Контрольная работа на тему Методи економетрії
Работа добавлена на сайт bukvasha.net: 2014-11-23Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Міністерство освіти і науки України
Відкритий міжнародний університет розвитку людини "Україна"
Самостійна робота на тему:
Економетричний аналіз даних
виконала
студентка групи ЗМЗЕД-41
спеціальності ”менеджмент
зовнішньекономічної діяльності”
Викладач: Пономаренко І.В.
Київ-2006
Мета роботи:
за даними спостережень необхідно:
1.провести розрахунки параметрів чотирьохфакторної моделі;
2.обчислити розрахункові значення Yр за умови варыювання пояснюючих змынних х.
3.перевырити істотність моделі за допомогою коефіцієнтів кореляції і детермінації, критерію Фішера та критерію Стюдента.
4.перевірити наявність мультиколінеарності за допомогою алгоритму Фаррара-Глобера.
Хід роботи:
1.1 проведення розрахунків параметрів чотирьохфакторної моделі
а) запишемо матрицю пояснбвальних змінних, яка буде містити: перший стовпчик – одиничні значення; наступні стопчики значення х1, х2, х3, х4 – відповідно інвестиції, виробничі фонди, продуктивність праці та оборотність коштів.
Х=
б) транспонуємо матрицю Х:
ХI=
в) виконуємо множення матриць ХХI в результаті отримуємо:
г) знайдемо матрицю обернену до ХХI:
д) помножимо ХIY:
є)отримаємо параметри розрахувавши вектор ^A=(ХХI)-1 ХIY
Після проведення розрахунків було отримано наступні значення параметрів лінійної моделі:
b0 = -24,41
b1 = 0,1725
b2 = 1,43
b3 = -0,2449
b4 = 2,9469
На основі отриманих параметрів чоритьхфакторної лінійної моделі побудуємо рівняння, яке буде мати наступний вигляд:
Yр = (-24,41)+0,1725х1+1,43х2-0,2449х3+2,9469х4.
Отже, отримане рівняня свідчить, що при збільшенні інвестицій на одиницю, прибутки зростуть 172 у.о, за умови незмінності інших факторів; при збільшенні виробничих фондів на одиницю прибутки зростуть на 1430 у.о. за умови незмінності інших факторів; при збіленні продуктивності праці на одиницю прибутки зменьшаться на 244 у.о. за умови незмінності інших факторів; при збільшенні оборотності коштів на одиницю, прибутки збільшаться на 2946 у.о.
1.2 обчислення розрахунків значень Yр за умови варіювання
Вплив факторів на прибуток
1.3 перевірити істотність моделі за допомогою коефіціентів кореляції і детермінації
Для перевірки істотності моделі за допомогою коефіцієнтів кореляції, для цього необхідно побудувати кореляційну матрицю.
Отже, найбільший коефіціент кореляції між пояснювальними змінними спостерігається для х4 та х3:R(х4, х3) = 0,5175. В той же час, найбільший коефіціент кореляції між пояснюваною змінними спостерігається для х1 та х4 :R(х1, х4) = 0,863. Отриманий результат показав, що оборотність коштів найбільше пов’язана з інвестиціями.
Наступним кроком перевірки істотності зв’язку між змінними буде розрахунок коефіцієнта детермінації з використанням середніх квадратів відхилень:
R2 = (Q2y - Q2u)/ Q2y=1-( Q2u - Q2y ).
Виходячи з формули розраховуємо загальну дисперсію (Q2y ) та дисперсію залишків ( Q2u).
