часть внешнего электронного облака атома натрия расположена вне области, занятой внутренними электронами, и потому сильно экранируется. Однако часть этого электронного облака проникает в пространство, занятое внутренними электронами, и потому экранируется слабее.

Рисунок 1 - График радиального распределения в атоме натрия: 1 – для десяти электронов K и L-слоев; 2 – для 3S-электрона; 3 – для 3Р-электрона
Какое же из возможных состояний внешнего электрона атома натрия - 3s, Зр или 3d- отвечает более слабому экранированию и, следовательно, более сильному притяжению к ядру и более низ-кон энергии электрона? Как показывает рис. 2, электронное облако Зs-электрона в большей степени проникает в область, занятую электронами K- и L-слоев, и потому экранируется слабее, чем электронное облако Зр-электрона. Следовательно, электрон в состоянии 3s будет сильнее притягиваться к ядру и обладать меньшей энергией, чем электрон в состоянии Зр. Электронное облако Зd-орбитали практически полностью находится вне области, занятой внутренними электронами, экранируется в наибольшей степени и наиболее слабо притягивается к ядру. Именно поэтому устойчивое состояние атома натрия соответствует размещению внешнего электрона на орбитали 3s.
Таким образом, в многоэлектронных атомах энергия электрона зависит не только от главного, но и от орбитального квантового числа. Главное квантовое число определяет здесь лишь некоторую энергетическую зону, в пределах которой точное значение энергии электрона определяется величиной l. В результате возрастание энергии по энергетическим подуровням происходит примерно в следующем порядке.
В многоэлектронных атомах вследствие взаимного электростатического отталкивания электронов существенно уменьшается прочность их связи с ядром. Например, энергия отрыва электрона от иона Не+ равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых атомов связь внешних электронов с ядром еще слабее.
Важную роль в многоэлектронных атомах играет специфическое обменное взаимодействие, связанное с неразличимостью электронов, и тот факт, что электроны подчиняются Паули принципу, согласно которому, в каждом квантовом состоянии, характеризуемом четырьмя квантовыми числами, не может находиться более одного электрона. Для многоэлектронного атома имеет смысл говорить только о квантовых состояниях всего атома в целом.
Однако приближенно, в так называемом одноэлектронном приближении, можно рассматривать квантовые состояния отдельных электронов и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей функцией) совокупностью четырех квантовых чисел n, l, ml и ms. Совокупность 2(2l+ 1) электронов в состоянии с данными n и l образует электронную оболочку (называемую также подуровнем, подоболочкой); если все эти состояния заняты электронами, оболочка называется заполненной (замкнутой).
Задача
Определить энергию активации и температуру Т3, если константа скорости К3=3,0 мин-1, при температуре Т1=9,4 °С константа скорости К1=2,37 мин-1, а при температуре Т2=14,4 °С константа скорости К3=3,2 мин-1.
Решение:
Сначала находим Т1 и Т2:
Т1 =9,4+273=282,4 К;
Т2 =14,4+273=287,4 К.
Затем по уравнению Аррениуса рассчитываем энергию активации:
Еакт = 2,303 •8,314 •282,4 •287,4 •lg((3.2/2.37)/(282.4-287.4))=40698 Дж/моль.
После этого в уравнении Аррениуса величину К2 и Т2 заменяем на К3 и Т3 и выражаем Т3:
Т31•Еакт/(Еакт-2,303 •R •Т1 •lg(K1/K2));
Т3=282,4•40698/(40698-2,303 •8,314 •282,4 •lg(3,0/2,37)) = 286,3 К = 13,3 °С
Ответ:
Энергия активации равна 40698 Дж/моль,
Температура равна 13,3 °С.

Список литературы
1.     Карапетьянц М.X., Дракин С.И., Строение вещества, 3 изд., М., 1978.
2.     Ельяшевич М.А., Атомная физика, 7 изд., т. 1-2, М., 1984.
3.     http://www.xumuk.ru/
4.     http://ru.wikipedia.org/

1. Реферат Учение о витаминах
2. Реферат Психофизиологические закономерности восприятия информации и использование в самостоятельной рабо
3. Реферат на тему Black Boy Analysis Essay Research Paper Black
4. Курсовая Управление инновациями 4
5. Биография на тему Потанин Григорий Николаевич
6. Контрольная работа Инновационные затраты и ценообразование
7. Реферат Управление финансовыми рисками 11
8. Реферат на тему Менталитет англичан
9. Реферат на тему Evolution And Darwinism Essay Research Paper In
10. Реферат Аналіз виробництва та реалізації продукції