Курсовая Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Министерство образования и науки республики Казахстан
Северо-Казахстанский государственный университет
им. М. Козыбаева
Факультет информационных технологий
Кафедра математики
Курсовая работа
"Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца"
Петропавловск, 2007
Аннотация
В данной курсовой работе исследованы свойства некоторых семейств конечномерных пространств и доказаны интерполяционные теоремы для этих классов пространств.
Содержание
Введение
1. Основные понятия и некоторые классические теоремы теории интерполяции
2. Общие свойства интерполяционных пространств
3. О норме и спектральном радиусе неотрицательных матриц
4. Некоторые интерполяционные свойства семейств конечномерных пространств
Заключение
Список использованной литературы
Введение
Теория интерполяции функциональных пространств как самостоятельная ветвь функционального анализа сформировалась за последние 40-45 лет. Она играет все возрастающую роль в анализе и его приложениях. Центральной темой теории является проблема интерполяции линейных операторов. Эта проблема тесно связана с задачей построения совокупности "промежуточных" пространств – арены, на которой действуют "промежуточные" операторы. Основополагающий вклад в теорию был сделан Эл.-Л. Лионсом, А.П. Кальдероном и С.Г. Крейном. При этом не следует, конечно, забывать, что исследованием названных авторов предшествовали (и стимулировали их) классические теоремы Рисса и Марцинкевича об интерполяции линейных операторов в пространствах lp.
Теория интерполяция также применяется в других областях анализа (например, в теории уравнений с частными производными, численном анализе, теории аппроксимации). Рассматривают два существенно различных интерполяционных метода: метод вещественной интерполяции и метод комплексной интерполяции. Модельными примерами для этих методов служат доказательства теоремы Марцинкевича и теоремы Рисса-Торина соответственно. Один из самых ранних примеров интерполяции линейных операторов был предложен Шуром. Шур сформулировал свой результат для билинейных форм, или вернее для матриц, соответствующих этим формам. В 1926 году М. Рисс доказал первую версию теоремы Рисса-Торина с ограничением p≤q, которое как он показал, существенно в случае, когда в качестве скаляров берутся вещественные числа. Основным рабочим инструментом Рисса было неравенство Гельдера. Но в 1938 году Торин привел совершенно новое доказательство и смог устранить ограничение p≤q. В то время как Рисс пользовался вещественными скалярами и неравенством Гельдера, Торин использовал комплексные скаляры и принцип максимума.
1. Основные понятия и некоторые классические теоремы теории интерполяции
Пусть (u,μ) – пространство с мерой μ, которую будем всегда предполагать положительной. Две рассматриваемые функции будем считать равными, если они отличаются друг от друга лишь на множестве нулевой μ-меры. При этом обозначим через lp(u,dμ) или просто (lp(dμ), lp(u) или lp) лебегово пространство всех скалярнозначных μ-измерных функций f и u, для которых величина
конечна, здесь 1≤p<∞.
В случае, когда p=∞, пространство lp состоит из всех μ-измеримых ограниченных функций. В этом случае
Пусть T - линейное отображение пространства lp=lp(u,dμ) в пространство lq=lq(v,dν). Это означает, что T(αf+βg)=αT(f)+βT(g).
Если к тому же T- ограниченное отображение, то есть если величина конечна, то пишут T: lp®lq.
Число μ называется нормой отображения T. Справедливы следующие известные теоремы:
Теорема 1.1 (интерполяционная теорема Рисса-Торина)
Предположим, что
Тогда T:
Неравенство (*) означает, что μ как функция от θ логарифмически выпукла, то есть lnμ – выпуклая функция.
Доказательство теоремы приведено в [1].
Для скалярнозначной μ-измерной функции f, принимающей почти всюду конечные значения, введем функцию распределения m(σ,f) по формуле
Ясно, что m(σ,f) представляет собой вещественнозначную функцию от σ, определенную на положительной вещественной полуоси
и
Используя функцию распределения m(σ,f), введем теперь слабые lp-пространства, обозначаемые через
В предельном случае p=∞, положим
Заметим, что
Действительно, ясно, что
Применяя неравенство
Последнее означает, что
Теорема 1.2 (Интерполяционная теорема Марцинкевича)
Пусть p0≠p1 и
T:
T:
Положим
Тогда T:
Эта теорема, напоминает теорему Рисса-Торина, но отличается от нее во многих важных отношениях.
Во-первых, здесь скаляры могут быть как вещественными, так и комплексными, в то время как в теореме Рисса-Торина обязательно нужно, чтобы скаляры были комплексными. Во-вторых здесь имеется ограничение p≤q. Наиболее важная особенность состоит в том, что в предпосылках теоремы пространства
Таким образом, теорема Марцинкевича может оказаться применимой в тех случаях, где теорема Рисса-Торина уже не работает.
2. Общие свойства интерполяционных пространств
Пусть A - векторное пространство над полем вещественных или комплексных чисел. Оно называется нормированным векторных пространством, если существует вещественнозначная функция (норма)
1)
2)
3)
Пусть A и B – два нормированных векторных пространства. Отображение T из A в B называется ограниченным линейным оператором, если
Ясно, что всякий ограниченный линейный оператор непрерывен.
Пусть A0 и A1 – топологических векторных пространства. Говорят, что
A0 и A1 совместимы, если существует отделимое топологическое векторное пространство U, такое, что A0 и A1, являются подпространствами. В этом случае можно образовать сумму A0 + A1, и пересечение A0∩A1. Сумма состоит из всех a
Справедлива следующая лемма
Лемма 2.1. Пусть A0 и A1-совместимые нормированные векторные пространства. Тогда
A0∩A1, есть нормированное векторное пространство с нормой
A0 + A1, также представляет собой нормированное векторное пространство с нормой
При этом если A0 и A1 – полные пространства, то A0∩A1 и A0 + A1 также полны.
Дадим некоторые важные определения:
Категория σ состоит из объектов A,B,C…., и морфизмов R,S,T,…. между объектами и морфизмами определено трехместное отношение T: A↷B.
Если T: A↷B и S: B↷C, то существует морфизм ST, называемый произведением (или композицией) морфизмов S и T, такой, что ST: A↷ C.
Операция взятия произведения морфизмов удовлетворяет закону ассоциативности: T(SR)=(TS)R. далее, для всякого объекта A из σ существует морфизм I=IA, такой, что для любого морфизма T: A↷A TI=IT=T
Через σ1 обозначим категорию всех совместимых пар
Определение 2.1. Пусть
Если, кроме, того T:
Более общим образом, пусть
Если выполнено
В этом случае, говорят, что A и B равномерные интерполяционные пространства.
Определение 2.2 Интерполяционные пространства A и B называются пространствами типа θ (0≤θ≤1), если
В случае с=1 говорят, что A и B - точные интерполяционные пространства типа θ.
3. О норме и спектральном радиусе неотрицательных матриц
Хорошо известно, что проблема нахождения нормы линейного оператора, спектрального радиуса оператора являются трудной проблемой и в конечномерном случае. В то же время, иногда важно не вычисляя нормы оператора знать, как она изменится в случае некоторого преобразования.
В данной работе изучается влияние распределения ненулевых элементов неотрицательной матрицы на норму соответствующего оператора и спектрального радиуса.
Определим пространство
a=(a1, a2,…, aN)
с нормой
Множество Q={(k,l):k,l=1,…,N} назовем решеткой размерности N x N. Любое множество Q0={(ki,lj):
Спектральный радиус линейного оператора в конечномерном пространстве
r(A)=
где lk- собственные значения оператора A.
