Курсовая на тему Исследование операций и теория систем
Работа добавлена на сайт bukvasha.net: 2014-07-21Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
содержание
Задача 1. 4
Задача 2. 6
Задача 3. 8
Задача 4. 11
Список используемой литературы.. 15
xa1 - количество тысяч деталей, выпускаемых цехом a c 1-го склада
xa2 - количество тысяч деталей, выпускаемых цехом a c 2-го склада
xa3 - количество тысяч деталей, выпускаемых цехом a c 3-го склада
xa4 - количество тысяч деталей, выпускаемых цехом a c 4-го склада
xb1 - количество тысяч деталей, выпускаемых цехом b c 1-го склада
xb2 - количество тысяч деталей, выпускаемых цехом b c 2-го склада
xb3 - количество тысяч деталей, выпускаемых цехом b c 3-го склада
xb4 - количество тысяч деталей, выпускаемых цехом b c 4-го склада
xc1 - количество тысяч деталей, выпускаемых цехом c c 1-го склада
xc2 - количество тысяч деталей, выпускаемых цехом c c 2-го склада
xc3 - количество тысяч деталей, выпускаемых цехом c c 3-го склада
xc4 - количество тысяч деталей, выпускаемых цехом c c 4-го склада
Так как производительность цехов в день известна, то можно записать следующее:
Зная пропускную способность складов за день, запишем:
Запишем целевую функцию, при которой стоимость перевозок будет минимальна:
Имеем классическую транспортную задачу с числом базисных переменных, равным n+m–1 , где m–число пунктов отправления, а n – пунктов назначения. В решаемой задаче число базисных переменных равно 4+3-1=6
Число свободных переменных соответственно 12-6=6
Примем переменные x1a, x1b, x2a, x1с, x4с, x3b в качестве базисных, а переменные x2c, x3c, x2b, x3а, x4а, x4b в качестве свободных.
Далее в соответствии с алгоритмом Симплекс метода необходимо выразить базисные переменные через свободные:
В задании требуется найти минимум функции L. Так как коэффициент при переменной x3a меньше нуля, значит найденное решение не является оптимальным.
Составим Симплекс таблицу:
\s
\s
Ответ: при перевозке x3a=4, х1b=4, х1с=16, х2а=35, х3b=26, х4с=8, х1а=х4а=x2b=x4b=x2c=x3c=0 тыс/изд стоимость будет минимальна и составлять 86 тыс/руб.
Задача 1. 4
Задача 2. 6
Задача 3. 8
Задача 4. 11
Список используемой литературы.. 15
Задача 1
x – количество тысяч деталей, выпускаемых цехами a, b, c i-го склада, где i – номер склада.xa1 - количество тысяч деталей, выпускаемых цехом a c 1-го склада
xa2 - количество тысяч деталей, выпускаемых цехом a c 2-го склада
xa3 - количество тысяч деталей, выпускаемых цехом a c 3-го склада
xa4 - количество тысяч деталей, выпускаемых цехом a c 4-го склада
xb1 - количество тысяч деталей, выпускаемых цехом b c 1-го склада
xb2 - количество тысяч деталей, выпускаемых цехом b c 2-го склада
xb3 - количество тысяч деталей, выпускаемых цехом b c 3-го склада
xb4 - количество тысяч деталей, выпускаемых цехом b c 4-го склада
xc1 - количество тысяч деталей, выпускаемых цехом c c 1-го склада
xc2 - количество тысяч деталей, выпускаемых цехом c c 2-го склада
xc3 - количество тысяч деталей, выпускаемых цехом c c 3-го склада
xc4 - количество тысяч деталей, выпускаемых цехом c c 4-го склада
Так как производительность цехов в день известна, то можно записать следующее:
Зная пропускную способность складов за день, запишем:
Запишем целевую функцию, при которой стоимость перевозок будет минимальна:
Имеем классическую транспортную задачу с числом базисных переменных, равным n+m–1 , где m–число пунктов отправления, а n – пунктов назначения. В решаемой задаче число базисных переменных равно 4+3-1=6
Число свободных переменных соответственно 12-6=6
Примем переменные x1a, x1b, x2a, x1с, x4с, x3b в качестве базисных, а переменные x2c, x3c, x2b, x3а, x4а, x4b в качестве свободных.
