Контрольная работа на тему Методы оптимизации при решении уравнений
Работа добавлена на сайт bukvasha.net: 2015-05-30Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Контрольная работа
«Методы оптимизации при решении уравнений»
Задание №1
Определить, существует ли кривая 
, доставляющая функционалу экстремум и, если существует, то найти ее уравнение.

Решение: Составим уравнение Эйлера и найдём его общее решение:


Используем краевые условия:

Решаем систему уравнений и получаем:

Таким образом, экстремаль имеет уравнение вида
Так как

то функционал на прямой 
достигает минимума.
Задание №2
Найти, используя уравнение Эйлера-Лагранжа, оптимальное управление 
, минимизирующее функционал 
для системы, описываемой уравнениями

,
при начальных и конечных условиях соответственно:

Решение
Формируем задачу по исходным данным:

(1)

(2)

Составим функцию Лагранжа и гамильтониан:

и соответственно уравнения Эйлера-Лагранжа (здесь для Н):

(3)

(4)
Используя замену (3), подставим выражения (4) во второе уравнение динамики в (1):


и находим общее решение

(5)
Подставим его в первое уравнение (1):

и находим общее решение:

(6)
Для 
из (6) и 
из (5) используем начальные и конечные условия и получаем систему уравнений для констант С1, С2, С3, С4,:

Таким образом, решение имеет вид:

которое удовлетворяет начальным и конечным условиям.
Задание №3
Для системы, описываемой уравнениями

с заданными условиями на начальное 
и конечное 
значение координат, найти оптимальное управление 
, минимизирующее функционал

Решение. Формулируем задачу по исходным данным

(1)

(2)
т.е. 
, подвижна на правом конце, координата 
- свободна на правом конце,

Составим функцию Гамильтона Н (или функцию Лагранжа L)

(3)
и соответствующие уравнения Эйлера-Лагранжа:

(4)

(5)

(6)
Составим вспомогательную функцию

,
где 
. Таким образом:

. (7)
Поскольку 
и 
подвижны, то используем условия трансверсальности:


(8)

(9)
Так как не фиксирован момент времени 
, то используем условие трансверсальности

Найдем значение 
при 
из (3), но учтем, что 
, а 
из (9). Тогда, учитывая (4):

и используя (10) получим:

(11)
Подставляя (4), (5) и (6) в (2), а потом в (1) и интегрируя получим:

(12),

(13)
Используя начальные условия, можем записать:

Запишем условие 
с учетом (13). Тогда:

(14)
Уравнения (9), (11) и (14) составляют систему уравнений с тремя неизвестными С1, С2 и 
:

Подставляя 1-е уравнение во 2-е, получим:

,
а подставляя 1-е в третье, получим:

Таким образом, решение имеет вид:

Задание №4
Используя метод динамического программирования найти оптимальное уравнение для системы

Решение:
Формируем задачу по исходным данным.

(1)

– не ограничено, то есть 
.

Составим уравнение Беллмана с учетом того, что 
(S-функция Беллмана)


(2)

(3)

(4)
Из (3) находим:

(5)
Подставим (5) в (4)

(6)
Представим функцию Беллмана в виде квадратичной формы

(7)
причем это должна быть положительно определенная квадратичная форма, а значит

(8)
т.е. матрица должна быть положительно определённой.
Вычисляя выражения:

(9)
подставим их в (6) и обратим коэффициенты при 
, 
и 
в ноль, т.к. справа у нас ноль:

Отсюда:

(10)

(11)

(12)
Если 
, то 
Þ S < 0, что нельзя допустить. Тогда:

а следовательно а12 и а22 должны быть одного знака, так как а11 > 0.
Тогда а12 = 1/2, а22 = 1, а11 = 1. Таким образом, решение имеет вид (из (5) и (9)):

Задача 5
Используя принцип максимума Понтрягина найти оптимальное управление для линейной системы

в задаче:
Решение:
Формируем задачу по исходным данным:





(4)
Составим функцию Гамильтона

Уравнения Эйлера-Лагранжа имеет вид:

(5)

(6)

