Курсовая на тему Методы и средства радиационно-технологического контроля при сортировке твердых радиоактивных отходов
Работа добавлена на сайт bukvasha.net: 2015-06-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
МИНИСТЕРСТВО ТОПЛИВА И ЭНЕРГЕТИКИ
СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ
ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ
Институт ЯХТ
Кафедра Д и РТК
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовому проекту
Тема: Методы и средства радиационно-технологического контроля при сортировке твердых радиоактивных отходов
Выполнил: студент
Бурак Л.А.
Севастополь - 2006 г.
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ
ТРО - твердые радиоактивные отходы
РАО - радиоактивные отходы
АЭС - атомная электрическая станция
ЦПРО- цех переработки радиоактивных отходов
БД - блок детектирования
ИИ - ионизирующее излучение
ВВЕДЕНИЕ
Производственная деятельность АЭС в сфере обращения с радиоактивными отходами направлена на обеспечение безопасной, надежной и экономичной работы основного и вспомогательного оборудования зданий и сооружений систем обращения с радиоактивными отходами, а так же поддержания в необходимом состоянии самих зданий и сооружений, путем выполнения предусмотренных производственными и нормативными документами процедур, организации их технического обслуживания и ремонтов.
С этой целью принимаются ряд мер:
обеспечение приемлемого уровня защиты здоровья человека от радиационного воздействия РАО;
учет возможных последствий для человека и природной среды;
исключение чрезмерного экономического бремени для будущих поколений;
установление четкой ответственности за обращение с РАО;
разграничение полномочий, установление ответственности, прав и обязанностей в области обращения с РАО.
Одной из операций в комплексе обращения с ТРО является сортировка ТРО по уровням активности. Данная работа направлена на совершенствовании радиационного контроля при выполнении этой операции.
1 ПОРЯДОК ОБРАЩЕНИЯ С ТВЕРДЫМИ РАДИОАКТИВНЫМИ ОТХОДАМИ
Общие положения
Основной задачей системы обращения с ТРО является перевод отходов в состояние, позволяющее длительно хранить их с обеспечением максимальной безопасности обслуживающего персонала, жителей региона и окружающей природной среды. В этих целях ТРО подвергаются сортировке по активности и виду материала с последующей переработкой (прессование, сжигание, цементирование, плавление и т.п.), упаковкой в специальные защитные контейнеры и контролируемым хранением.
В структурных подразделениях приказом по станции назначены ответственные за обращение с РАО. Обязанность ответственных - контроль выполнения требований обращения с РАО в подразделении (бригадах, сменах и т.п.), выдача руководству подразделений предложений для формирования мероприятий по минимизации образования отходов.
Ежемесячно на АЭС под председательством заместителя главного инженера по общестанционным объектам проводятся рабочие совещания руководителей подразделений. Цель совещаний - рассмотрение результатов работы за предыдущий месяц, выполнение намеченных мероприятий, разработка перспективных планов по обращению с РАО.
1.2 Распределение обязанностей и ответственности в сфере обращения с радиоактивными отходами
ЦПРО обеспечивает сбор, транспортировку, переработку, хранение и учет ТРО, образующихся на станции в процессе её эксплуатации, в соответствии с требованиями нормативных документов. Отдел радиационной безопасности обеспечивает:
радиационный контроль всех видов деятельности по обращению с РАО;
выполнение требований радиационной безопасности эксплуатационным персоналом.
Подразделения, в результате деятельности, которых образуются РАО, обеспечивают:
планирование образования РАО;
разработку и выполнение цеховых мероприятий по минимизации РАО;
сбор РАО на местах образования.
Смежные подразделения обеспечивают финансовое, материально-техническое, технологическое, ремонтное, транспортное сопровождение процесса обращения с РАО и подготовку персонала.
Общее руководство процессом обращения с РАО обеспечивают генеральный директор, главный инженер, заместители главного инженера.
1.3 Организация обращения с твердыми радиоактивными отходами в процессе проведения реконструктивных работ и ремонта
Технические задания на разработку проектов реконструктивных работ в зоне строгого режима в обязательном порядке согласовываются с ЦПРО и отделом радиационной безопасности. Проекты организации и проекты производства реконструкции согласовываются с ЦПРО и отделом радиационной безопасности и включают в себя раздел "Обращение с РАО", содержащий в себе информацию о планируемых объемах ТРО, мероприятия, направленные на сокращение РАО и перечень должностных лиц, ответственных за минимизацию РАО.
До первого декабря текущего года, для формирования годовых графиков ремонта технологического оборудования на следующий год, энергоремонтное предприятие передает в отдел подготовки производства ремонта объемы и виды ТРО, которые будут образовываться в процессе ремонта и технического обслуживания каждой единицы оборудования.
В годовых графиках ремонта оборудования и ведомости работ в период планово-предупредительного ремонта (в том числе и в дополнительной) отражаются объемы и виды ТРО, образующихся в процессе ремонта каждой единицы оборудования.
Демонтированное оборудование (электротехническое, тепломеханичес-кое, трубопроводы, кабельная продукция и т.п.) после проведения радиационного контроля разбирают на составляющие элементы, комплектующие для последующей передачи в цех дезактивации на проведение дезактивации. После проведения дезактивации и радиационного контроля образовавшиеся чистые отходы сдаются в металлолом.
