Курсовая Оценка параметрической надежности РЭС с использованием моделирования на ЭВМ постепенных отказов Оценка параметрической
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
МГТУ ГА
Факультет: компьютерного проектирования
Кафедра: радиоэлектронных средств
Пояснительная записка к курсовому проекту
по предмету: «Теоретические основы конструирования, технологии и надежности»
на тему: «Оценка параметрической надежности РЭС с использованием моделирования на ЭВМ постепенных отказов»
Москва 2002
СОДЕРЖАНИЕ
Введение
1. Постановка задачи
1.1 Анализ исходных данных
1.2 Пояснение решаемой задачи
2. Выбор метода решения поставленной задачи
3. Решение задачи на ЭВМ
3.1 Описание вычислительного алгоритма моделирования температурных и временных изменений параметров.
3.2 Пояснение процедур и функций, используемых в программе
3.3 Обоснование выбора числа реализаций
3.4 Список идентификаторов
4. Описание и анализ полученных результатов
5. Пояснения функциональных частей структурной схемы алгоритма
Заключение и выводы.
Литература.
Приложение 1. Листинг программы.
Приложение 2. Графический материал.
ВВЕДЕНИЕ
В курсовом проекте необходимо произвести оценку параметрической надёжности РЭС, с использованием моделирования на ЭВМ постепенных отказов элементов.
Параметрическая надёжность РЭУ - вероятность отсутствия в изделии постепенных отказов при его работе в заданных условиях эксплуатации в течение времени tзад (в нашем случае tзад = 10000 ч). Параметрическая надёжность связана с понятием постепенных отказов.
Постепенный (параметрический) отказ - отказ, возникающий в результате постепенного изменения значения одного или нескольких параметров изделия.
Основные причины, вызывающие появление постепенных отказов:
1) Производственный разброс выходного параметра, вызываемый действием производственных погрешностей.
2) Отклонение выходного параметра от номинального значения из-за процессов старения.
3) Отклонение выходного параметра от номинального значения под воздействием дестабилизирующих факторов (температуры, влажности и т.д.).
Из-за наличия производственного разброса входных параметров выходной параметр уже может существенно отклониться от номинального значения. Под воздействием дестабилизирующих факторов на первичные параметры, а также в процессе эксплуатации происходит дальнейшее изменение выходного параметра. В результате его значение может достигнуть критического значения и выйти за него, т.е наступит постепенный отказ.
Моделируя РЭУ и используя методы математической статистики, проследим как влияют производственный разброс входных параметров, дестабилизирующие факторы и старение на выходной параметр, а следовательно и на параметрическую надежность.
1. ПОСТАНОВКА ЗАДАЧИ
1.1 Анализ исходных данных
Исходные данные к проекту:
1) Схема электрическая принципиальная.
2) Математическая модель для выходного параметра:
(1.1)
3) Сведения о первичных параметрах (параметрах элементов):
а) резисторы R1 = 3 кОм ± 5% типа ОМЛТ;
б) резисторы R2 = 12 кОм ± 5% типа ОМЛТ;
в) резисторы R3 = 2,4 кОм ± 10% типа ОМЛТ;
г) тип микросхемы DA1: 140УД9;
4) Заданное интервал работы РЭС: tзад = 10000 час.
5) Диапазон рабочих температур: Траб = +10°…+60° С.
6) Условие параметрической надежности:
Данных, указанных в задании, недостаточно для проведения расчетов и моделирования. Поэтому дополняем необходимые данные из справочников:
7) Согласно [3] температурный коэффициент резисторов типа ОМЛТ:
а) aR+ = ±7×10-2 % при Т = +20°…+100° С;
б) aR- = ±12×10-2 % при Т = -60°… +20° С;
8) Согласно [3] на резисторы типа ОМЛТ величина их сопротивления может измениться на ± 10% при наработке 25000 часов. Отсюда находим величину коэффициента старения:
СR = = ± 4×10-4 % ;
9) Согласно [2] коэффициент усиления Koy и входное сопротивлениеRbx:
Koy35000
Rbx300 кОм
Характеристики первичных параметров представлены в неявной форме, т. е. нет численных значений математического ожидания М(xi) и среднеквадратического отклонения s(xi).Вследствие этого необходимо произвести их расчет.
Расчет этих характеристик производят в зависимости от закона распределения первичного параметра. Примем гипотезу о том, что Koy и Rbx распределены по нормальному закону. w(Koy)
35000 М(Koy) Koy
Согласно [1] составим систему уравнений:
Koy=50000±30%
Аналогично определяем Rbx .Получаем Rbx=430 кОм±30%.
Т.о. получили Koy=50000±30% Rbx=430 кОм±30%
10) На основе данных, приведённых в [2] получили стабильность Koy и Rbx :
а)Температурная : a Koy= ±25×10-2 % при Т = -60°…+100° С;
a Rbx = ±7,5×10-3 % при Т = -60°…+100° С;
б)Временная: С Koy= ±3×10-3%; С Rbx= ±5×10-4 % ;
11) Коэффициент корреляции между Koy и Rbx: r =0.8
1.2 Пояснение решаемой задачи
В курсовом проекте необходимо произвести оценку параметрической надёжности РЭС, с использованием моделирования на ЭВМ постепенных отказов элементов.
Оценка параметрической надёжности - определение основных количественных показателей сохранения рабочих функций при возможных постепенных изменениях параметров комплектующих элементов в условиях эксплуатации.
Оценку параметрической надежности будем проводить следующим способом: Подсчитав по формуле (1.1) выходной параметр K (коэффициент передачи) и установив допуск на выходной параметр DK, смоделируем n РЭУ. РЭУ будем считать работоспособным, если значение коэффициента передачи лежит в диапазоне установленного допуска, т.е. K ± DK. Таким образом, найдём вероятность отсутствия параметрического отказа (см. раздел 2).
2. ВЫБОР МЕТОДА РЕШЕНИЯ ПОСТАВЛЕННОЙ ЗАДАЧИ
Метод решения задачи состоит в следующем. Определяем выходной параметр по формуле (1.1) по значениям параметров элементов, не учитывая производственные допуска, корреляцию, воздействия температуры и времени. Назовем полученный таким образом коэффициент передачи “идеальным” -- Kи. После чего задаемся допуском на выходной параметр DKи, в пределах которого РЭУ считается исправным.
При помощи ЭВМ моделируем n различных реализаций РЭУ с параметрами элементов, распределенных либо по нормальному закону, либо по равномерному закону. Затем пересчитываем значения параметров элементов при воздействии на них температуры и времени. При этом предполагаем, что температурный коэффициенты aR, а также коэффициенты старения СR распределены по нормальному закону, а температура окружающей среды Траб – по равномерному. В связи с тем, что закон распределения температуры окружающей среды был неизвестен, и не было возможности попытаться подобрать закон распределения экспериментально, то была принята гипотеза о том, что температура распределена по равномерному закону, так как эта модель на практике является предельным (наихудшим) случаем разброса параметра. Определяем выходной параметр по формуле (1.1) – этот коэффициент передачи назовем “реальным”(Kр).
По способу, изложенному в подразделе 1.2, вероятность отсутствия параметрического отказа определим следующим образом:
Р (Kн £ Kр £Kв tзад)= , (2.1)
где nисп – число исправных РЭУ на момент времени tзад;
N – общее число смоделированных РЭУ;
Kн – нижнее значение коэффициента передачи Kн = Kи - DKи;
Kв – верхнее значение коэффициента передачи Kв = Kи + DKи.
Определяем математическое ожидание выходного параметра М*(Kр) и его среднеквадратичное отклонение s*(Kр) по формулам [1]:
М*(Kр) = , (2.2)
(2.3)
3. РЕШЕНИЕ ЗАДАЧИ НА ЭВМ
3.1 Описание вычислительного алгоритма моделирования температурных и временных изменений параметров
R1, R2, R3 - сопротивления 1-го, 2-го и 3-го резисторов;
Rbx - входное сопротивление, Koy - коэффициент усиления.
1. При помощи стандартной функции Random генерируем равномерно распределённое значение температуры: temp.
Здесь вычислительный алгоритм разделяется на 2 части:
а) Если температура попала в положительную область диапазона рабочих температур т.е 20,
то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+, a Rbx : dx1,dx2,dx3,dx 4.
aR+ - температурный коэффициент для резисторов в полож-й области температур;
a Rbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
б)Если температура попала в отрицательную область диапазона рабочих температур т.е 20,
то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+ , a Rbx : dx1,dx2,dx3,dx4.
aR- - температурный коэффициент для резисторов в отриц-й области температур;
a Rbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
x = s×+ m, (3.1)
где x – нормально распределённое случайное число;
m – математическое ожидание;
s – среднеквадратичное отклонение;
ri – стандартное равномерно распределенное случайное число в диапазоне 0..1. (ri получаем при помощи стандартной функции Random).
Далее пересчитываем значения первичных параметров (R1,R2, R3, Rbx) с учётом воздействия температуры. Для этого воспользуемся формулами [1]:
(3.2)
где – номинальные значения i-го первичного параметра;
–приращения значений i-го первичного параметра под действием температуры;
Согласно [1] относительное изменение i-го первичного параметра под воздействием температуры (старения) можно выразить следующим образом:
(3.3)
(3.4)
где – температурный коэффициент i-го первичного параметра;
°C,
где tср – температура окружающей среды;
сi – коэффициент старения i-го первичного параметра;
– рассматриваемый интервал времени.
В качестве tср для положительной области диапазона рабочих температур примем
наибольшую из возможных температур - Tv, а для отрицательной области примем наименьшую из возможных температур - Tn. С учётом этого и формул (3.3) и (3.4) формула (3.2) примет вид:
для ‘‘+‘‘ -ой области температур:
(3.5)
С учётом этой формулы получаем:
;; ;;
для ‘‘-‘‘ -ой области температур:
(3.6)
С учётом этой формулы получаем:
;;
;;
где Rtemp1, Rtemp2, Rtemp3 - значения сопротивлений 1-го, 2-го и 3-го резисторов соответственно с учётом действия температуры.
RWtemp – значение входного сопротивления под действием температуры.
SR1, SR2, SR3 – номинальные значения 1-го, 2-го и 3-го резисторов соответственно.
SRW – номинальное значение входного сопротивления.
Для получения значений коэффициента усиления (Koy) производим смещение параметров m = m(z) и s = s(z) его температурного коэффициента (a Koy) с учётом коэффициента парной корреляции , а затем, воспользовавшись подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x) генерируем нормально распределённое значение его температурного коэффициента(a Koy):dx5.
dx5 - сгенерированное значение температурного коэффициента для коэффициента усиления.
Воспользовавшись формулой (3.5) (для положительной области температур) или (3.6) (для отрицательной области температур) пересчитываем значения коэффициента усиления (Koy) с учётом воздействия температуры:
для ‘‘+‘‘ -ой области температур:
;
для ‘‘-‘‘ -ой области температур: ;
где KOUtemp – значение коэффициента усиления под действием температуры.
SKOU – номинальное значение коэффициента усиления.
В отрицательной и положительной области температур по формуле (1.1) определяем значение выходного параметра - коэффициента передачи (Kexit).
2. Используя формулу (3.1) генерируем нормально распределённые значения коэффициентов старения СR, С Rbx :dx1,dx2,dx3,dx4.
СR – коэффициент старения для резисторов;
С Rbx – коэффициент старения для входного сопротивления;
dx1, dx2, dx3, dx4 – сгенерированные значения коэффициентов старения для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
Воспользовавшись формулой:
(3.7)
пересчитываем значения первичных параметров (R1,R2, R3, Rbx) с учётом воздействия старения:
;;
;;
где Rtime1, Rtime2, Rtime3 - значения сопротивлений 1-го, 2-го и 3-го резисторов соответственно с учётом действия старения.
RWtime – значение входного сопротивления под действием старения.
SR1, SR2, SR3 – номинальные значения 1-го, 2-го и 3-го резисторов соответственно.
SRW – номинальное значение входного сопротивления.
Для получения значений коэффициента усиления (Koy) производим смещение параметров m = m(z) и s = s(z) его коэффициента старения(С Koy) с учётом коэффициента парной корреляции , а затем, воспользовавшись подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x) генерируем нормально распределённое значение его коэффициента старения(С Koy):dx5.
Воспользовавшись формулой (3.7) пересчитываем значения коэффициента усиления (Koy) с учётом воздействия старения:
;
где KOUtime – значение коэффициента усиления под действием температуры.
SKOU – номинальное значение коэффициента усиления.
По формуле (1.1) определяем значение выходного параметра: коэффициента передачи (Kexit).
3.2 Пояснение процедур и функций, используемых в программе
В написанной программе формула (3.1) реализована через функцию:
Function Generator(m:Real;s:Real):Real;
Label L1;
BEGIN
L1:x:=0;
FOR i:=1 TO 12 DO
BEGIN
k:=Random;
x:=x+k;
END;
x:=x-6;
if (x>3) or (x<-3) then goto L1;
m:=m+s*x;
Generator:=m;
END;
Таким образом, введя Generator(m,s)получим случайное число, распределенное по нормальному закону с параметрами m = m и s = s.
В соответствии с [1] формула получения случайных чисел, распределенных по равномерному закону с параметрами a и b следующая:
x = ×r+ a, (3.8)
где a, b – параметры равномерной модели;
r –стандартное равномерно распределенное случайное число в диапазоне 0..1.
В написанной программе формула (3.8) реализована через функцию:
Function Generator2(m:real;s:real):Real;
BEGIN
k:=Random;
m:=(s-m)*k+m;
Generator2:=m;
end;
Таким образом, введя Generator2(m, s)получим случайное число, распределенное по равномерному закону с параметрами a=m и b = s.
Пусть случайное число x, имеющее нормальное распределение с параметрами m = m(x) и s = s(x), уже получено. Тогда для получения случайного числа z, имеющего нормальное распределение с параметрами m = m(z) и s = s(z) и коррелированного с x, необходимо произвести смещение параметров m = m(z) и s = s(z) с учётом коэффициента парной корреляции, а затем воспользоваться подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x):
(3.9)
(3.10)
Определение величины смещения параметров m = M(z) и s = s(z) с учётом коэффициента парной корреляции в соответствии с формулами (3.9) и (3.10) в программе реализовано следующим образом:
Procedure Corr(x1,mx,mz,sx,sz:real; Var mzx,szx:real);
BEGIN
mzx:=mz+rxz*(sz/sx)*(x1-mx);
szx:=sz*sqrt(1-sqr(rxz));
END;
Таким образом, введя Corr(x1,mx,mz,sx,sz,mzx,szx) получим случайное число, распределенное по нормальному закону с параметрами m = mzx и s = szx.
3.3 Обоснование выбора числа реализаций
3.4 Список идентификаторов
Список идентификаторов вычислительного алгоритма программы для ЭВМ.
Таблица 3.1
Обозначение параметра | Смысл параметра | |
В алгоритме | В программе |
|
R1 | R1 | Сопротивление первого резистора |
R2 | R2 | Сопротивление второго резистора |
R3 | R3 | Сопротивление третьего резистора |
Rbx | RW | Входное сопротивление |
Koy | KOU | Коэффициент усиления |
SR1 | SR1 | Номинальное значение сопротивления 1-го резистора |
SR2 | SR2 | Номинальное значение сопротивления 2-го резистора |
SR3 | SR3 | Номинальное значение сопротивления 3-го резистора |
SKOU | SKOU | Номинальное значение коэффициента усиления |
SRW | SRW | Номинальное значение входного сопротивления |
Rtemp1 | Rtemp1 | Значения R1,учитывая температуру |
Rtemp2 | Rtemp2 | Значения R2,учитывая температуру |
Rtemp3 | Rtemp3 | Значения R3,учитывая температуру |
RWtemp | RWtemp | Значения RW,учитывая температуру |
KOUtemp | KOUtemp | Значения KOU,учитывая температуру |
Rtime1 | Rtime1 | Значения R1,учитывая старение |
Rtime2 | Rtime2 | Значения R2,учитывая старение |
Rtime3 | Rtime3 | Значения R3,учитывая старение |
RWtime | RWtime | Значения RW,учитывая старение |
KOUtime | KOUtime | Значения KOU,учитывая старение |
Kи | Kideal | Номинальное значение выходного параметра |
DKи | dKideal | Допуск на выходной параметр |
Kexit | Kexit | Значение выходного параметра n-смоделированного РЭУ |
aR+ | Rtpol | Температурный коэффициент для R (+ обл.температур) |
aR- | Rtotr | Температурный коэффициент для R (- обл.температур) |
a Rbx | RWt | Температурный коэффициент для входного сопротивления |
a Koy | KOUt | Температурный коэффициент для коэффициента усиления |
СR | Rct | Коэффициент старения для резисторов |
С Rbx | RWct | Коэффициент старения для входного сопротивления |
С Koy | KOUct | Коэффициент старения для коэффициента усиления |
temp | temp | Равномерно распределенное значение температуры |
| time | Заданное время работы |
- | n | Номер текущего смоделированного РЭУ |
N | num | Число реализаций РЭУ |
rxz | rxz | Коэффициент парной корреляции между RW и KOU |
- | a,b | Количество попаданий в ’’+’’-ю и ’’-’’-ю облсть температур |
Tv,Tn | Tv,Tn | Верхнее и нижнее значение диапазона рабочих температур |
- | dR1..dR3,dRW,dKOU | Производственный допуск на R1..R3 ,RW и KOU |
Р | P,Р1, Р2 | Вероятности отсутствия параметрического отказа |
- | mo1..mo3,mx, mz,mzx | Математические ожидания |
- | s1..s3,sx,sz,szx | Среднеквадратические отклонения |
М*(Kр) | mo4 | Математическое ожидание выходного параметра |
| s4 | Среднеквадратическое отклонение выходного параметра |
dx1…dx5 | dx1…dx5 | Сгенерированные значения температурных(временных) коэффициентов |
- | x | Стандартное нормально распределённое случайное число |
r(i) | k | Стандартное равномерно распределённое число в диапазоне (0…1) |
- | sum…sum13 | Аккумуляторы суммы значений выходного параметра |
4 ОПИСАНИЕ И АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ
После запуска программы на экране дисплея появляются параметры элементов РЭУ и запрос на ввод данных: допуск на коэффициент передачи, число реализаций РЭУ, заданное время работы, и остальных необходимых для расчёта и работы программы.
Оценка параметрической надёжности РЭС с использованием моделирования на ЭВМ отказов элементов
--------------------------------------------------------------------------------------------
Исходные данные:
-принципиальная схема
-тип резисторов ОМЛТ
-тип аналоговой микросхемы DA1:140УД9
Факторы, принимаемые во внимание:
-температура (диапазон +10..+60С)
-старение (Тз=10000 часов)
--------------------------------------------------------------------------------------------
Программа будет моделировать постепенные отказы элементов
и рассчитывать вероятность, с которой гарантируется отсутствие
постепенного отказа при заданных условиях.
--------------------------------------------------------------------------------------------
После этого вводятся все необходимые данные значения и величины. После ввода выше названных данных программа начинает моделировать РЭУ. Коэффициент передачи в программе рассчитывается как с учётом только одного из факторов: производственного разброса, температуры, старения, так и с учётом всех факторов.
Анализ результатов произведём исходя из таблицы результатов:
Таблица 4.1
Результаты решения задачи на ЭВМ (вывод семи реализаций)
| N Параметр | 10 | 200 | 800 | 1500 | 2500 | 4000 | 10000 |
С учётом производственного допуска | R1(Om) | 3082 | 2936 | 3123 | 3057 | 2938 | 2909 | 3009 |
| R2 | 12081 | 12146 | 12057 | 11515 | 12120 | 12521 | 11969 |
| R3 | 2406 | 2324 | 2489 | 2494 | 2255 | 2511 | 2325 |
| RW(Om) | 433703 | 405121 | 485371 | 429629 | 439846 | 409981 | 457990 |
| KOU | 50192 | 44399 | 54470 | 48797 | 47615 | 53120 | 53028 |
| K | -3,919 | -4,137 | -3,861 | -3,767 | -4,126 | -4,3 | -3,977 |
| MO | -4,006 | ||||||
| CKO | 0,162 | ||||||
С учётом температуры | R1(Om) | 2997 | 2998 | 3075 | 3001 | 3004 | 2978 | 3041 |
| Rt())% | -0,8 | -1,9 | 6,2 | 0,05 | 0,4 | -1,8 | 3,4 |
| R2 | 11974 | 12281 | 12090 | 11772 | 11886 | 11940 | 11921 |
| Rt())% | -2,2 | 5,9 | 1,9 | -4,8 | -2,4 | -1,2 | -1,6 |
| R3 | 2397 | 2435 | 2389 | 2441 | 2394 | 2403 | 2373 |
| Rt())% | -0,9 | 3,7 | -1,1 | 4,3 | -0,7 | 0,3 | -2,8 |
| RW(Om) | 429868 | 430104 | 430414 | 430822 | 429476 | 430156 | 429819 |
| RWt())% | -0,3 | 0,06 | 0,2 | 0,5 | -0,3 | 0,09 | -0,1 |
KOU
49487
49151
49352
54021
48314
49922
49665
KOUt())%
-10,2
-4,2
-3,2
20
-8,4
-0,4
-1,7
K
-3,995
-4,125
-3,932
-3,923
-3,956
-4,009
-3,920
MO
-4,001
CKO
0,0526
С учётом старения
R1(Om)
3016
2988
3081
3033
2982
3041
2959
Rct()%
0,5
-0,4
2,7
1,1
-0,6
1,4
-1,3
R2
11844
11977
12107
12075
12077
12084
12047
Rct()%
-1,3
-0,1
0,9
0,6
0,8
0,7
0,4
R3
2449
2432
2400
2398
2366
2370
2385
Rct()%
2,1
1,4
0,008
-0,06
-1,4
-1,2
-0,6
RW(Om)
432146
431189
424724
426867
427351
431957
431042
RWct()%
0,4
0,2
-1,2
-0,7
-0,6
0,4
0,2
KOU
50081
55350
49185
50345
51599
53088
47593
KOUct()%
0,2
10,6
-1,6
0,7
3,1
6,2
-4,8
K
-3,926
-4,009
-3,930
-3,982
-4,050
-3,974
-4,071
MO
-4,002
CKO
0,0762
С учётом всех факторов
R1
3096
2902
3287
3091
2925
2927
3009
R2
11898
12407
12257
11367
12083
12546
11937
R3
2454
2390
2479
2535
2218
2483
2285
RW
435735
406341
479879
427314
436605
411996
458907
KOU
49759
48315
52888
53085
47482
56313
50136
K
-3,843
-4,276
-3,729
-3,677
-4,131
-4,286
-3,967
MO
-4,009
CKO
0,187
Kideal
-4,000
P
0.698
Из таблицы выписываем данные:
СКО(с учётом производственного допуска)=0,162
СКО(с учётом температуры)=0,0526
СКО(с учётом старения)=0,0762
Это означает, что температура и старение незначительно влияет на выходной параметр K(коэффициент передачи), тогда как производственный допуск (разброс параметров) элементов вносит основной вклад в отклонение выходного параметра от идеального (номинального) значения Kideal.
В конце таблицы выведена вероятность, с которой гарантируется отсутствие постепенного отказа: P=0,698.
Вероятность того,что в заданных условиях эксплуатации и течении времени t=tзад произойдёт постепенный отказ, определится как: Где N - номер реализации; R1,R2,R3,RW,KOU -рассматриваемые входные параметры; K-выходной параметр;
MO - математическое ожидание выходного параметра; CKO-среднеквадратическое отклонение выходного параметра; Kideal - номинальный коэффициент передачи; P - вероятность отсутствия параметрического отказа. Rt,RWt,KOUt - температурные коэффициенты ; Rct,RWct,KOUct - коэффициенты старения.
q=1-P=1-0,698=0,302
Это означает, что при эксплуатации операционных усилителей (ОУ) в заданных условиях в течение промежутка времени tзад=10000 ч в среднем из каждых 100 ОУ лишь у 30-31 экземпляров выходной параметр (коэффициент передачи K) выйдет за пределы Kideal ± 5%.
5. ПОЯСНЕНИЯ ФУНКЦИОЕАЛЬНЫХ ЧАСТЕЙ СТРУКТУРНОЙ СХЕМЫ АЛГОРИТМА
Таблица 5.1
Пояснения функциональных частей структурной схемы алгоритма
Номер функциональной части | Пояснение | |
2
3,13,19
4
5
6
7,8
9,10
11,12
14,15
16,17
18
20
21
|
Ввод исходных данных:SR1,SR2,SR3,SRW,SKOU, dR1,dR2,dR3,dRW,dKOU,Tv,Tn,rxz,N,time,Ki,dKi,Rtotr, Rtpol,RWt,KOUt,Rct,RWct,KOUct. Организация цикла по переменной n.Индексом n учитываются реализации выходного параметра Kexit. Генерация нормально либо равномерно распределённых R1,R2,R3 и нормально распределённых RW,KOU.Закон выбирается в зависимости от допуска на сопротивление. Расчёт Kexit по формуле (1.1). Генерация равномерно распределённого значения температуры в диапазоне от Tn до Tv. Оператор выбора попадания температуры в положительную( 20° С), либо в отрицательную(<20° С) область рабочих температур.
Генерация нормально распределённых значений температурных коэффициентов. Пересчёт R1,R2,R3,RW,KOU под действием температуры. Расчёт Kexit по формуле (1.1) с учётом температупы.
Генерация нормально распределённых значений коэффициентов старения. Пересчёт R1,R2,R3,RW,KOU под действием старения при t=tзад. Расчёт Kexit по формуле (1.1) с учётом старения.
ЗАКЛЮЧЕНИЕ И ВЫВОДЫ В результате проделанной работы было выявлено: 1) На параметрическую надежность РЭУ в большей степени влияет производственный допуск на параметры элементов РЭУ, тогда как дестабилизирующий фактор (температура) и процессы старения (при данных температурных коэффициентах и коэффициентах старения при заданном времени tзад = 10000 час) влияют в меньшей степени, однако уменьшают вероятность, с которой гарантируется отсутствие постепенного отказа. 2) Опыт эксплуатации РЭУ показывает, что эксплуатационная надёжность практически всегда ниже того уровня, который получается по результатам расчёта. Это объясняется как несовершенством технологии производства, так и низкой достоверностью справочной информации. ЛИТЕРАТУРА 1. Боровиков С.М. Теоретические основы конструирования, технологии и надежности, -- Минск: Дизайн - Про, 1998. 2. Богданович М.И , Грель И.Н Интегральные микросхемы. Справочник, - Минск.: Полымя,1996 3. Папиев В.П. Сопротивления (том1),Справочник--М.: Электростандарт, 1977. 4. Фомин А.В., Борисов В.Ф., Чермошенский В.В. Допуски в радиоэлектронной аппаратуре, - М.: Советское радио, 1973. 5. Теоретические основы конструирования, технологии и надежности. Методические указания к курсовой работе под ред. Боровикова С.М., - Минск: БГУИР, 1995. 6. ГОСТ 19.002-80 Схемы алгоритмов и программ. Правила выполнения. 7. ГОСТ 2.105-95 Общие требования к текстовым документам. ПРИЛОЖЕНИЕ 1 ЛИСТИНГ ПРОГРАММЫ PROGRAM Toktin;USES Crt;Label L1;VAR k,x,x1,R1,R2,R3,RW,KOU,Kexit,sum,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12,sum13,mo1,mo2,mo3,mo4,s1,s2,s3,s4,mx,mz,mzx,sx,sz,szx,rxz,P1,P2,P,SR1,SR2,SR3,SRW,SKOU,dR1,dR2,dR3,dR4,dRW,dKOU,Kideal,dKideal,Rtotr,Rtpol,Rct,RWt,KOUt,RWct,KOUct,Rtemp1,Rtemp2,Rtemp3,Rtemp4,RWtemp,KOUtemp,Rtime1,Rtime2,Rtime3,Rtime4,RWtime,KOUtime,temp,dx1,dx2,dx3,dx4,dx5,Tn,Tv:Real;i,a,b:Integer;time,num,n:Integer;Function Generator(m:Real;s:Real):Real;Label L1;BEGINL1:x:=0;FOR i:=1 TO 12 DOBEGINk:=Random;x:=x+k;END;x:=x-6;if (x>3) or (x<-3) then goto L1;m:=m+s*x;Generator:=m;END;Function Generator2(m:real;s:real):Real;BEGINk:=Random;m:=(s-m)*k+m;Generator2:=m;end;Procedure Corr(x1,mx,mz,sx,sz:real; Var mzx,szx:real);BEGINmzx:=mz+rxz*(sz/sx)*(x1-mx);szx:=sz*sqrt(1-sqr(rxz));END;BEGIN textbackground(1);ClrScr;Randomize;TextColor(10);GotoXY(12,2);Writeln('ОЦЕHКА ПАРАМЕТРИЧЕСКОЙ HАДЕЖHОСТИ РЭС');GotoXY(3,3);Writeln('С ИСПОЛЬЗОВАHИЕМ МОДЕЛИРОВАHИЯ HА ЭВМ ОТКАЗОВ ЭЛЕМЕHТОВ');GotoXY(1,4); Writeln('------------------------------------------------------------');Writeln(' Исходные данные: ');Writeln(' -принципиальная схема ');Writeln(' -тип резисторов ОМЛТ ');Writeln(' -тип аналоговой микросхемы DA1:140УД9 ');Writeln(' Факторы принимаемые во внимание: ');Writeln(' -температура (диапазон +10..+60C) ');Writeln(' -старение (Tз=10000 часов) ');riteln('------------------------------------------------------------');Writeln(' Программа будет моделировать постепенные отказы элементов ');Writeln(' и рассчитывать вероятность, с которой гарантируется ');Writeln(' отсутствие постепенного отказа при заданных условиях. ');Writeln('------------------------------------------------------------');ReadKey;ClrScr;Writeln('------------------------------------------------------------');Writeln(' Ввод необходимых данных для рассчета: ');Write(' -введите номинал R1 (рекомендуется 3000.Om +/-5%): ');Read(SR1);GotoXY(63,3);Write('+/-');GotoXY(67,3); Readln(dR1);Write(' -введите номинал R2 (рекомендуется 12000.Om+/-5%): ');Read(SR2);GotoXY(63,4);Write('+/-');GotoXY(67,4); Readln(dR2);Write(' -введите номинал R3(рекомендуется 2400.Om +/-10%): ');Read(SR3);GotoXY(63,5);Write('+/-');GotoXY(68,5);Readln(dR3);Write (' -введите вх.сопротивление RW(рекомендуется 430000.Om+/-30%): ');Read(SRW);GotoXY(70,6);Write('+/-');GotoXY(73,6);Readln(dRW);Write (' -введите коэф-т усиления О.У. KOU (рекомендуется 50000+/-30%): ');Read(SKOU);GotoXY(72,7);Write('+/-');GotoXY(76,7);Readln(dKOU);Writeln(' -введите температурные коэффициенты :');Write (' для R, T=-60..+20C (рекомендуется +/-0.12%): ');Readln(Rtotr);rite (' для R, T=+20..+100C (рекомендуется +/-0.07%): ');Readln(Rtpol);Write (' для RW, T=-60..+100C (рекомендуется +/-0.0075%): ');Readln(RWt);Write (' для KOU, T=-60..+100C (рекомендуется +/-0.25%): ');Readln(KOUt);Writeln(' -введите коэффициенты старения:');Write (' для R (рекомендуется +/-0.0004%) :');Readln(Rct);Write (' для RW (рекомендуется +/-0.0005) :');Readln(RWct);Write (' для KOU (рекомендуется +/-0.003) :');Readln(KOUct);rite(' -введите коэффициент парной корреляции между KOU и RW:');Readln(rxz);Kideal:=(-SR2/SR1)*(1/(1+(1+SR3/SR1+2*SR3/SRW)/SKOU));WriteLn('Коэффициент передачи Kideal=',Kideal:4:3);Write(' -условие отсутствия постепенного отказа в %: ');ReadLn(dKideal);Write (' -количество модулируемых экземпляров: ');Readln(num);Write (' -заданное время работы Тз: ');Readln(time);writeln ('Введите заданный диапазон рабочих температур: '); writeln;write ('Нижняя граница температурного диапазона : '); read(Tn); write ('Верхняя граница температурного диапазона : '); read(Tv);Writeln(' -----------------------------------------------------------');Writeln(' Моделирование и рассчет займут некоторое время. ');Readkey;TextColor(13+Blink);Writeln(' ПРОИЗВОДИТСЯ МОДЕЛИРОВАHИЕ И РАССЧЕТ: ');TextColor(15); sum:=0;sum1:=0;sum2:=0;sum3:=0;sum4:=0;sum5:=0;sum6:=0;sum7:=0; sum8:=0;sum9:=0; sum10:=0;sum11:=0;sum12:=0;sum13:=0;FOR n:=1 TO num DOBEGINif dR1<=5 thenR1:=Generator2(SR1-(SR1*dR1/100),SR1+(SR1*dR1/100))elseR1:=Generator(SR1,(SR1*dR1/300));if dR2<=5 thenR2:=Generator2(SR2-(SR2*dR2/100),SR2+(SR2*dR2/100))elseR2:=Generator(SR1,(SR1*dR1/300));if dR3<=5 thenR3:=Generator2(SR3-(SR3*dR3/100),SR3+(SR3*dR3/100))elseR3:=Generator(SR3,(SR3*dR3/300));RW:=Generator(SRW,(SRW*dRW/300));Corr(RW,SRW,SKOU,(SRW*dRW/300),(SKOU*dKOU/300),mzx,szx);KOU:=Generator(mzx,szx);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum:=sum+(Kexit);sum1:=sum1+sqr(Kexit);temp:=Generator2(Tn,Tv);if (temp>=20) thenbegina:=a+1;dx1:=Generator(0,(Rtpol/300));R1:=R1+R1*Abs(20-Tv)*dx1;Rtemp1:=SR1+SR1*Abs(20-Tv)*dx1;dx2:=Generator(0,(Rtpol/300));R2:=R2+R2*Abs(20-Tv)*dx2;Rtemp2:=SR2+SR2*Abs(20-Tv)*dx2;dx3:=Generator(0,(Rtpol/300));R3:=R3+R3*Abs(20-Tv)*dx3;Rtemp3:=SR3+SR3*Abs(20-Tv)*dx3;dx4:=Generator(0,RWt/300);RW:=RW+RW*Abs(20-Tv)*dx4;RWtemp:=SRW+SRW*Abs(20-Tv)*dx4;Corr(dx4,0,0,RWt/300,KOUt/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*Abs(20-Tv)*dx5;KOUtemp:=SKOU+SKOU*Abs(20-Tv)*dx5;Kexit:=(-Rtemp2/Rtemp1)*(1/(1+(1+Rtemp3/Rtemp1+2*Rtemp3/RWtemp)/KOUtemp));sum2:=sum2+(Kexit);sum3:=sum3+sqr(Kexit);dx1:=Generator(0,(Rct/300));R1:=R1+R1*time*dx1;Rtime1:=SR1+SR1*time*dx1;dx2:=Generator(0,(Rct/300));R2:=R2+R2*time*dx2;Rtime2:=SR2+SR2*time*dx2;dx3:=Generator(0,(Rct/300));R3:=R3+R3*time*dx3;Rtime3:=SR3+SR3*time*dx3;dx4:=Generator(0,(Rct/300));RW:=RW+RW*time*dx4;RWtime:=SRW+SRW*time*dx4;Corr(dx4,0,0,RWct/300,KOUct/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*time*dx5;KOUtime:=SKOU+SKOU*time*dx5;Kexit:=(-Rtime2/Rtime1)*(1/(1+(1+Rtime3/Rtime1+2*Rtime3/RWtime)/KOUtime));sum4:=sum4+(Kexit); sum5:=sum5+sqr(Kexit);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum6:=sum6+(Kexit);sum7:=sum7+sqr(Kexit);IF Kexit<(Kideal-Kideal*dKideal/100) THENIF Kexit>(Kideal+Kideal*dKideal/100) THEN P1:=P1+1;end;if (temp<20) thenbeginb:=b+1;dx1:=Generator(0,(Rtotr/300));R1:=R1+R1*Abs(20-Tn)*dx1;Rtemp1:=SR1+SR1*Abs(20-Tn)*dx1;dx2:=Generator(0,(Rtotr/300));R2:=R2+R2*Abs(20-Tn)*dx2;Rtemp2:=SR2+SR2*Abs(20-Tn)*dx2;dx3:=Generator(0,(Rtotr/300));R3:=R3+R3*Abs(20-Tn)*dx3;Rtemp3:=SR3+SR3*Abs(20-Tn)*dx3;dx4:=Generator(0,RWt/300);RW:=RW+RW*Abs(20-Tn)*dx4;RWtemp:=SRW+SRW*Abs(20-Tn)*dx4;Corr(dx4,0,0,RWt/300,KOUt/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*Abs(20-Tn)*dx5;KOUtemp:=SKOU+SKOU*Abs(20-Tn)*dx5;Kexit:=(-temp2/Rtemp1)*(1/(1+(1+Rtemp3/Rtemp1+2*Rtemp3/RWtemp)/KOUtemp));sum8:=sum8+(Kexit); sum9:=sum9+sqr(Kexit);dx1:=Generator(0,(Rct/300));R1:=R1+R1*time*dx1;Rtime1:=SR1+SR1*time*dx1;dx2:=Generator(0,(Rct/300));R2:=R2+R2*time*dx2;Rtime2:=SR2+SR2*time*dx2;dx3:=Generator(0,(Rct/300));R3:=R3+R3*time*dx3;Rtime3:=SR3+SR3*time*dx3;dx4:=Generator(0,RWct/300);RW:=RW+RW*time*dx4;RWtime:=SRW+SRW*time*dx4;Corr(dx4,0,0,RWct/300,KOUct/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*time*dx5;KOUtime:=SKOU+SKOU*time*dx5;Kexit:=(-Rtime2/Rtime1)*(1/(1+(1+Rtime3/Rtime1+2*Rtime3/RWtime)/KOUtime));sum10:=sum10+(Kexit); sum11:=sum11+sqr(Kexit);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum12:=sum12+(Kexit); sum13:=sum13+sqr(Kexit);IF Kexit<(Kideal-Kideal*dKideal/100) THENIF Kexit>(Kideal+Kideal*dKideal/100) THEN P2:=P2+1;end;END;P1:=P1/a;P2:=P2/b;IF P2>P1 thenbegin P:=P1;mo1:=sum/num;mo2:=sum2/a;mo3:=sum4/a;mo4:=sum6/a;s1:=sqrt((sum1-sqr(sum)/num)/(num-1));s2:=sqrt((sum3-sqr(sum2)/a)/(a-1));s3:=sqrt((sum5-sqr(sum4)/a)/(a-1));s4:=sqrt((sum7-sqr(sum6)/a)/(a-1));end;if P2<P1 thenbeginP:=P2;mo1:=sum/num;mo2:=sum8/b;mo3:=sum10/b;mo4:=sum12/b;s1:=sqrt((sum1-sqr(sum)/num)/(num-1));s2:=sqrt((sum9-sqr(sum8)/b)/(b-1));s3:=sqrt((sum11-sqr(sum10)/b)/(b-1));s4:=sqrt((sum13-sqr(sum12)/b)/(b-1));end; ClrScr;WriteLn('Коэффициент передачи: ',Kideal:6:3);WriteLn('Математическое ожидание, учитывая производственный допуск:',mo1:6:3);WriteLn('Среднеквадратичное отклоненение: ',s1:6:4);WriteLn('Математическое ожидание, учитывая температурный допуск: ' ,mo2:6:3);WriteLn('Среднеквадратичное отклоненение: ',s2:6:4);WriteLn('Математическое ожидание, учитывая старение: ',mo3:6:3);WriteLn('Среднеквадратичное отклоненение: ',s3:6:4);WriteLn('Математическое ожидание, учитывая все факторы: ',mo4:6:3);WriteLn('Среднеквадратичное отклоненение: ',s4:6:4);Writeln('-------------------------------------------------------------------------');WriteLn('Вероятность отсутствия параметрического отказа: ');WriteLn('P=',P:6:4);if num<4*Sqr(s4)/Sqr(0.01) thenBeginwriteln('Не достигнута заданная точность !');writeln('Следует сделать число реализаций процесса сделать>',num,'!');end;REPEAT UNTIL KeyPressed;END. 2. Курсовая Экономическое содержание затрат предприятий 3. Статья Как учить детей быть успешными Инструментарий творческого учителя 4. Реферат на тему The Romantic Period And Robert Burns Essay 5. Реферат на тему American History X Essay Research Paper American 6. Реферат Развитие иконописи на Руси 7. Сочинение на тему Прием обманутого ожидания в творчестве Д В Веневитинова 8. Реферат История развития транзисторов 9. Контрольная_работа на тему Контроль и ревизия 2 Основные задачи 10. Реферат Шура-и-Ислам |