Курсовая

Курсовая Анализ и оптимизация технологического режима работы добывающей скважины 115 Кыртаельского место

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024




Курсовой проект
Анализ и оптимизация технологического режима работы добывающей скважины № 115 Кыртаельского месторождения






Содержание
1.                 Геолого-физическая характеристика продуктивных пластов Кыртаельского месторождения

2.                 Технологическая часть

2.1            Анализ состояния скважины

2.2            Расчет процесса освоения скважины


2.3            Расчет условий фонтанирования скважины при начальных и текущих условиях

2.4            Расчет и распределение давления в эксплуатационной колонне и НКТ при текущих условиях эксплуатации скважины

2.5            Техническое обоснование способа эксплуатации скважины и выбор скважинного оборудования и режима его работы

Заключение

Список использованной литературы






1.                 Геолого-физическая характеристика продуктивных пластов Кыртаельского месторождения





Параметры

Ед.

Пласты

п/п



измер.

D3 dzr

D2 st

D2 ef2

1

2

3

4

5

6

1

Средняя глубина залегания

м



2754



2

Тип залежи



Пластовый, тектонически экранированный

Массивный сводовый, стратиграфически и тектонически экранированный

Пластовый сводовый, тектонически экраниро-ванный

























3

Тип коллектора



Поровый

4

Площадь нефтегазоносности

тыс.м3

30753

34605

38352

5

Средняя общая толщина

м

51

142

135

6

Средняя газонасыщенная толщина

м

8,5-12,7

11,8*

-

7

Средняя нефтенасыщенная толщина

м

4,1-9,1

31,3*

16,5-18,2

8

Средняя водонасыщенная толщина

м

13,5

53,4

11,2

9

Пористость

%

9-13

10

8-13

10

Средняя нефтенасыщенность ЧНЗ

доли ед.

0,82-0,85

0,9*

0,72-0,95

11

Средняя нефтенасыщенность ВНЗ

доли ед.







12

Средняя нефтенасыщенность газовой шапки

доли ед.

-

0,06

-

13

Средняя насыщенность газом газовой шапки

доли ед.

0,78-0,87

0,85

-

14

Проницаемость по керну

мкм2

0,004-0,039

0,046

0,002-0,112



по ГДИ

мкм2









по ГИС

мкм2







15

Коэффициент песчанистости

доли ед.

0,512-0,692

0,68*

0,205-0,218

16

Коэффициент расчлененности

доли ед.

5-6

12-15

5-8

17

Начальная пластовая температура

оС

55

55

62

18

Начальное пластовое давление

МПа

27,17-27,47

27,4

28,81-29,4

19

Вязкость нефти в пластовых условиях

мПа*с

-

0,83-1,3

-

20

Плотность нефти в пластовых условиях

т/м3



0,669



21

Плотность нефти в повехностных условиях

т/м3

0,841

0,835

0,822-0,830

22

Абсолютная отметка ВНК

м



-2492



23

Объемный коэффициент нефти

доли ед.

1,541

1,518

1,236**

24

Содержание серы в нефти

%







25

Содержание парафина в нефти

%







26

Давление насыщения нефти газом

МПа

-

27,4

11,65**

27

Газосодержание

м3

231,4*

231,4

87,1**

28

Содержание стабильного конденсата

г/м3



225,8



29

Вязкость воды в пластовых условиях

мПа*с

-

0,7

-

30

Плотность воды в пластовых условиях

т/м3

-

1,1

-

31

Средняя продуктивность

*10м3/(сут*МПа)







32

Начальные балансовые запасы нефти

тыс.т

5579

48167

18127



в т.ч.: по категориям А+В+С1

тыс.т

157

40324

7091



С2

тыс.т

5422

7843

11036

33

Коэффициент нефтеизвлечения

доли ед.

0,180

0,355

0,200



в т.ч.: по категориям А+В+С1

доли ед.

0,350

0,355

0,200



С2

доли ед.

0,175

0,355

0,200

34

Начальные извлекаемые запасы нефти

тыс.т

1004

17099

3627



в т.ч.: по категориям А+В+С1

тыс.т

55

14315

1419



С2

тыс.т

949

2784

2208

35

Начальные балансовые запасы газа

млн.м3









в т.ч.: по категориям А+В+С1

млн.м3









С2

млн.м3







36

Начальные балансовые запасы конденсата

тыс.т







37

Коэффициент извлечения конденсата

доли ед.











2. Технологическая часть



2.1 Анализ состояния скважины

Для оценки состояния ПЗП определим скин – фактор по методике Ван - Эвердинга и Херста.




Таблица 1.1 Исходные данные:

№ п/п



Обозначение



1

Дебит скважины

q

81

2

Вязкость нефти

м

0,00107

3

Мощность пласта

h

41,3

4

Пористость

m

0,1

5

Сжимаемость нефти

вн

15,03*10-10

6

Сжимаемость породы

вп

1*10-10

7

Радиус скважины

rc

0,13



Переведем КВД в координаты ∆P и Ln(t) :

∆P, МПа

LgT

0

0

2,7

7,2

3,7

7,9

4,7

8,6

5

9,0

5,2

10,0

5,2

10,5



где  уклон прямолинейного участка











Отрицательное значение скин-фактора указывает на улучшенное состояние ПЗП.


2.2 Освоение скважины




Таблица 2.1 Исходные данные:

№ п/п



Обозначение



1

Пластовое давление, МПа

Pпл

18,94

2

Глубина скважины, м

Н

2652

3

Внутренний диаметр НКТ, м

dнктв

0,062

4

Внутренний диаметр эксплуатационной колонны, м

dэкв

0,13

5

Плотность жидкости глушения, кг/м3

rгл

1100

6

Плотность нефти дегазированной, кг/м3

rнд

883

7

Вязкость нефти дегазированной, мПа·с

mнд

2,84



Расход жидкости агрегата УНЦ-1-160´32к:

на первой передаче qI = 0.0032 м3

на четвёртой передаче qIV = 0.0102 м3

Решение:

Освоение скважины – комплекс технологических и организационных мероприятий, направленных на перевод простаивающей по той или иной причине скважины в разряд действующих. Основной целью вызова притока и освоения является снижение противодавления на забое скважины, заполненной специальной жидкостью глушения, и искусственное восстановление или улучшение фильтрационных характеристик призабойной зоны для получения соответствующего дебита или приемистости. Принять, что для освоения требуемое забойное давление равно 0,75*Рпл.

В качестве жидкости глушения используем глинистый раствор плотностью rгл = 1200 кг/м3, в качестве жидкости замещения дегазированную нефть плотностью rнд = 870 кг/м3данной залежи. Проектирование процесса освоения скважины методом замены жидкости на нефть (без поглощения её пластом) заключается в расчёте давления закачки (Рзак), объёма закачиваемой жидкости (Vзак) и продолжительности закачки (Тзак).

Закачка жидкости замещения производится насосным агрегатом УНЦ - 1-160´32к. Данный агрегат имеет четыре передачи, отличающиеся напорами и расходами жидкости и необходимо для каждой передачи найти потери напора на трение, чтобы установить режим закачки. В данном случае потери напора рассчитываются для двух режимов – на первой передаче (расход qI = 0.0032 м3/с) и на четвёртой передаче (расход qIV = 0.0102 м3/с).

Для оценки пластической вязкости глинистого раствора (hгл) и его предельного напряжения сдвига (tгл) используются формулы Б.Е. Филатова













Находим критическую скорость движения глинистого раствора в трубе Wкрт










Фактическую среднюю скорость движения глинистого раствора в НКТ при различных режимах закачки находим по следующей формуле:

на первой передаче:









на четвертой передаче:








Потери давления на трение при движении глинистого раствора по трубам определяются по формуле



 

где Hнкт0 = Hскв-10 м;














Для жидкости замещения в этом случае



Тогда коэффициент гидравлического сопротивления l равен:







 МПа.

 МПа.
Таким образом, увеличение объемного расхода жидкости с 0,0032 до 0,0102 приводит к возрастанию потерь на трение в трубе. Освоение скважины, согласно проведенным расчётам, целесообразно вести на первой передаче.

Вытеснение глинистого раствора производиться жидкостью замещения (нефтью) по кольцевому зазору («затрубному пространству»).

Критическую скорость для кольцевого зазора рассчитываем по формуле:



.






Reкр – критическое число Рейнольдса, характеризующее смену режима течения жидкости в кольцевом зазоре и определяемое по формуле









где He = Re×Sen – параметр Хёдстрема.

Параметр Сен-Венана – Ильюшина для кольцевого зазора записывается в виде:









число Рейнольдса:









и тогда параметр Хёдстрема









Средняя скорость движения жидкости замещения в кольцевом зазоре при расходе qI = 0,0032 м3/с составит



 м/с





Параметр Хёдстрема:





Тогда




число Рейнольдса при движении глинистого раствора в кольцевом зазоре




ReглкI = 1362 <ReкрI = 5560 т.е. режим движения ламинарный.

Потери давления на трение в кольцевом зазоре при движении глинистого раствора определяются по формуле









где bкI – коэффициент, зависящий от параметра Сен-Венана-Ильюшина, который для случая движения жидкости по кольцевому зазору определяется по формуле:









по графику bкI = 0,56, определим потери на трение:






 МПа.
Для жидкости замещения:









поскольку ReжзI = 18793 > Reкр = 2310, режим движения ламинарный.

Потери давления на трение:









где lк – коэффициент гидравлического сопротивления.

Тогда




Прямая закачка

Рассмотрим случай прямой закачки, т.е. когда более лёгкая жидкость нагнетается в НКТ, а тяжелая жидкость вытесняется по межтрубному пространству.

1) Заполнение полости НКТ жидкостью замещения и как следствие перемещение границы раздела нефть – глинистый раствор (X) по НКТ от устья до башмака НКТ (). Принимаем, что башмак НКТ спущен до забоя скважины (1407м).

Для определения давления закачки используем формулу:


 
давление, необходимое для уравновешивания разности гидростатических давлений.




Для определения забойного давления используем формулу:





2) Заполнение затрубного пространства жидкостью замещения, перемещение границы раздела от башмака до устья, X – расстояние от устья до границы раздела. ().

Для определения давления закачки используем формулу:





Для определения забойного давления используем формулу:





Обратная закачка

Рассмотрим случай обратной закачки, т.е. когда более лёгкая жидкость нагнетается в затрубное пространство, а тяжелая жидкость вытесняется по НКТ. Расчеты производим аналогично расчетам при прямой закачке, результаты сводим в таблицах. Строим графики зависимостей забойного давления, и давления закачки от времени.
Прямая закачка:



X, м

ДРт гл , МПа

ДРт з, МПа

ДРкз гл, МПа

ДРкз з, Мпа

Рзак, МПа

Рзаб, МПа

Vж.з.3

Tзак, час

НКТ

0

1,972

0,000

0,765

0

2,737

28,521

0,000

0,000

200

1,823

0,042

0,765

0

3,056

29,285

0,604

0,052

400

1,674

0,084

0,765

0

3,374

29,285

1,207

0,105

600

1,525

0,127

0,765

0

3,693

29,285

1,811

0,157

800

1,375

0,169

0,765

0

4,012

29,285

2,414

0,210

1000

1,226

0,211

0,765

0

4,330

29,285

3,018

0,262

1200

1,077

0,253

0,765

0

4,649

29,285

3,621

0,314

1400

0,928

0,295

0,765

0

4,968

29,285

4,225

0,367

1600

0,778

0,337

0,765

0

5,286

29,285

4,828

0,419

1800

0,629

0,380

0,765

0

5,605

29,285

5,432

0,471

2000

0,480

0,422

0,765

0

5,924

29,285

6,035

0,524

2200

0,331

0,464

0,765

0

6,242

29,285

6,639

0,576

2400

0,181

0,506

0,765

0

6,561

29,285

7,242

0,629

2600

0,032

0,548

0,765

0

6,880

29,285

7,846

0,681

2643

0,000

0,557

0,765

0

6,948

29,285

7,975

0,692

Затрубное пространство

2643

0

0,557

0,765

0

6,948

28,521

7,975

0,692

2600

0

0,557

0,707

0,001

6,800

28,429

8,236

0,715

2400

0

0,557

0,649

0,006

6,321

28,003

10,053

0,873

2200

0

0,557

0,591

0,011

5,843

27,578

11,869

1,030

2000

0

0,557

0,533

0,017

5,364

27,152

13,686

1,188

1800

0

0,557

0,475

0,022

4,886

26,726

15,503

1,346

1600

0

0,557

0,417

0,027

4,408

26,300

17,319

1,503

1400

0

0,557

0,360

0,032

3,929

25,875

19,136

1,661

1200

0

0,557

0,302

0,037

3,451

25,449

20,953

1,819

1000

0

0,557

0,244

0,043

2,972

25,023

22,769

1,977

800

0

0,557

0,186

0,048

2,494

24,597

24,586

2,134

600

0

0,557

0,128

0,053

2,015

24,172

26,403

2,292

400

0

0,557

0,070

0,058

1,537

23,746

28,219

2,450

200

0

0,557

0,012

0,063

1,058

23,320

30,036

2,607

0

0

0,557

0,000

0,068

0,625

22,894

31,853

2,765




















2.3 Расчет условий фонтанирования скважины




Естественное оптимальное фонтанирование – это процесс подъема продукции скважины под действием природной энергии при работе подъемника на оптимальном режиме.

Условия фонтанирования определяется соотношением между эффектным газовым фактором смеси, поступающей из пласта, и удельным расходом газа, необходимым для работы газожидкостного подъемника.
Исходные данные для расчета:

№ п/п



Обозначение



1

Пластовое давление, МПа

Pпл

18,9

2

Глубина скважины, м

Н

2653

3

Внутренний диаметр НКТ, м

dнктв

0,062

4

Внутренний диаметр эксплуатационной колонны, м

dэкв

0,13

5

Устьевое давление, МПа

Ру

7,0

6

Давление насыщения, МПа

Рнас

27,4

7

Плотность пластовой нефти, кг/м3

rнпл

669

8

Плотность нефти дегазированной, кг/м3

rнд

883

9

Вязкость нефти дегазированной, мПа·с

mнд

2,84

10

Обводненность продукции, %

n

0,32

11

Плотность пластовой воды, кг/м3

rвпл

1100

12

Газовый фактор, м3

Г

231,4






Определим коэффициент растворимости
=231,4·0,883/(27,4-0,1) = 7,48 МПа-1

2.4 Гидравлический расчет движения газожидкостной смеси в скважине по методу Ф. Поэтмана – П. Карпентера




1. Принимаем величину шага изменения давления , соответственно число задаваемых давлений n = 21.

2. Рассчитываем температурный градиент потока

где  - средний геотермический градиент скважины, Qж ст – дебит скважины по жидкости при стандартных условиях; DТ – внутренний диаметр колонны НКТ, м.

3. Определяем температуру на устье скважины



5. Рассчитаем остаточную газонасыщенность нефти (удельный объем растворенного газа) в процессе ее разгазирования. Например, при Р=10 МПа и Т=267,5 К.:
;

 




6. Определим плотность выделившегося газа при Р=10 МПа и Т=276, 5 К.:
;

где ;



;
7. Находим относительную плотность растворенного газа, остающегося в нефти при Р=10 МПа и Т=267,5 К :
;
8. Рассчитаем объемный коэффициент, предварительно определив удельное приращение объема нефти за счет единичного изменения ее газонасыщенности л(Т), и температурный коэффициент объемного расширения дегазированной нефти бн при стандартном давлении:
;

;

;
9. Определяем коэффициент сверхсжимаемости газа по следующим зависимостям

где Тпр и рпр – соответственно приведенные температура и давления определяются по следующим формулам





10. Вычисляем удельный объем газожидкостной смеси при соответствующих термодинамических условиях. Например, при термодинамических условиях Р = 10 МПа и Т = 267, 5 К, удельный объем будет







11. Определяем удельную массу смеси при стандартных условиях

12. Рассчитываем идеальную плотность газожидкостной смеси

13. Определяем корреляционный коэффициент необратимых потерь давления



14. Вычисляем полный градиент давления в точках с заданными давлениями, меньше, чем рнас. Например, градиент в точке, соответствующей давлению р = 7 МПа







15. Вычисляем dH/dp

16. Проводим численное интегрирование зависимости dH/dp = f(p), в результате чего получаем распределение давления на участке НКТ, где происходит течение газожидкостного потока.
2.5 Технико-экономическое обоснование способа эксплуатации скважины и выбор скважинного оборудования и режима его работы
Данная скважина эксплуатируется фонтанным способом. Это связано с высоким газосодержанием нефти 231,4 м3/т, давление на забое скважины меньше давления насыщения нефти газом поэтому фонтанирование газлифтное. Скважина относится к высоко дебитным (, обводненность продукции на данный момент 0,34 %), поэтому перевод на другой способ эксплуатации на данный момент не целесообразен.






Заключение
В процессе выполнения курсового проекта мною были выполнены расчеты освоения скважины, условий фонтанирования, распределения давлений в насосно-компрессорных трубах и эксплуатационной колонне, был выбран способ эксплуатации, закреплены знания по таким дисциплинам как нефтегазопромысловое оборудование, эксплуатация нефтяных и газовых скважин, разработка нефтяных и газовых скважин, гидравлика.

Наиболее целесообразно эксплуатировать скважину фонтанным способом.





Список литературы




1.                 Андреев В.В., Уразаков К.Р., Далимов В.У. Справочник по добыче нефти.: Под редакцией К.Р. Уразаков. – М: ООО «Недра-Бизнесцентр», 2000. – 374с.

2.                 Басарыгин Ю.М., Будников В.Ф., Булатов А.И., Проселков Ю.М., Технологические основы освоения и глушения нефтяных и газовых скважин: Учеб. для вузов. – М: ООО «Недра-Бизнесцентр», 2001. – 543 с.

3.                 Сборник задач по технологии и технике нефтедобыче: Учеб. пособие для вузов/ И.Т. Мищенко, В.А. Сахаров, В.Г. Грон, Г.И. Богомольный - М.: Недра, 1984. - 272.с., ил.

4.                 Мищенко И.Т. Скважинная добыча нефти: Учеб. пособие для вузов. – М: ФГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2003. – 816 с.

5.                 Щуров В.И. Технология и техника добычи нефти: Учебник для вузов. – 2-е изд., стереотипное. Перепечатка с издания 1983 г. – М.: ООО ТИД «Альянс», 2005. – 510 с.

6.                 Юрчук А.М., Истомин А.З. Расчеты в добыче нефти. Учебник для техникумов, 3-е изд., перераб. И доп., М. - «Недра», 1979. - 271 с.

1. Реферат Государственная инновационная политика 2
2. Реферат на тему Жанры поздравлений К постановке проблемы
3. Реферат Фондовый рынок как элемент рыночной инфраструктуры
4. Сочинение на тему Бунин и. а. - Любовь и красота вечные спутники человека
5. Сочинение на тему Толстой л. н. - Образ петербурга в романах достоевского
6. Контрольная_работа на тему Архітектура компютерів мікропроцесори
7. Реферат В.И. Вернадский как историк науки
8. Реферат Денежный оборот и система расчетов на предприятии
9. Реферат на тему Elements Of Deceptive Avertisements Essay Research Paper
10. Реферат на тему One