а) загальна дисперсія (для прибутку) розраховуються на основі розрахункової таблиці:
Q2u= 2567,5041/11 = 233,409
б) дисперсія залишків розраховуються за допомогою наступного співвідношення:
Q2u=YIY-^AХIY/n-m
· спочатку множимо YI на матрицю Y:
YI=
YIY =| 4649403 |
· транспонуємо матрицю ^A:
A=
· проводимо розрахунок ^AХIY:
AХIY = | 4654875 |
· скориставшись співвідношенням, знаходимо дисперсію залишків:
Q2u=4649403-4654875/11-4=-501,461
· розраховуємо коефіцієнт детермінації:
R2 = 1-( -501,461/233,409) = 3,148
Розрахований коефіцієнт детермінації R2 = 3,148, дана чотирьох факторна модель показує, що прибуток повністю визначається врахованими факторами.
1.4 перевірити нявність мультиколінеарності за допомогою алгоритму Фаррара-Глобера
1.4.1 нормалізуємо зміни в економетричній моделі
1.4.2 нормалізуємо зміни в економетричній моделі. Матриця нормалізованих змінних буде мати наступний вигляд
Х* =
1.4.3 визначаємо кореляційну матрицю на основі елементів матриці нормалізованих змінних
Rхх = Х*I Х*
Rхх =
Обчислимо Х2 за наступною формулою:
Х2=-[n-1-1/6(2m+5)]ln | Rхх |.
· розраховуємо визначник кореляційної матриці скориставшись правилом Сарруса:
|Rхх | =1*1*1*1-0,863*0,3291*0,863*0,3291 = 0,9193.
Знаходимо Х2:
Х2=-[11-1-1/6(2*4+5)]ln | 0,9193|=7,8342*-0,08=-0,63.
З ймовірністю 0,919 можна стверджувати, що між факторними ознаками не існує мультиколінеарності, оскільки Х факт. < Х табл.
Відкритий міжнародний університет розвитку людини "Україна"
Самостійна робота на тему:
Економетричний аналіз даних
виконала
студентка групи ЗМЗЕД-41
спеціальності ”менеджмент
зовнішньекономічної діяльності”
Викладач: Пономаренко І.В.
Київ-2006
Мета роботи:
за даними спостережень необхідно:
1.провести розрахунки параметрів чотирьохфакторної моделі;
2.обчислити розрахункові значення Yр за умови варыювання пояснюючих змынних х.
3.перевырити істотність моделі за допомогою коефіцієнтів кореляції і детермінації, критерію Фішера та критерію Стюдента.
4.перевірити наявність мультиколінеарності за допомогою алгоритму Фаррара-Глобера.
Хід роботи:
1.1 проведення розрахунків параметрів чотирьохфакторної моделі
а) запишемо матрицю пояснбвальних змінних, яка буде містити: перший стовпчик – одиничні значення; наступні стопчики значення х1, х2, х3, х4 – відповідно інвестиції, виробничі фонди, продуктивність праці та оборотність коштів.
Х=
б) транспонуємо матрицю Х:
ХI=
в) виконуємо множення матриць ХХI в результаті отримуємо:
11 | 12132 | 3352 | 1279 | 282 |
12132 | 13437196 | 3710520 | 1415909 | 312747 |
3352 | 3710520 | 1028912 | 394291 | 86451 |
1279 | 1415909 | 394291 | 152077 | 33041 |
282 | 312747 | 86451 | 33041 | 7300 |
27,6707 | -0,0271 | -0,0547 | 0,0401 | 0,5579 |
-0,0271 | 0,0001 | -0,0003 | 0,0003 | -0,0018 |
-0,0547 | -0,0003 | 0,0021 | -0,0024 | -0,0001 |
0,0401 | 0,0003 | -0,0024 | 0,0032 | -0,0020 |
0,5579 | -0,0018 | -0,0001 | -0,0020 | 0,0663 |
7135 |
7902232 |
2187659 |
836936 |
184100 |
-24,4079 |
0,1725 |
1,4300 |
-0,2449 |
2,9469 |
b0 = -24,41
b1 = 0,1725
b2 = 1,43
b3 = -0,2449
b4 = 2,9469
На основі отриманих параметрів чоритьхфакторної лінійної моделі побудуємо рівняння, яке буде мати наступний вигляд:
Yр = (-24,41)+0,1725х1+1,43х2-0,2449х3+2,9469х4.
Отже, отримане рівняня свідчить, що при збільшенні інвестицій на одиницю, прибутки зростуть 172 у.о, за умови незмінності інших факторів; при збільшенні виробничих фондів на одиницю прибутки зростуть на 1430 у.о. за умови незмінності інших факторів; при збіленні продуктивності праці на одиницю прибутки зменьшаться на 244 у.о. за умови незмінності інших факторів; при збільшенні оборотності коштів на одиницю, прибутки збільшаться на 2946 у.о.
1.2 обчислення розрахунків значень Yр за умови варіювання
Вплив факторів на прибуток
№ | Yp | Yp(x1) | Yp(x2) | Yp(x3) | Yp(x4) |
1 | 749,43 | 701,88 | 728,53 | 688,84 | 689,33 |
2 | 634,66 | 676,60 | 645,93 | 693,74 | 686,38 |
3 | 648,86 | 685,03 | 652,93 | 692,51 | 686,38 |
4 | 766,33 | 691,73 | 770,53 | 676,83 | 695,22 |
5 | 626,00 | 668,17 | 659,93 | 691,29 | 674,59 |
6 | 624,15 | 669,89 | 652,93 | 691,78 | 677,54 |
7 | 716,57 | 700,16 | 708,93 | 689,08 | 686,38 |
8 | 673,14 | 690,01 | 673,93 | 690,80 | 686,38 |
9 | 683,09 | 693,45 | 680,93 | 690,31 | 686,38 |
10 | 711,41 | 700,16 | 694,93 | 689,08 | 695,22 |
11 | 732,05 | 705,32 | 708,93 | 687,61 | 698,17 |
cер варт | 687,79 | 689,31 | 688,94 | 689,26 | 687,45 |
1.3 перевірити істотність моделі за допомогою коефіціентів кореляції і детермінації
Для перевірки істотності моделі за допомогою коефіцієнтів кореляції, для цього необхідно побудувати кореляційну матрицю.
Х1 | Х2 | Х3 | Х4 | Y | |
Х1 | 1 | 0,2393 | 0,3829 | 0,8633 | -0,170 |
Х2 | 0,239 | 1 | 0,3291 | 0,259 | -0,218 |
Х3 | 0,383 | 0,3291 | 1 | 0,5175 | 0,214 |
Х4 | 0,863 | 0,259 | 0,5175 | 1 | 0,326 |
Y | -0,170 | -0,2180 | 0,2140 | 0,3263 | 1 |
Наступним кроком перевірки істотності зв’язку між змінними буде розрахунок коефіцієнта детермінації з використанням середніх квадратів відхилень:
R2 = (Q2y - Q2u)/ Q2y=1-( Q2u - Q2y ).
Виходячи з формули розраховуємо загальну дисперсію (Q2y ) та дисперсію залишків ( Q2u).
а) загальна дисперсія (для прибутку) розраховуються на основі розрахункової таблиці:
706 | 57,36364 | 3290,58678 |
588 | -60,63636 | 3676,76860 |
617 | -31,63636 | 1000,85950 |
725 | 76,36364 | 5831,40496 |
598 | -50,63636 | 2564,04132 |
588 | -60,63636 | 3676,76860 |
686 | 37,36364 | 1396,04132 |
608 | -40,63636 | 1651,31405 |
627 | -21,63636 | 468,13223 |
686 | 37,36364 | 1396,04132 |
706 | 57,36364 | 3290,58678 |
648,6364 | x | 2567,5041 |
б) дисперсія залишків розраховуються за допомогою наступного співвідношення:
Q2u=YIY-^AХIY/n-m
· спочатку множимо YI на матрицю Y:
|
YIY =| 4649403 |
· транспонуємо матрицю ^A:
-24,411 | 0,173 | 1,430 | -0,245 | 2,947 |
· проводимо розрахунок ^AХIY:
AХIY = | 4654875 |
· скориставшись співвідношенням, знаходимо дисперсію залишків:
Q2u=4649403-4654875/11-4=-501,461
· розраховуємо коефіцієнт детермінації:
R2 = 1-( -501,461/233,409) = 3,148
Розрахований коефіцієнт детермінації R2 = 3,148, дана чотирьох факторна модель показує, що прибуток повністю визначається врахованими факторами.