(7)
Поскольку 
– подвижна, то используем условие трансверсальности:

Но из (5) видно, что y1 = С1Þ С1 = 1. Тогда из (7) видно, что y3 = t2/2-C2t+C3, - то есть это квадратичная парабола ветвями вверх, которая может дважды пересечь уровень y3 = 0 и возможных порядок следования интервалов знакопостоянства следующий: +, -, +.
Из принципа максимума следует:

,
а следовательно:

Тогда, поскольку y3 меняет знак дважды, (пусть в моменты t1 и t2) можем записать

(8)
Подставим 
в (3) и получим, проинтегрировав уравнение (3)

(9)
Используя начальные и конечные условия для х3 и условия непрерывности 
в t1 и t2 получим:

(10)
Подставим (9) и константы из (10) в (2) и проинтегрируем. Получим:


(11)
Используя начальные и конечные условия для х2 и условия непрерывности в t1 и t2, получим:

Используем непрерывность 
при 
и 
:


Собрав уравнения (10) и полученное уравнение составим систему уравнений:

(12-14)

.
Подставим (13) в полученное уравнение (вместо 
):

Тогда t1 из (12) равно

и, наконец,

Подставим (11), с учетом найденных констант в (1):


(15)
Исходя из начального условия и условия непрерывности получим:

Таким образом: моменты переключения: t1=1/4, t2=3/4, а 
заданы уравнениями(15), (11), (9) и (8) с известными константами.
Задание №6
Установить управляемость и наблюдаемость линейной системы:

где

.
Решение:
Для оценки управляемости составим матрицу управляемости (учтем, что n=3);
Y = (B, AB, A2B):

Таким образом

Взяв минор из 1,2 и 3 столбцов можно видеть, что

.
Следовательно, rang(Y)=3=n и система вполне управляема.
Для оценки наблюдаемости системы составим матрицу наблюдаемости (n=3):
H=(CT, ATCT, (AT)2 CT);


.
Таким образом

Взяв минор из 1, 2 и 3 столбцов можно видеть, что

Таким образом rang(H) = 3 = n, а следовательно система вполне наблюдаема.
Задание №7
Для линейной системы 
и квадратичного критерия

выполнить синтез оптимального управления с обратной связью
Решение: Требуется выполнить синтез стационарного регулятора. Для этого воспользоваться алгебраическим матричным уравнением Риккати:

где

,
причем матрица l>0 (положительно определена).


Сравнивая коэффициенты матрицы слева и справа, стоящих на одинаковых местах получим систему уравнений:

Решая систему уравнений с учетом положительной определенности матрицы l, получим:


Тогда для уравнения, которое имеет вид

получим:

«Методы оптимизации при решении уравнений»
Задание №1
Определить, существует ли кривая
Решение: Составим уравнение Эйлера и найдём его общее решение:
Используем краевые условия:
Решаем систему уравнений и получаем:
Таким образом, экстремаль имеет уравнение вида
то функционал на прямой
Задание №2
Найти, используя уравнение Эйлера-Лагранжа, оптимальное управление
при начальных и конечных условиях соответственно:
A | B | t0 | tf | x0 | xf | a | b |
0 1 0 0 | 0 1 | 0 | 1 | 1 0 | 0 0 | 0 | 1 |
Формируем задачу по исходным данным:
Составим функцию Лагранжа и гамильтониан:
и соответственно уравнения Эйлера-Лагранжа (здесь для Н):
Используя замену (3), подставим выражения (4) во второе уравнение динамики в (1):
и находим общее решение
Подставим его в первое уравнение (1):
и находим общее решение:
Для
Таким образом, решение имеет вид:
которое удовлетворяет начальным и конечным условиям.
Задание №3
Для системы, описываемой уравнениями
с заданными условиями на начальное
A | B | t0 | tf | x0 | xf | g0 | a | b |
0 1 0 0 | 0 1 | 0 | t | 1 0 | x1(tf) = -tf2 | 0 | 0 | 1 |
т.е.
Составим функцию Гамильтона Н (или функцию Лагранжа L)
и соответствующие уравнения Эйлера-Лагранжа:
Составим вспомогательную функцию
где
Поскольку
Так как не фиксирован момент времени
Найдем значение
и используя (10) получим:
Подставляя (4), (5) и (6) в (2), а потом в (1) и интегрируя получим:
Используя начальные условия, можем записать:
Запишем условие
Уравнения (9), (11) и (14) составляют систему уравнений с тремя неизвестными С1, С2 и
Подставляя 1-е уравнение во 2-е, получим:
а подставляя 1-е в третье, получим:
Таким образом, решение имеет вид:
Задание №4
Используя метод динамического программирования найти оптимальное уравнение для системы
A | B | t0 | tf | F | a | b |
0 1 0 0 | 0 1 | 0 | ∞ | 0 | 1 0 0 2 | 1 |
Формируем задачу по исходным данным.
Составим уравнение Беллмана с учетом того, что
Из (3) находим:
Подставим (5) в (4)
Представим функцию Беллмана в виде квадратичной формы
причем это должна быть положительно определенная квадратичная форма, а значит
т.е. матрица должна быть положительно определённой.
Вычисляя выражения:
подставим их в (6) и обратим коэффициенты при
Отсюда:
Если
а следовательно а12 и а22 должны быть одного знака, так как а11 > 0.
Тогда а12 = 1/2, а22 = 1, а11 = 1. Таким образом, решение имеет вид (из (5) и (9)):
Задача 5
Используя принцип максимума Понтрягина найти оптимальное управление для линейной системы
в задаче:
А | В | t0 | tf | х0 | xf | |u| |
0 1 0 0 0 1 0 0 0 | 0 0 1 | 0 | 1 | 0 0 0 | x1®max 0 0 | £1 |
Решение:
Формируем задачу по исходным данным:
Составим функцию Гамильтона
Уравнения Эйлера-Лагранжа имеет вид:
Поскольку
Но из (5) видно, что y1 = С1Þ С1 = 1. Тогда из (7) видно, что y3 = t2/2-C2t+C3, - то есть это квадратичная парабола ветвями вверх, которая может дважды пересечь уровень y3 = 0 и возможных порядок следования интервалов знакопостоянства следующий: +, -, +.
Из принципа максимума следует:
а следовательно:
Тогда, поскольку y3 меняет знак дважды, (пусть в моменты t1 и t2) можем записать
Подставим
Используя начальные и конечные условия для х3 и условия непрерывности
Подставим (9) и константы из (10) в (2) и проинтегрируем. Получим:
Используя начальные и конечные условия для х2 и условия непрерывности в t1 и t2, получим:
Используем непрерывность
Собрав уравнения (10) и полученное уравнение составим систему уравнений:
Подставив (12) в (13), получим уравнение
Подставим (13) в полученное уравнение (вместо
Тогда t1 из (12) равно
и, наконец,
Подставим (11), с учетом найденных констант в (1):
Исходя из начального условия и условия непрерывности получим:
Таким образом: моменты переключения: t1=1/4, t2=3/4, а
Задание №6
Установить управляемость и наблюдаемость линейной системы:
где
Решение:
Для оценки управляемости составим матрицу управляемости (учтем, что n=3);
Y = (B, AB, A2B):
Таким образом
Взяв минор из 1,2 и 3 столбцов можно видеть, что
Следовательно, rang(Y)=3=n и система вполне управляема.
Для оценки наблюдаемости системы составим матрицу наблюдаемости (n=3):
H=(CT, ATCT, (AT)2 CT);
Таким образом
Взяв минор из 1, 2 и 3 столбцов можно видеть, что
Таким образом rang(H) = 3 = n, а следовательно система вполне наблюдаема.
Задание №7
Для линейной системы
выполнить синтез оптимального управления с обратной связью
A | B | Q | R |
0 1 1 0 | 1 0 | 1 0 0 0 | 1 |
где
причем матрица l>0 (положительно определена).
Сравнивая коэффициенты матрицы слева и справа, стоящих на одинаковых местах получим систему уравнений:
Решая систему уравнений с учетом положительной определенности матрицы l, получим:
Тогда для уравнения, которое имеет вид
получим: