Курсовая Ряды и интеграл Фурье
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
ГЛАВА 1
РЯДЫ И ИНТЕГРАЛ ФУРЬЕ
Основные сведения
Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число
Отметим некоторые с в о й с т в а этой функции:
1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.
2) Если функция f(x) период Т , то функция f(ax) имеет период
3) Если f(x) - периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство
Тригонометрический ряд. Ряд Фурье
Если f(x) разлагается на отрезке
,то это разложение единственное и коэффициенты определяются по формулам:
Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а
Достаточные признаки разложимости функции в ряд Фурье
Точка
ТЕОРЕМА 1 (Дирихле). Если
ТЕОРЕМА 2. Если f(x) периодическая функция с периодом
Ряды Фурье для четных и нечетных функций
Пусть f(x) - четная функция с периодом 2L , удовлетворяющая условию f(-x) = f(x) .
Тогда для коэффициентов ее ряда Фурье находим формулы:
Таким образом, в ряде Фурье для четной функции отсутствуют члены с синусами, и ряд Фурье для четной функции с периодом 2L выглядит так:
Пусть теперь f(x) - нечетная функция с периодом 2L, удовлетворяющая условию f(-x) = - f(x).
Тогда для коэффициентов ее ряда Фурье находим формулы:
Таким образом, в ряде Фурье для нечетной функции отсутствует свободный член и члены с косинусами, и ряд Фурье для нечетной функции с периодом 2L выглядит так:
Если функция f(x) разлагается в тригонометрический ряд Фурье на промежутке
, где
Если f(x) разлагается в тригонометрический ряд Фурье на [0,L], то доопределив заданную функцию f(x) соответствующим образом на [-L,0]; далее периодически продолжив на (T=2L), получим новую функцию, которую разлагаем в тригонометрический ряд Фурье.
Для разложения в ряд Фурье непериодической функции, заданной на конечном произвольном промежутке [a,b], надо : доопределить на [b,a+2L] и периодически продолжить, либо доопределить на [b-2L,a] и периодически продолжить.
Ряд Фурье по любой ортогональной системе функций
Последовательность функций
Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b],
если выполняется условие
Пусть теперь f(x) - любая функция непрерывная на отрезке [a,b]. Рядом Фурье такой функции f(x) на отрезке [a,b] по ортогональной системе называется ряд:
коэффициенты которого определяются равенством:
Если ортогональная система функций на отрезке [a,b] ортонормированная, то в этом случаи
Пусть теперь f(x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a,b]. Рядом Фурье такой функции f(x) на томже отрезке
по ортогональной системе называется ряд:
Если ряд Фурье функции f(x) по системе (1) сходится к функции f(x) в каждой ее точке непрерывности, принадлежащей отрезку [a,b]. В этом случае говорят что f(x) на отрезке [a,b] разлагается в ряд по ортогональной системе (1).
Комплексная форма ряда Фурье
Выражение
Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:
Задача о колебании струны
Пусть в состоянии равновесия натянута струна длинной l с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.
При сделанных выше допущениях можно показать, что функция u(x,t) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению
Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных:
и начальных условиях:
Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u(x,t)
Подстановка выражения (4) в уравнение (1) дает:
Из которого наша задача сводится к отысканию решений уравнений:
Используя это условие X(0)=0, X(l)=0, докажем, что
a) Пусть
откуда
б) Пусть
получим
в)
Уравнения имеют корни :
получим:
где
откуда
Учитывая это, можно записать:
и, следовательно
но так как A и B разные для различных значений n то имеем
где
Итак, подчиним функцию u(x,t) начальным условиям, т. е. подберем
Эти равенства являются соответственно разложениями функций
где
Интеграл Фурье
Достаточные условия представимости функции в интеграл Фурье.
Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:
1) абсолютной интегрируемости на
2) на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой
3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x)
Интегралом Фурье функции f(x) называется интеграл вида:
, где
Интеграл Фурье для четной и нечетной функции
Пусть f(x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.
Учитывая, что
Таким образом, интеграл Фурье четной функции f(x) запишется так:
где a(u) определяется равенством (3).
Рассуждая аналогично, получим, для нечетной функции f(x) :
и, следовательно, интеграл Фурье нечетной функции имеет вид:
где b(u) определяется равенством (4).
Комплексная форма интеграла Фурье
где
Выражение в форме (5) является комплексной формой интеграла Фурье для функции f(x).
Если в формуле (5) заменить c(u) его выражением, то получим:
Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу
в действительной форме и обратно осуществим с помощью формул:
Формулы дискретного преобразования Фурье
Обратное преобразование Фурье.
где n=1,2,... , k=1,2,...
Дискретным преобразованием Фурье - называется N-мерный вектор
при этом,
ГЛАВА 2
ПРАКТИЧЕСКАЯ ЧАСТЬ
Разложение функций в тригонометрический ряд Фурье
Исходные данные :
Функция периодическая с периодом
Сумма ряда в точках функции сходится к значению самой функции, а в точках разрыва к величине
Рис. 1
Производная также непрерывна везде, кроме конечного числа точек разрыва первого рода. Вывод: функция удовлетворяет условию разложения в ряд Фурье.
1) F(x) - кусочно-непрерывна на интервале
2) F(x) - кусочно-монотонна.
Так как отсутствует симметрия относительно OY, а также центральная симметрия - то рассматриваемая функция произвольна.
Представление функции рядом Фурье.
Из разложения видим, что при n нечетном
Поэтому формулу для
( так как
Отдельно рассмотрим случай когда n=1:
Подставим найденные коэффициенты в
и вообще
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника
2-ая гармоника
3-ая гармоника
4-ая гармоника
5-ая гармоника
и общий график F(x), сумма выше перечисленных гармоник. и сами гармоники.
Запишем комплексную форму полученного ряда
Для рассматриваемого ряда получаем коэффициенты (см. теорию)
но при
и случай когда n=-1:
И вообще комплексная форма:
или
или