1.4 перевірити нявність мультиколінеарності за допомогою алгоритму Фаррара-Глобера
1.4.1 нормалізуємо зміни в економетричній моделі
№ | Xі1-Х1 | Xі2-Х2 | Xі3-Х3 | Xі4-Х4 | (Xі1-Х1)2 | (Xі2-Х2)2 | (Xі3-Х3)2 | (Xі4-Х4)2 |
1 | -73 | -28 | -2 | -3 | 5342 | 799 | 2,98347 | 11,314 |
2 | 74 | 31 | 18 | 1 | 5463 | 944 | 333,893 | 0,40496 |
3 | 25 | 26 | 13 | 1 | 620 | 662 | 176,165 | 0,40496 |
4 | -14 | -58 | -51 | -2 | 199 | 3396 | 2573,26 | 5,58678 |
5 | 123 | 21 | 8 | 5 | 15107 | 430 | 68,438 | 21,4959 |
6 | 113 | 26 | 10 | 4 | 12748 | 662 | 105,529 | 13,2231 |
7 | -63 | -14 | -1 | 1 | 3980 | 204 | 0,52893 | 0,40496 |
8 | -4 | 11 | 6 | 1 | 17 | 115 | 39,3471 | 0,40496 |
9 | -24 | 6 | 4 | 1 | 580 | 33 | 18,2562 | 0,40496 |
10 | -63 | -4 | -1 | -2 | 3980 | 18 | 0,52893 | 5,58678 |
11 | -93 | -14 | -7 | -3 | 8666 | 204 | 45,2562 | 11,314 |
Всьго | х | х | х | х | 56703 | 7466 | 3364,18 | 70,5455 |
Q2X1= | 5154,82 |
Q2X2= | 678,744 |
Q2X3= | 305,835 |
Q2X4= | 6,413 |
-0,31 | -0,1187 | -0,0298 | -0,4005 |
0,3104 | 0,1290 | 0,3150 | 0,0758 |
0,1046 | 0,1080 | 0,2288 | 0,0758 |
-0,0592 | -0,2447 | -0,8746 | -0,2814 |
0,5162 | 0,0870 | 0,1426 | 0,5520 |
0,4742 | 0,1080 | 0,1771 | 0,4329 |
-0,2649 | -0,0599 | -0,0125 | 0,0758 |
-0,0172 | 0,0450 | 0,1081 | 0,0758 |
-0,1012 | 0,0241 | 0,0737 | 0,0758 |
-0,2649 | -0,0179 | -0,0125 | -0,2814 |
-0,3909 | -0,0599 | -0,1160 | -0,4005 |
1.4.3 визначаємо кореляційну матрицю на основі елементів матриці нормалізованих змінних
Rхх = Х*I Х*
1 | 0,2393 | 0,3829 | 0,8633 |
0,239 | 1 | 0,3291 | 0,259 |
0,383 | 0,3291 | 1 | 0,5175 |
0,863 | 0,259 | 0,5175 | 1 |
Обчислимо Х2 за наступною формулою:
Х2=-[n-1-1/6(2m+5)]ln | Rхх |.
· розраховуємо визначник кореляційної матриці скориставшись правилом Сарруса:
|Rхх | =1*1*1*1-0,863*0,3291*0,863*0,3291 = 0,9193.
Знаходимо Х2:
Х2=-[11-1-1/6(2*4+5)]ln | 0,9193|=7,8342*-0,08=-0,63.
З ймовірністю 0,919 можна стверджувати, що між факторними ознаками не існує мультиколінеарності, оскільки Х факт. < Х табл.