Далее в соответствии с алгоритмом Симплекс метода необходимо выразить базисные переменные через свободные:
В задании требуется найти минимум функции L. Так как коэффициент при переменной x3a меньше нуля, значит найденное решение не является оптимальным.
Составим Симплекс таблицу:
Ответ: при перевозке x3a=4, х1b=4, х1с=16, х2а=35, х3b=26, х4с=8, х1а=х4а=x2b=x4b=x2c=x3c=0 тыс/изд стоимость будет минимальна и составлять 86 тыс/руб.
Задача 2
| | | |
| 7 9 | -9 3 | 5 -3 |
| 2 1 | -1 | 2 - |
| 3 1 | 3 | -1 - |
| 6 -3 | 3 -1 | 2 1 |
Найдем оптимальное решение.
| | | |
| 16 | 3 | 2 |
| 3 | | |
| 1 | | - |
| 3 | -1 | 3 |
Ответ:
Задача 3
Заданная задача – транспортная задача с неправильным балансом (избыток заявок).Необходимо ввести фиктивный пункт отправления Аф с запасом
Для нахождения опорного плана используем метод «Северо-западного угла».
В1 | В2 | В3 | | |
А1 | 12 600 | 42 | 25 | 600 |
А2 | 21 100 | 18 100 | 35 | 200 |
А3 | 25 | 15 200 | 23 | 200 |
А4 | 21 | 30 100 | 40 | 100 |
А5 | 20 | 32 400 | 50 | 400 |
АФ | 0 | 0 200 | 0 300 | 500 |
| 700 | 1000 | 300 | 2000 |
Решение является опорным.
В1 | В2 | В3 | | |
А1 | 12 600 | 42 | 25 | 600 |
А2 | 21 | 18 200 | 35 | 200 |
А3 | 25 | 15 200 | 23 | 200 |
А4 | 21 100 | 30 | 40 | 100+ |
А5 | 20 | 32 400- | 50 | 400- |
АФ | 0 | 0 200 | 0 300 | 500 |
| 700 | 1000 | 300 | 2000 |
Решение является опорным, но вырожденным. Для того чтобы свести вырожденный случай к обычному решению, изменим запасы на малую положительную величину
В1 | В2 | В3 | | |
А1 | 12 600 | 42 | 25 | 600 |
А2 | 21 | 18 200 | 35 | 200 |
А3 | 25 | 15 200 | 23 | 200 |
А4 | 21 | 30 100+ | 40 | 100+ |
А5 | 20 100 | 32 300- | 50 | 400- |
АФ | 0 | 0 200 | 0 300 | 500 |
| 700 | 1000 | 300 | 2000 |
Проверим правильность решения задачи методом потенциалов.
Пусть
Так как среди найденных чисел
Ответ: 28400
Задача 4
НайтиПри ограничениях
1) Определение стационарной точки
2) Проверка стационарной точки на относительный максимум или минимум
3) Составление функции Лагранжа
Применяем к функции Лагранжа теорему Куна-Таккера.
4) Нахождение решение системы I. Оставим все свободные переменные в правой части.
(из II)
Система уравнений II определяется условиями дополняющей нежесткости:
5) Введем искусственные переменные
Проверяем условие выполнения дополняющей не жесткости:
Ответ: Решения
Тогда
Список используемой литературы
1. Волков И. К., Загоруйко Е. А. Исследование операций. – Москва: Издательство МГТУ имени Баумана Н. Э., 2000г. – 436с.2. Кремер Н. Ш. Исследование операций в экономике. – Москва: Издательское объединение «ЮНИТИ», 1997г. – 407с.
3. Курс лекций Плотникова Н.В.