Курсовая Теория вероятности и математическая статистика
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Пусть случайные величины Х и Y принимают значение, приведённые в таблице 1.
Таблица 1
Х | Y | X | Y | X | Y | X | Y |
70 | 60 | 97 | 62 | 27 | 25 | 57 | 35 |
73 | 60 | 96 | 85 | 43 | 25 | 60 | 34 |
80 | 55 | 67 | 34 | 24 | 19 | 92 | 85 |
41 | 30 | 80 | 80 | 24 | 20 | 93 | 75 |
56 | 25 | 82 | 78 | 27 | 19 | 100 | 65 |
103 | 92 | 90 | 80 | 100 | 90 | 120 | 115 |
104 | 92 | 120 | 92 | 101 | 110 | 120 | 90 |
104 | 114 | 115 | 115 | 102 | 112 | 92 | 75 |
93 | 62 | 123 | 115 | 145 | 118 | 123 | 112 |
118 | 115 | 127 | 120 | 150 | 118 | 123 | 100 |
121 | 92 | 127 | 117 | 150 | 119 | 96 | 72 |
117 | 92 | 130 | 120 | 150 | 120 | 130 | 119 |
112 | 110 | 135 | 125 | 131 | 120 | 142 | 119 |
96 | 78 | 153 | 125 | 132 | 142 | 142 | 140 |
127 | 120 | 153 | 142 | 202 | 175 | 145 | 144 |
130 | 125 | 153 | 135 | 202 | 173 | 157 | 150 |
130 | 140 | 153 | 145 | 205 | 202 | 180 | 180 |
130 | 119 | 162 | 172 | 180 | 202 | 180 | 200 |
150 | 140 | 165 | 165 | 188 | 225 | 180 | 175 |
140 | 120 | 165 | 150 | 210 | 220 | 180 | 190 |
140 | 125 | 165 | 146 | 221 | 225 | 200 | 200 |
162 |
170 | 170 | 152 | 225 | 220 | 200 | 175 | |
155 | 170 | 170 | 165 | 225 | 230 | 240 | 228 |
157 | 160 | 154 | 170 | 227 | 232 | 240 | 232 |
157 | 165 | 154 | 165 | 237 | 232 | 132 | 140 |
1) Находим, что
Тогда длина интервала группирования
- число интервалов (разрядов), неформализован и зависит от объёма и степени однородности выборки. При ,
2) Находим границы величины
,
3) Находим значение представителей
- середина i-того интервала.
4) Для графического описания выборки по условиям задания необходимо построить гистограмму относительных частот (рис. 1) и эмпирическую функцию распределения (рис. 2)
а) На гистограмме относительных частот высота прямоугольников выбирается равной , основания прямоугольников соответствуют интервалам разбиения. Площадь i-того прямоугольника равна относительной частоте наблюдений, попавших в i-тый интервал.
Составляем таблицу частот группированной выборки (табл. 2), содержащую столбцы с номерами интервала i, значениями нижней границы (начала интервала) и представителя интервала , числами значений в i-том интервале , накопленной частоты , относительной частоты , накопленной относительной частоты . Число строк таблицы равно числу интервалов r.
Рис. 1. Гистограмма относительных частот
б) Эмпирическая функция распределения определяется по значениям накопленных относительных частот представителей разрядов:
Функция представляет собой кусочно-постоянную функцию, имеющие скачки в точках, соответствующих серединам интервалов группировки , причём при , и при
Рис. 2. Эмпирическая функция распределения
5) Составленную ранее таблицу частот группированной выборки (табл. 2) дополняем таблицей расчёта числовых значений и . Она содержит результаты промежуточных вычислений по формулам
6) После заполнения таблицы 2 рассчитываем значение числовых оценок:
7) Определяем коэффициент вариаций
8) Определяем границы доверительного интервала для математического ожидания по формулам
При заданной доверительной вероятности по таблицам распределения Стьюдента , поэтому имеем
9) Среднеквадратичное отклонение оценки математического ожидания случайной величины Х равно
10) По виду гистограммы выдвигаем гипотезу Н0 о подчинении случайной величины Х нормальному закону распределения. Для построения теоретической функции и составляем таблицу значений (таблица 3) нормальной величины , определяем функцию Лапласа , значения функции распределения на концах отрезков и вероятность попадания в i-тый интервал по формуле
11) Рисунок 2 с эмпирической функцией распределения дополняем теоретической функцией F(x), значения которой найдены на концах интервалов.
Рис. 3. Эмпирическая , теоретическая функция распределения.
12) Для проверки согласия выдвинутой гипотезы о о законе распределения экспериментальным данным находим вероятность попадания опытных данных в i-тый интервал от до на основе полученных значений функции на границах интервалов. На построенную раньше гистограмму наносим точки с координатами и соединяем их плавными линиями (Рис. 4). Сравнивая вид гистограммы и плотность распределения, необходимо убедиться в их адекватности, близости их характеров.
Рис. 4. Гистограмма относительных частот и теоретическая плотность вероятности .
13) При количественной оценке меры близости эмпирического и теоретического законов распределения можно использовать критерии Пирсона или Колмогорова.
а) по критерию Колмогорова:
Максимальное значение модуля разности между значениями эмпирической и теоретической функциями(см. рис. 3) наблюдается в точке, близкой к представителю . Тогда
Вычисляем величину
где r – объём выборки из представителей интервалов
, следовательно . Так как , поэтому гипотеза о нормальном распределении по критерию Колмогорова принимается как не противоречащая опытным данным.
б) Для вычисления таблицу 3 дополняем промежуточными результатами ,, . Объединяем 1,2,3 и 9,10. Тогда . Получаем, что
Для нормального закона распределения . Тогда число степеней свободы . При имеем . Поэтому гипотеза по критерию Пирсона принимается.
14) Составляем точечную диаграмму в декартовой (рис. 5) системе координат, где по оси абсцисс откладываем значение , а по оси ординат - . Пары значений представляем на диаграмме в виде точек. На диаграмму наносим сетку равноотстоящих горизонтальных и вертикальных прямых. Расстояние между двумя вертикальными прямыми выражает длину интервала по оси абсцисс, а расстояние между горизонтальными прямыми – длину интервала по оси ординат.
15) Для вычисления коэффициента корреляции составляется корреляционная таблица (таблица 4). В последние две строки заносятся промежуточные результаты для вычисления точечной оценки коэффициента корреляции
16) Находим
Следовательно, линейные приближения к регрессиям имеют вид:
На рисунке 3 представлены точечная диаграмма и линии регрессии X на Y и Y на X. Расположение точек на диаграмме и небольшое значение коэффициента корреляции указывают на слабую коррелированность случайных величин X и Y между собой.
Таблица 2
№ интервала |
|
|
|
|
|
|
|
|
|
|
1 | 24 | 34,8 | 6 | 6 | 0,06 | 0,06 | 208,8 | -99,36 | 9872,41 | 59234,46 |
2 | 45,6 | 56,4 | 4 | 10 | 0,04 | 0,1 | 225,6 | -77,76 | 6046,618 | 24186,47 |
3 | 67,2 | 78 | 5 | 15 | 0,05 | 0,15 | 390 | -56,16 | 3153,946 | 15769,73 |
4 | 88,8 | 99,6 | 16 | 31 |
0,16
0,31
1593,6
-34,56
1194,394
19110,3
5
110,4
121,2
21
52
0,21
0,52
2545,2
-12,96
167,9616
3527,194
6
132
142,8
15
67
0,15
0,67
2142
8,64
74,6496
1119,744
7
153,6
164,4
13
80
0,13
0,8
2137,2
30,24
914,4576
11887,95
8
175,2
186
6
86
0,06
0,86
1116
51,84
2687,386
16124,31
9
196,8
207,6
7
93
0,07
0,93
1453,2
73,44
5393,434
37754,04
10
218,4
229,2
7
100
0,07
1
1604,4
95,04
9032,602
63228,21
11
240
Сумма
100
1
13416
251942,4
Таблица 3
№ интервала |
|
|
|
|
|
|
|
|
1 | 24 | -2,18368 | -0,4854 | 0,0146 | 0,0255 | 2,55 | 3,8025 | 0,224336 |
2 | 45,6 | -1,75551 | -0,4599 | 0,0401 | 0,0517 | 5,17 |
|
|
3 | 67,2 | -1,32733 | -0,4082 | 0,0918 | 0,0923 | 9,23 |
|
|
4 | 88,8 | -0,89916 | -0,3159 | 0,1841 | 0,1351 | 13,51 | 6,2001 | 0,458927 |
5 | 110,4 | -0,47099 | -0,1808 | 0,3192 | 0,1648 | 16,48 | 20,4304 | 1,239709 |
6 | 132 | -0,04282 | -0,016 | 0,484 | 0,164 | 16,4 | 1,96 | 0,119512 |
7 | 153,6 | 0,385355 | 0,148 | 0,648 | 0,143 | 14,3 | 1,69 | 0,118182 |
8 | 175,2 | 0,813527 | 0,291 | 0,791 | 0,1015 | 10,15 | 17,2225 | 1,696798 |
9 | 196,8 | 1,241699 | 0,3925 | 0,8925 | 0,06 | 6 | 25,8064 | 2,893094 |
10 | 218,4 | 1,669871 | 0,4525 | 0,9525 | 0,0292 | 2,92 |
|
|
11 | 240 | 2,098043 | 0,4817 | 0,9817 |
|
|
|
|
Министерство образования и науки Российской Федерации.
Федеральное агентство по образованию.
Государственное образовательное учреждение высшего профессионального образования.
Самарский государственный технический университет.
Кафедра высшей математике
Типовой расчёт №2
студент II – ХТ – 2 Самаров А.А.
руководитель: Корнфельд С.Г.
ассистент: Стрелкова Н.Н.
Самара
2004 г.
Пусть случайные величины Х и Y принимают значение, приведённые в таблице 1.
Таблица 1
Х | Y | X | Y | X | Y | X | Y | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
70 | 60 | 97 | 62 | 27 | 25 | 57 | 35 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
73 | 60 | 96 | 85 | 43 | 25 | 60 | 34 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
80 | 55 | 67 | 34 | 24 | 19 | 92 | 85 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
41 | 30 | 80 | 80 | 24 | 20 | 93 | 75 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
56 | 25 | 82 | 78 | 27 | 19 | 100 | 65 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
103 | 92 | 90 | 80 | 100 | 90 | 120 | 115 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
104 | 92 | 120 | 92 | 101 | 110 | 120 | 90 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
104 | 114 | 115 | 115 | 102 | 112 | 92 | 75 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
93 | 62 | 123 | 115 | 145 | 118 | 123 | 112 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
118 | 115
1) Находим, что
Тогда длина интервала группирования
- число интервалов (разрядов), неформализован и зависит от объёма и степени однородности выборки. При , 2) Находим границы величины , 3) Находим значение представителей
- середина j-того интервала. 4) Для графического описания выборки по условиям задания необходимо построить гистограмму относительных частот (рис. 1) и эмпирическую функцию распределения (рис. 2) а) На гистограмме относительных частот высота прямоугольников выбирается равной , основания прямоугольников соответствуют интервалам разбиения. Площадь j-того прямоугольника равна относительной частоте наблюдений, попавших в j-тый интервал. Составляем таблицу частот группированной выборки (табл. 2), содержащую столбцы с номерами интервала j, значениями нижней границы (начала интервала) и представителя интервала , числами значений в j-том интервале , накопленной частоты , относительной частоты , накопленной относительной частоты . Число строк таблицы равно числу интервалов r.
Рис. 1. Гистограмма относительных частот б) Эмпирическая функция распределения определяется по значениям накопленных относительных частот представителей разрядов:
Функция представляет собой кусочно-постоянную функцию, имеющие скачки в точках, соответствующих серединам интервалов группировки , причём при , и при
Рис. 2. Эмпирическая функция распределения 5) Составленную ранее таблицу частот группированной выборки (табл. 2) дополняем таблицей расчёта числовых значений и . Она содержит результаты промежуточных вычислений по формулам
6) После заполнения таблицы 2 рассчитываем значение числовых оценок:
7) Определяем коэффициент вариаций
8) Определяем границы доверительного интервала для математического ожидания по формулам
При заданной доверительной вероятности по таблицам распределения Стьюдента , поэтому имеем
9) Среднеквадратичное отклонение оценки математического ожидания случайной величины Y равно
10) По виду гистограммы выдвигаем гипотезу Н0 о подчинении случайной величины нормальному закону распределения. Для построения теоретической функции и составляем таблицу значений (таблица 3) нормальной величины , определяем функцию Лапласа , значения функции распределения на концах отрезков и вероятность попадания в i-тый интервал по формуле 11) Рисунок 2 с эмпирической функцией распределения дополняем теоретической функцией F(y), значения которой найдены на концах интервалов.
Рис. 3. Эмпирическая , теоретическая функция распределения. 12) Для проверки согласия выдвинутой гипотезы о о законе распределения экспериментальным данным находим вероятность попадания опытных данных в j-тый интервал от до на основе полученных значений функции на границах интервалов. На построенную раньше гистограмму наносим точки с координатами и соединяем их плавными линиями (Рис. 4). Сравнивая вид гистограммы и плотность распределения, необходимо убедиться в их адекватности, близости их характеров.
Рис. 4. Гистограмма относительных частот и теоретическая плотность вероятности . 13) При количественной оценке меры близости эмпирического и теоретического законов распределения можно использовать критерии Пирсона или Колмогорова. а) по критерию Колмогорова Максимальное значение модуля разности между значениями эмпирической и теоретической функциями(см. рис. 2) наблюдается в точке, близкой к представителю . Тогда
Вычисляем величину
где r – объём выборки из представителей интервалов , следовательно . Так как , поэтому гипотеза о нормальном распределении по критерию Колмогорова принимается как не противоречащая опытным данным. б) Для вычисления таблицу 3 дополняем промежуточными результатами ,, . Объединяем 1,2,3 и 9,10. Тогда . Получаем, что
Для нормального закона распределения . Тогда число степеней свободы . При имеем . Поэтому гипотеза по критерию Пирсона принимается. 14) Составляем точечную диаграмму в декартовой системе координат, где по оси абсцисс откладываем значение , а по оси ординат - . Пары значений представляем на диаграмме в виде точек. На диаграмму наносим сетку равноотстоящих горизонтальных и вертикальных прямых. Расстояние между двумя вертикальными прямыми выражает длину интервала по оси абсцисс, а расстояние между горизонтальными прямыми – длину интервала по оси ординат. 15) Для вычисления коэффициента корреляции составляется корреляционная таблица (таблица 4). В последние две строки заносятся промежуточные результаты для вычисления точечной оценки коэффициента корреляции
16) Находим
Следовательно, линейные приближения к регрессиям имеют вид:
На рисунке 3 представлены точечная диаграмма и линии регрессии X на Y и Y на X. Расположение точек на диаграмме и небольшое значение коэффициента корреляции указывают на слабую коррелированность случайных величин X и Y между собой. Таблица 2
Таблица 3
2. Реферат на тему Elte Save Face Essay Research Paper ELTE 3. Реферат на тему Функциональные пробы состояния клапанов вен нижних конечностей 4. Реферат Вексель в кредитовании предприятий 5. Сочинение на тему Есенин с. а. - Пейзаж в палитре и слове 6. Реферат Банковская система, ее элементы и важнейшие свойства 7. Курсовая Развитие малого бизнеса в сфере туризма 8. Реферат на тему Violence On Tv Essay Research Paper 9. Сочинение Гринев и Швабрин по роману Пушкина Капитанская дочка 10. Реферат на тему Greek Mythology And Religion Essay Research Paper |