Не подлежащие дезактивации ТРО по окончанию работ (рабочей смены) производитель работ сдает на пункты приема в установленное время (с 03.00 до 04.00; с 07.00 до 08.00; с 11.00 до 12.00; с 15.00 до 16.00; с 19.00 до 20.00; с 23.00 до 24.00).
ЦПРО ежедневно проводит анализ объема, видов и источников образования РАО и доводят результаты до сведения руководителей ремонтных и эксплуатационных подразделений. В случае превышения допустимого уровня образования РАО руководители ремонтного и эксплуатационного подразделений разрабатывают и внедряют соответствующие компенсирующие мероприятия.
По окончанию реконструкции, ремонтной кампании (период планово- предупредительного ремонта блока) руководителя ремонтных подразделений совместно с руководителями эксплуатационных подразделений передают в ЦПРО сведения о реализованных в процессе работ мероприятиях.
На основании полученных данных ЦПРО выпускает и доводит до ведома руководства АЭС и руководителей подразделений итоговый отчет по обращению с РАО с анализом эффективности принятых мер.
Руководители ремонтных и эксплуатационных подразделений знакомят подчиненный персонал с итоговым отчетом, разрабатывают и направляют в
ЦПРО предложения по минимизации образования РАО в период предстоящей ремонтной кампании.
На основании итогового отчета и предложений ремонтных и эксплуатационных подразделений ЦПРО разрабатывают мероприятия по минимизации образования РАО в следующую ремонтную кампанию.
1.4 Утилизация бытовых отходов
К бытовым относятся отходы, образующиеся в местах общего пользования (санузлы, туалеты) и местах постоянного пребывания персонала. То есть – бумага, окурки, упаковка от сигарет и т.п. Во всех подразделениях, выполняющих работы в ЗСР, назначены ответственные за удаление бытовых отходов на места их сбора. Отходы упаковываются в полиэтиленовые мешки, масса мешка - не более 25кг. Места сбора бытовых отходов расположены в:
Спецкорпус-1 – в помещении ВС-558/1, отметка 12.00 возле щита радиационного контроля;
обстройке РО блока №3 – в помещении А-707/2, отметка 24.00;
Спецкорпус-2 – в помещении С-410, отметка 13.20.
Все сдаваемые отходы подвергаются 100% радиационному контролю.
Утилизацию РАО, выявленных в процессе радиационного контроля бытовых отходов, выполняет персонал ЦПРО.
Удаление бытовых отходов из мест сбора и их утилизацию производит персонал цеха дезактивации.
2 СОРТИРОВКА ТВЕРДЫХ РАДИОАКТИВНЫХ
2.1 Общие положения
Основной задачей сортировки ТРО по виду материала является подготовка их к переработке (прессованию, сжиганию, дезактивации).
ТРО первой группы активности по виду материала сортируются на:
дезактивируемые металлические отходы (металлические отходы с относительно гладкой поверхностью);
сжигаемые (текстиль, дерево, бумага, пластикат, пластмасса, резина и пр.);
прессуемые отходы, не проходящие предварительного прессования (бетон, кирпич, строительный мусор, шлам, песок, лампы накаливания, стекло, поранит, материалы огневой защиты кабелей, металл и пр.);
прессуемые отходы, подвергающиеся предварительному прессованию (теплоизоляционные маты, и пр.).
В целях обеспечения принципов ALARA (As Low As Reasonably Achievable – настолько низком, насколько это обосновано достижимо) упаковки с отходами второй и третьей групп активности без сортировки по виду материала загружаются в ячейки хранилища ТРО на временное хранение.
2.2 Аппаратное обеспечение
В состав установки сортирования входит следующее основное оборудование:
сортировочный стол;
опрокидывающее устройство;
сортировочная станция I с прессом предварительного прессования;
сортировочная станция II;
ленточный конвейер.
На сортировочном столе осуществляется фрагментация отходов. Для фрагментации используются следующие электрические инструменты:
электрический зубильный молоток;
ножницы с гидравлическим приводом;
электрические ручные ножницы для резки листов;
электрическая маятниковая пила-ножовка;
пила с лукообразным станком.
Техническая характеристика сортировочного стола представлена в таблице 1.
Таблица 1 - Техническая характеристика сортировочного стола
Наименование параметра | Величина |
1. Геометрические размеры: |
|
длина, мм ширина, мм высота, мм | 4070 |
| 700 |
| 2700 |
2. Вес, кг | 1500 |
3. Мощность светильника, кВт | 0,4 |
Опрокидывающее устройство предназначено для опорожнения контейнера с твердыми радиоактивными отходами на наклонную разгрузочную поверхность перед сортировочным столом.
Техническая характеристика опрокидывающего устройства приведена в таблице 2.
Таблица 2 - Техническая характеристика опрокидывающего устройства
Наименование параметра | Величина |
1. Геометрические размеры: |
|
длина, мм | 2100 |
ширина, мм | 2000 |
высота, мм | 3100 |
2. Вес, кг | 1000 |
3. Грузоподъемность, кн | 30 |
4. Мощность, кВт | 3 |
На сортировочных станциях смешанные твердые радиоактивные отходы сортируются по видам материалов. Для этого в сортировочных станциях предусмотрено шесть мест сортировки, к которым присоединяются соответствующие емкости (бочки 170 л или 200 л) для загрузки отходов. Для предварительного прессования с целью уменьшения объема прессуемых отходов на первом сортировочном месте предусмотрен пресс предварительного прессования, встроенный в сортировочную станцию.
Техническая характеристика сортировочной станции I (с прессом предварительного прессования) представлена в таблице 3.
Таблица 3 - Техническая характеристика сортировочной станции I
Наименование параметра | Величина |
1. Геометрические размеры: |
|
длина, мм | 3720 |
ширина, мм | 1450 |
высота, мм | 2500 |
2. Вес, кг | 2700 |
3. Мощность светильника, кВт
0,4
Техническая характеристика пресса предварительного прессования представлена в таблице 4.
Таблица 4 - Техническая характеристика пресса предварительного прессования
Наименование параметра | Величина |
1. Геометрические размеры: |
|
длина, мм | 640 |
ширина, мм | 500 |
высота, мм | 910 |
2. Усилие прессования, кн | 150 |
4. Давление масла, кгс/см | 200 |
5. Мощность, кВт | 5,5 |
Техническая характеристика сортировочной станции II представлена в таблице 5.
Таблица 5 - Техническая характеристика сортировочной станции II
Наименование параметра | Величина |
1. Геометрические размеры: |
|
длина, мм | 1860 |
ширина, км | 1450 |
высота, мм | 2700 |
2. Вес, кг | 700 |
3. Мощность светильника, кВт | 0,2 |
Ленточный конвейер представляет собой передвижной конвейер общего назначения, применяемый для транспортировки различных "насыпных" грузов. Направление движения ленты одностороннее.
Техническая характеристика ленточного конвейера представлена в таблице 6.
Таблица 6 – Техническая характеристика ленточного конвейера
Наименование параметра | Величина |
1.Геометрические размеры: длина, мм ширина, мм |
~ 4120 ~ 450 |
2.Скорость транспортировки, м/мин | 0,03 - 0,3 |
3. Грузоподъемность, кн 4. Вес, кг | 3 500 |
5. Мощность, кВт | 0.55 |
2.3 Порядок выполнения сортировки
Смешанные твердые радиоактивные отходы поступают в установку сортирования в контейнерах вместимостью 1,5 м3.
На вильчатой подъемной тележке контейнер транспортируется из помещения 103 "Помещение выгрузки" через помещение 134 "Помещение для транспортировки" в помещение 132 "Материальный шлюз сортировки". С помощью мостового крана и траверсы контейнер переносится через потолочный люк и устанавливается в помещении 244 "Буферный склад для сортировки".
Затем контейнер с помощью мостового крана и траверсы через потолочный люк устанавливается на опрокидывающее устройство в помещении 131/2 "Загрузка в сортировку". Траверса отсоединяется от контейнера вручную, поднимается наверх в помещение 244 и потолочный люк закрывается. Контейнер вручную скрепляется с опрокидывающим устройством.
Переработчик нажатием кнопки на стенде управления в помещении 131/1 "Помещение сортировки" включает в работу гидравлический привод опрокидывающего устройства. Опрокидывающее устройство наклоняет контейнер и высыпает отходы на наклонную разгрузочную поверхность перед сортировочным столом. В процессе наклона контейнера крышка контейнера раздвигается в обе стороны по направляющим рельсам и таким образом автоматически открывается.
Отходы забираются на сортировочный стол из наклоненного контейнера вручную с помощью скребка.
На сортировочном столе отходы при необходимости размельчаются с помощью вспомогательных инструментов.
Размельчение осуществляется до такой величины, чтобы отходы могли быть отсортированы на сортировочных станциях I и II и загружены в бочки, т.е. до максимального размера в любом измерении — 200 мм.
Размельченные отходы передаются на присоединенные с обеих сторон сортировочные станции. На стороне сортировочной станции I смонтированы направляющие листы к ленточному конвейеру.
На ленточный конвейер к сортировочной станции I подаются следующие отходы:
прессуемые сухие отходы, требующие предварительной подпрессовки;
прессуемые (влажные) отходы;
сжигаемые отходы.
К сортировочной станции II подаются следующие отходы:
прессуемые отходы без предварительного прессования;
дезактивируемые отходы.
Сортировка на станции I осуществляется по схеме, приведенной в таблице 7.
Таблица 7- Схема сортировки ТРО на станции I
Сортировщик /рабочее место/ | Отходы | Обработка |
1/1 | сухие прессуемые отходы, подвергающиеся предварительному прессованию | складываются в 170-литровые бочки, прессуются прессом для предварительного прессования |
1/2 | прессуемые (влажные) отходы | складываются в 170-литровые бочки |
1/3 и 1/4 | сжигаемые отходы | складываются в мешки (вложенные в уплотняющий цилиндр); |
На первом сортировочном месте 1/1 сортировочной станции I установлен пресс предварительного прессования.
Предварительно прессуемые отходы, такие как изоляционный материал, металлические детали, кабель извлекаются с ленточного конвейера и при открытом защитном устройстве сбрасываются в присоединенную 170-литровую бочку. После закрытия защитного устройства находящиеся в бочке отходы можно прессовать. В зависимости от степени заполнения бочки процессы последующего заполнения и прессования могут быть повторены.
На втором сортировочном месте 1/2 отсортировываются влажные отходы, определяемые персоналом визуально в соответствии с эксплуатационной инструкцией. Они извлекаются вручную из ленточного конвейера и загружаются в 170-литровую бочку, присоединенную к камере.
Для сортирования горючих отходов в сортировочной станции I предусмотрены два сортировочные места - третье (1/3) и четвертое (1/4).
Каждое место оснащено уплотняющим цилиндром. В уплотняющий цилиндр вручную помещается бумажный трехслойный пустой мешок высотой 650мм и диаметром 350мм, который затем оборачивается вокруг передней части цилиндра. Взятые из лотка для отходов горючие отходы помещаются в мешок, расположенный в уплотняющем цилиндре, с последующим прессованием специально предусмотренным механизмом без непосредственного контакта персонала с ТРО. Для предотвращения повреждения мешка уплотняющий цилиндр оснащен днищем.
Заполненный мешок закрывается, затем извлекается из уплотняющего цилиндра и загружается в контейнер.
Сортировочная станция II состоит из двух сортировочных мест.
Сортировка на станции II осуществляется по схеме, приведенной в таблице 8.
Таблица 8 - Схема сортировки ТРО на станции II
Сортировщик /рабочее место/ | Отходы | Обработка |
П/1 | прессуемые отходы, не проходящие предварительного прессования | складываются в 170-литровые бочки |
П/2 | Дезактивируемые металлические отходы | складываются в 200-литровые бочки |
Первое место (П/1) сортировочной станции II предназначено для прессуемых отходов без предварительной прессовки - это строительный мусор и металлические детали, при прессовании которых в прессе предварительной прессовки не достигается эффекта по уменьшению объема, например, части профилей, листы, арматура, моторы. Эти отходы загружаются в 170-литровую бочку. Второе место (П/2) предназначено для сортировки дезактивируемых отходов. Имеются ввиду повторно используемые металлические отходы с относительно гладкой поверхностью.
Эти отходы извлекаются из лотка для отходов на втором месте сортировочной станции II и расфасовываются в присоединенную ко второй камере 200-литровую бочку.
Наполненные отходами бочки принимаются с помощью тележки с захватом бочек в помещениях 131/1 "Выгрузка из сортировки I" и 131/2 "Выгрузка из сортировки П" и вывозятся в буферные хранилища (помещение 135 или помещение 143), в помещение 103 "Помещение разгрузки" - только дезактивируемые отходы. При необходимости отсортированные отходы могут подаваться прямо на переработку (сжигание, прессование, сушка или дезактивацию).
3 РАДИАЦИОННЫЙ КОНТРОЛЬ ПРИ СОРТИРОВКЕ ТРО
3.1 Общие требования
Радиоактивные отходы – материальные объекты и субстанции, активность радионуклидов или радиоактивное загрязнение которых превышает границы, установленные действующими нормами, при условии, что использование этих объектов и субстанций не предусматривается.
Основным регламентирующим документом, устанавливающим классификацию ТРО, являются «Санитарные правила проектирования и эксплуатации атомных станций. СП АС-88, ДНАОП 0.03-1.73-79». Критерии классификации приведены в таблице 9.
Таблица 9 – Классификация твердых радиоактивных отходов
Параметры контроля, единицы измерений | Группа отходов | ||
| 1 группа низкоактивные | 2 группа среднеактивные | 3 группа высокоактивные |
1 Мощность эквивалентной дозы, мбэр/час | от 0,1 до 30 | от 30 до 1000 | более 1000 |
2 Удельная активность: для β-излучателей, мкКи/кг; для α-излучателей, мкКи/кг | от 2 до 100 от 0,2 до 10 | от 100 до 105 от 10 до 104 | более 105 более 104 |
3 Поверхностное загрязнение: для β-излучателей, β-частиц/см2 . мин для α-излучателей, α-частиц/см2 . мин |
от 50 до 104
от 5 до 103 |
от104до 107
от103до 106 |
более 107
более 10б |
Кроме того классификация может выполняться по мощности дозы γ-излучения табл.10
Таблица 10 - Классификация РАО с неизвестным радионуклидным составом (НРС) и неизвестной удельной активностью по критерию
мощности поглощенной дозы в воздухе на расстоянии 0,1 м
от поверхности объекта (контейнера)
Категория РАО | Мощность поглощенной дозы в воздухе, мкГр . час-1 | |
1 | Низкоактивные, НРС | >1; ≤ 100 |
2 | Среднеактивные, НРС | > 100; ≤ 10000 |
3 | Высокоактивные, НРС | > 10000 |
Примечание: Запись «>1; ≤100» следует понимать как «мощность поглощенной дозы в воздухе – более 1 мкГр . час», но меньше или равна 100 мкГр . час».
Допускается построение классификаций твердых и жидких отходов, основанных на разделении РАО по видам производства с РАО-образующими технологиями или по видам РАО-образующих источников, возникших в результате незапланированных (например, аварийных) событий .
РАО классифицируются по критериям величины периода полураспада радионуклидов, которые входят в эти отходы:
короткоживущие, в составе которых нет радионуклидов с периодами полураспада, превышающими 10 лет;
среднеживущие, содержащие радионуклиды с периодом полураспада свыше 10 лет, но не более 100 лет;
долгоживущие, в которых содержатся радионуклиды с периодами полураспада превышающими 100 лет.
В свою очередь короткоживущие РАО подразделяются на:
«суточники», с периодами полураспада входящих в них радионуклидов не превышающими 18 суток; к ним, в частности, относятся Na-24, К-42,1-123,1-131, Te-132+I-132, Cs-136;
«месячники», период полураспада которых не превышает трех месяцев: Sr-85, Sr-89, Y-91, Nb-95, Zr-95,1-125, Ba-140;
«годовики», к которым принадлежат радионуклиды с периодом полураспада свыше трех месяцев: Са-45, Ru-106, Ва-133, Cs-134, Ce-144, T1-204.
Это деление определяет требования, которые следует предъявлять к методам переработки, транспортирования и захоронения радиоактивных отходов различной категории, исходя из возможного радиационного воздействия на человека и объекты окружающей среды. Так, низкоактивные отходы представляют опасность только при попадании внутрь организма. Поэтому их достаточно локализовать таким образом, чтобы радионуклиды, содержащиеся в этих отходах, не могли попасть внутрь организма в результате миграции по биологическим цепочкам. Среднеактивные отходы представляют опасность как источник не только внутреннего, но и внешнего облучения, а следовательно, при их переработке и захоронении необходимо предусматривать соответствующие защитные барьеры для ослабления потоков излучения (в основном фотонного) до регламентированных уровней. Отходы третьей категории из-за крайне высокой удельной активности, а следовательно, и большого энерговыделения, требуют дополнительного создания систем охлаждения емкостей, в которых они содержатся.
Для классификации ТРО необходимо соответствующее аппаратное обеспечение радиационного контроля
Аппаратное обеспечение
Система радиационного контроля представляет собой комплекс программно-технических средств и организационных мероприятий, позволяющих выполнить контроль радиационной обстановки и направленных на обеспечение и соблюдение норм радиационной безопасности и определение параметров, характеризующих радиационную безопасность.
Система радиационного контроля отслеживает и учитывает изменение значений контролируемых параметров при всех режимах работы.
Контроль активности ТРО в процессе сортировки производится переносными приборами типа МКС-01Р.
3.2.1 Радиометр-дозиметр МКС-01Р
Радиометр-дозиметр МКС-01Р предназначен для измерения степени загрязненности поверхности альфа- и бета-активными веществами (плотности потока и флюенса альфа- и бета-частиц), эквивалентной дозы и мощности эквивалентной дозы рентгеновского, гамма-излучений. Кроме этого радиометр-дозиметр позволяет измерить плотность потока и флюенс тепловых, быстрых и промежуточных нейтронов, эквивалентную дозу и мощность эквивалентной дозы нейтронного излучения.
Радиометр-дозиметр МКС-01Р состоит из пульта регистрации и четырех сменных блоков детектирования. В зависимости от применяемого БД дозиметр измеряет ионизирующее излучение, вид, энергетический диапазон и измеряемая величина, которого указаны в Таблице 11.
Таблица 11 – Вид, энергетический диапазон и измеряемая величина ионизирующего излучения
Вид измерения и измеряемая величина | Энергетический диапазон или нуклид | Тип БД | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Альфа излучения (загрязненность поверхности альфа-активными веществами): - плотность потока альфа-частиц; | Плутоний-239 | БДКА-01Р | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
- флюенс альфа-частиц |
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Бета-излучение (загрязненность поверхности бета-активными веществами): | 0,3-3 МэВ максимального значения энергий бета-спектра | БДКБ-01Р | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
- плотность потока бета-частиц; |
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
- флюенс бета-частиц |
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Рентгеновское и гамма-излучение: |
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
- мощность эквивалентной дозы;
Примечания:
Диапазон измерения и предельные значения основной погрешности радиометра-дозиметра для каждого вида ионизирующего излучения и измеряемой величины указаны в табл. 12. Предельные значения основной погрешности измерений даны при доверительной вероятности 0,95 для любой точки, начиная со значения равного половине самой низшей декады рабочего диапазона (значения указаны без скобок). В скобках указана основная погрешность для первой значащей цифры самого низшего разряда рабочего диапазона измерений. Основная погрешность в любой точке первой половины низшей декады рабочего диапазона измерений изменяется по линейному закону между значениями, соответствующими первой значащей цифре и половине самой низшей декады рабочего диапазона измерений. Таблица 12 – Значения основной погрешности измерений
При измерении плотности потока или мощности эквивалентной дозы время установления показаний для всех используемых БД (кроме БДКГ-02Р), соответственно равно: поддиапазон "100с" — (100,0 ±0,2)с; "10с" — (10,0 ± 0,2)с; "2с" — (2,0 ± 0,2)с. В случае использования БДКГ-02Р радиометр-дозиметр имеет один диапазон от 1 до 104мк3в/ч"' (от 100мкР/ч до 1Р/ч), причем время установления показаний на этом диапазоне равно 2с. Время установления рабочего режима радиометра-дозиметра не более пяти минут. Радиометр-дозиметр МКС-01Р включает в себя отдельное устройство ("счетчик оператора"), предназначенное для выдачи сигнала (светового и акустического) при достижении заданной величины эквивалентной дозы рентгеновского и γ-излучений с момента включения прибора. Величина эквивалентной дозы, при достижении которой выдается сигнал (порог сигнализации), равна (1,3±0,2) мЗв (130 мбэр). Величина порога сигнализации обеспечивается при мощности эквивалентной дозы до 103 мкЗв/ч (100 мР/ч). Состав радиометра-дозиметра:
Радиометр-дозиметр включает в себя логарифмический интенсиметр, предназначенный для измерения средней частоты импульсов, поступающих с БД в диапазоне от 10 до 10 1Р/с, а также для измерения мощности эквивалентной дозы рентгеновского, гамма-излучений, измеряемого детектором «Счетчик оператора» типа СБМ-21 в диапазоне от 10 до 104 мкЗв/ч (1 мР/ч до 1 Р/ч). Время установления показаний логарифмического интенсиметра не превышает двадцать секунд. МКС-01Р включает в себя также вольтметр для измерения высоковольтного напряжения питания БД в диапазоне 0,4-1,0 кВ и индикации напряжения питания радиометра-дозиметра в диапазоне 7,3-10,6 В. Уровень собственного фона радиометра-дозиметра в зависимости от используемого блока детектирования не превышает значений, указанных в табл. 13. Таблица 13 – Уровень собственного фона МКС-01Р
Измерение различных видов ИИ и различных величин (мощность эквивалентной дозы, плотность потока и т.д.) осуществляется с помощью набора сменных БД, которые преобразуют энергию излучения в последовательность импульсов, число которых пропорционально величине излучения. Работа БД основана на сцинтилляционном методе регистрации (фотоумножитель типа ФЭУ-85 А). Конструкция БДКБ-01Р обеспечивает измерение бета- излучения при наличии сопутствующего фонового гамма-излучения. Для этого в узле детектора предусмотрен съемный экран из алюминиевого сплава.БДКБ-01Р является одновременно и средством измерения мощности эквивалентной дозы гамма-излучения с высокой чувствительностью, позволяющей проводить измерения на фоновых уровнях. БДКГ-01Р в отличие от других БД имеет световой затвор. Для обнаружения бета- излучения при измерении гамма-излучения в узле детектирования крепится съемный фильтр из полистирола, полностью поглощающий бета-излучение с максимальной энергией 3 МэВ. Измерения проводят с фильтром и без него, и по разнице показаний судят о наличии бета- излучения. Управление радиометром-дозиметром осуществляется с помощью трех переключателей: «Измеряемая величина», «Вид измерения», «Диапазон измерения», установленных на лицевой панели пульта регистрации. Индикация показаний осуществляется с помощью пятиразрядного цифрового табло, а также с помощью интенсиметра. Измерение с помощью логарифмического интенсиметра не производится, если частота импульсов, поступающих с дискриминатора менее 10 Гц. В этом случае радиометр-дозиметр позволяет обнаружить очень малые уровни излучения с помощью устройства звуковой и световой сигнализации (светодиод с маркировкой «Интенс. доза опер») на лицевой панели пульта. Режим работы радиометра-дозиметра определяется положением переключателей: «Измеряемая величина», «Вид измерения», «Диапазон измерения» (табл. 14). Таблица 14 – Режим работы радиометра-дозиметра МКС-01Р
Примечание - Прочерк означает, что режим работы радиометра-дозиметра не зависит от положения переключателя. 3.3 Порядок выполнения радиационного контроля радиометром МКС-01Р Порядок работы в режиме контроля напряжения питания радиометра-дозиметра. Установить переключатель «Вид измерения» в положение «Напр.бат» при произвольном положении остальных переключателей. Стрелка вольтметра, расположенного на лицевой панели пульта регистрации, должна находиться в пределах красного сектора. Если стрелка вольтметра устанавливается левее красного сектора, то необходимо заменить аккумуляторы. Порядок работы с радиометром-дозиметром при измерении альфа – загрязненности Измерение плотности потока альфа-частиц производить следующим образом:
При плотности потока менее см-2 . мин-1 переключатель «Диапазон измерения» установить в положение «100с». Измерение флюенса альфа-частиц необходимо производить следующим образом:
Порядок работы с радиометром-дозиметром при измерении бета- загрязненности Измерение плотности потока бета-частиц при отсутствии фонового гамма-излучения необходимо проводить следующим образом:
Измерение плотности потока бета- частиц при наличии фонового гамма-излучения необходимо проводить следующим образом:
Измерение флюенса бета-частиц при отсутствии фонового гамма-излучения необходимо проводить следующим образом:
Измерение флюенса бета-частиц при наличии фонового гамма-излучения необходимо проводить следующим образом:
Порядок работы с радиометром-дозиметром при измерении рентгеновского и гамма-излучения. Указанные измерения можно проводить с помощью БД БДКБ-01Р и БДКГ-02Р. БДКБ-01Р необходимо использовать, когда энергетический диапазон измеряемого излучения находится в пределах от 0,125 МэВ до 1,25 МэВ, а БДКГ-02Р при энергетическом диапазоне от 0,04 МэВ до 10 МэВ. Измерение мощности эквивалентной дозы и эквивалентной дозы гамма-излучения с помощью БДКБ-01Р необходимо производить следующим образом:
Через две секунды на цифровом табло появится величина мощности эквивалентной дозы гамма-излучения. Если мощность эквивалентной дозы меньше 1 мкЗв/ч (0,1 мР/ч), то проводить измерения, установив переключатель «ДИАПАЗОН ИЗМЕРЕНИЯ» в положение «10с», а если меньше 10-1 мкЗв/ч (0,01 мР/ч) в положение «100с». При измерении эквивалентной дозы гамма-излучения необходимо установить:
По истечению необходимого времени набора, которое фиксируется по внешнему измерителю времени, установить переключатель «ДИАПАЗОН ИЗМЕРЕНИЯ» в положение «СТОП». Показания будут соответствовать эквивалентной дозе гамма-излучения. Перед началом измерений, а также после проведения измерений с помощью БДКГ-02Р необходимо:
Уровень собственного фона определить по цифровому табло. При измерении мощности эквивалентной дозы гамма-излучения значение фона необходимо вычесть из измеряемого значения. В случае, если собственный фон превышает 10 мкЗв/ч (1 мР/ч), необходимо произвести его дезактивацию. Измерение мощности эквивалентной дозы гамма-излучения с помощью БДКГ-02Р необходимо производить следующим образом:
На цифровом табло появится величина мощности эквивалентной дозы гамма-излучения. Измерение эквивалентной дозы гамма-излучения проводить следующим образом:
На цифровом табло появится величина эквивалентной дозы гамма-излучения. По истечению необходимого времени набора, установить переключатель «ДИАПАЗОН ИЗМЕРЕНИЯ» в положение «СТОП». Показания будут соответствовать эквивалентной дозе гамма-излучения. Порядок работы с радиометром-дозиметром в режиме «СЧЕТЧИК ОПЕРАТОРА» Указанные измерения производятся следующим образом:
Показания будут соответствовать величине эквивалентной дозы рентгеновского и гамма-излучения. После проведения радиационного контроля упаковки с ТРО загружаются в контейнеры. Для удобства сортировки и комплектования ТРО по группам активности применяются следующие цвета окраски контейнеров: для ТРО I группы – белый; для ТРО II группы – голубой; для ТРО III группы – красный. Контейнеры с ТРО I группы транспортируются в здание комплекса переработки ТРО для детальной сортировки по виду материала. Захоронение ТРО, за исключением биологических РАО, в зависимости от степени радиоактивной загрязненности осуществляется на территории 30-ти км зоны ЧАЭС.
Отходы с загрязнениями меньшими, чем параметры по α, β, γ ТРО вывозятся на организованную свалку «Лелев» ГСП «К». Вывоз ТРО в несанкционированные места категорически запрещен на территории 30-ти км зоны ЧАЭС. В зоне отчуждения, до проведения радиационного контроля, все промышленные и бытовые отходы считаются радиоактивными. Приему на хранение не подлежат токсичные, отравляющие, самовоспламеняющиеся РАО. В необходимых случаях экологическую опасность отходов определяет санитарно-эпидемиологическая станция (СЭС). Порядок сбора, хранения и транспортировки ТРАО
3.4 Измерения активности радиометром РКБ4-1еМ. Назначение и основные технические данные. Предназначен для экспрессных измерений удельной и объемной β-активности проб объектов внешней среды и применяется для комплексного санитарно-гигиенического контроля объектов внешней среды в полевых и лабораторных условиях в диапазоне измеряемой удельной и объемной активности 1,9 - 3,7 . 10-7 Бк/кг; Бк/л. В качестве детекторов в радиометре применяются 2 типа блоков детектирования: БДЖБ-02 – БД на основе объемно-активированных пластмассовых пластин-световодов; БДЖБ-07 – БД на основе одной поверхностно активированной пластмассовой пластины. Основная погрешность - не более ± 40%. Время измерения одной пробы не превышает 35 мин. Время установления рабочего режима не более 15 мин. Питание радиометра осуществляется от сети 220 в, а также от автономного источника (батарея из 12 элементов типа "А 343 Прима"). В качестве контрольного источника используется γ-источник Cs-137. Устройство и принципы действия Радиометр состоит из: Пульт радиометра УУЦ4-1еМ, в него входит:
Пульт радиометра УУЦ4-1еМ предназначен для формирования и селекции сигналов от БД, накопления, пересчета и вывода информации за заданное время измерения, а также для управления всеми рабочими процессами радиометра. Блоки детектирования БДЖБ-02 и БДЖБ-07 предназначены для детектирования β-излучения радиоактивных проб. В БДЖБ-02 используется детектор с развитой поверхностью на основе поверхностно-активированных полистирольных пластин и 2 шт. ФЭУ-82. В БДЖБ-07 используется детектор на основе одной поверхностно-активированной полиметилметакриловой пластины и ФЭУ-93. Детекторы предназначены для регистрации β-частиц, испускаемых радиоактивной пробой. Полученные при регистрации световые вспышки преобразуются ФЭУ в импульсы тока. Подготовка к работе Внимание: а) Запрещается включать радиометр при снятой крышке, открытой горловине или с открытыми штуцерами на крышке БД БДЖБ-02. б) Запрещается включать пульт радиометра без подключенного к нему БД. в) Запрещается проводить промывку детекторов спиртом, ацетоном и др. растворителями во избежание повреждения детекторов. г) При проведении измерений с временем экспозиции 100 сек переключатель "Режим работы" должен находится только в положении "N ". Подключить радиометр к сети переменного тока, для чего установить переключатели: "Режим работы" в положение "Контр." "Времени измерения" в положение "10с", Тумблер "Индикация ЦПУ" в соответствующее положение. "Питание" в положение ВКЛ, при этом должен загореться индикаторный светодиод + - . - +. Нажать и отпустить кнопку "Сброс", при этом на индикаторах высвечиваются нули. Через несколько секунд индикаторы гаснут, радиометр приходит в режим набора информации. Через 10 сек. после начала набора информации на индикаторах высвечивается четырехзначное число (на ленте ЦПУ печатается четырехзначное число) в пределах 5500 + 2000. Сброс и новый набор информации происходит автоматически через каждые 10 сек. Привести переключатели "Режим работы" в положение N × 10. Для выключения радиометра переключатель "Питание" перевести в положение "Выкл.", отключить сетевой БП от сети. Подготовка радиометра к работе от автономного источника питания. Установить кассету с 12 элементами "343 Прима" в корпус пульта. Перевести переключатель "Режим питания" в положение "Автономное" и выполнить операции по пунктам 14.3.1.1 - 14.3.1.7. Подготовка пробы водной среды. Отмерить пробу мерным стаканом, добавить моющий состав СФ-ЗК в количестве 100 мг на 1 литр (для вод водоемов и рек добавление моющего состава не требуется). Порядок работы При каждом измерении проводить 10 измерений скорости счета импульсов, поступивших с БД. За измеренное значение принимают среднее из этих измерений. Измерения фона при работе с БДЖБ-07 проводить 5 раз со временем экспозиции 100 сек каждая. Работа с БДЖБ-02 В гнездо на крышке БДЖБ-02 поместить контрольный источник Cs-137, измерить скорость счета, сравнить результат с данными в формуляре, в случае расхождения значений с помощью ручек "Коррекция", "Грубо", "Плавно" добиваются совпадения результатов измерения с данными формуляра +3%. Выключить радиометр, открыть горловину и залить "фоновую" воду в рабочий объем БД, закрыть горловину, включить радиометр, измерить скорость счета от контрольного источника, записать результат. Снять источник, измерить "фоновую" скорость счета. Выключить радиометр, слить "фоновую" воду, залить контролируемую пробу в рабочий объем БД, закрыть крышку, включить радиометр и измерить суммарную скорость счета фона и измеряемого изотопа. Рассчитать скорость счета от контролируемой пробы по формуле: Nэфф = Nф+эфф-Nф (8) где: Nэфф - скорость счета от контролируемой пробы (с-1), Nф - скорость счета от фона (c-1), Nф+эфф - суммарная скорость счета фона и контролируемой пробы (с-1). Определить объемную β-активность пробы по формуле: Q = (Бк/л) (9) где Р - чувствительность радиометра по измеряемому изотопу (л/сек·Бк). При большом количестве измерений периодически производите проверку скорости счета от контрольного источника, при необходимости производить коррекцию. Работа с БДЖБ-07 Включить радиометр, в выдвижную кассету БД поместить контрольный источник, измерить скорость счета, сравнить результат с данными в формуляре, в случае расхождения значений с помощью ручек "Коррекция", "Грубо", "Плавно" добиться совпадения результатов измерения с данными формуляра +3%. Снять источник, измерить фоновую скорость счета. Разместить пробу в выдвижной кассете. Провести измерения скорости счета от контрольной пробы, определить удельную или объемную активность по формулам 1 и 2. При большом количестве измерений периодически производить проверку от контрольного источника, при необходимости производить коррекцию. ЗАКЛЮЧЕНИЕ В качестве заключения можно привести следующие результаты и выводы:
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
2. Курсовая Спроектировать двенадцатипульсный составной управляемый выпрямитель с параллельным включением ве 3. Реферат на тему Charles Darwin Essay Research Paper Charles Robert 4. Курсовая Экономические проблемы реформирования агропромышленного комплекса 5. Реферат Мошки, мухи львинка, ильница и слепни 6. Реферат Моральные нормы и нравственное поведение в отношениях человек - общество - природа 7. Шпаргалка на тему Модель процесса принятия решения покупателем и ее составляющие 8. Курсовая на тему Расчет привода ленточного конвейера с цилиндрическим одноступенчатым редуктором и цепной передачей 9. Реферат на тему Heart DiseaseThe Unknown Killer Essay Research Paper 10. Реферат Процессы принятия решений в организации 2 |