Пусть m ≤ N, d1,…,dm - положительные числа. Через Dm обозначим множество неотрицательных матриц А, ненулевые элементы которых принимают значения d1,…,dm. Через P(A) обозначим множество индексов соответствующих положительным элементам. Пусть AÎDm. Если D={(ki,lj), i=1,…,q, j=1,…,p} подрешетка, содержащая P(A), то для соответствующего оператора А
Как видно из этого определения, от перестановки строк и столбцов матрицы норма не меняется.
Пусть даны положительные числа d1,…,dm и натуральное число m < N2.
Будем исследовать следующие вопросы:
Как расположить числа d1,…,dm в решетке Q, чтобы норма линейного оператора AQ соответствующего решетке (матрице) Q была максимальной?
Пусть в неотрицательной решетке Q m положительных элементов. Как расположить (m+1)-ый элемент, чтобы норма линейного оператора AQ соответствующей полученной решетке была максимальной?
Как расположить числа d1,…,dm в решетке Q, чтобы спектральный радиус был минимальным (максимальным)?
Справедливы следующие теоремы:
Теорема 3.1 Пусть d1,…,dm положительные числа, Dm - класс неотрицательных матриц, ненулевые элементы которых принимают значения d1,…,dm. Если m ≤ N, Q0 -произвольная подрешетка размерности 1
Доказательство. Воспользуемся определением и неравенством Коши-Буняковского, получаем
Неравенство в обратную сторону очевидно.
Теорема доказана.
Данное утверждение говорит о том, что если ненулевых элементов меньше либо равно N, то своего максимума норма достигается когда все ненулевые элементы расположены в одной строке или в одном столбце.
Теорема 3.2 Пусть d1=…=dm=d, то есть Dm – множество всех матриц, имеющие m ненулевых элементов, которые равны числу d. Q0 -произвольная решетка, симметричная относительно главной диагонали размерности n
где [m1/2] - целая часть числа m1/2.
Доказательство. Из свойства спектрального радиуса имеем для AÎDm
Пусть Q1 -подрешетка, также симметричная относительно главной диагонали размерности
А=А1+А0, где А1,А0ÎDm, Р(А1)=Q1, P(A0)ÌQ1\Q0.
Учитывая, что матрицы А0 и А1 неотрицательны, получаем
поэтому r(A0)≤r(A).
С другой стороны А1 – симметричная матрица и следовательно
Таким образом,
Теорема доказана.
Теорема 3.3 Пусть множество GÌQ, где Q - решетка размерности n
Тогда, если P(A)ÌG, то r(P(A))=0.
Доказательство. Не трудно проверить, что для матрицы А с ненулевыми элементами из G (т.е. P(A)ÌG) имеет место равенство А2=0, т.е. А – нильпотентная матрица индекса 2 и следовательно у нее единственное собственное значение 0.
Теорема доказана.
Теорема 3.4 Пусть AÎDm. Пусть Q0 -минимальная подрешетка содержащая P(A), (Q0ÉP(A)) такая, что в каждой строке и в каждом столбце находится хотя бы один элемент соответствующий нулевому элементу матрицы A.
Пусть Ad – матрица, полученная из матрицы A добавлением элемента со значением d>0 в одно из свободных мест, тогда
Доказательство.
Так как норма оператора не зависит от перестановки строк и столбцов матрицы, то можно считать, что решетка A0={(i,j), i=1,…,l; j=1,…,m} расположена в левом верхнем углу матрицы A. Пусть добавлен еще один ненулевой элемент d с координатами (i0,j0) вне решетки Q0. Возможны три случая:
1) 1 ≤ i0 ≤ l, j0 > m;
2) i0 > l, 1 ≤ j0 ≤ m;
3) i0 > l, j0 > m.
Рассмотрим первый случай. Не уменьшая общности положим, что этот ненулевой элемент соответствует индексу (1, m+1). По условию теоремы в каждой строке и в каждом столбце имеется хотя бы один нулевой элемент и мы можем предположить, что a1m=0. Получаем:
Используя неравенства
имеем:
Пусть z1=x1, z2=x2,…,zm=
тогда
где элемент
Следовательно
Рассмотрим второй случай. Пусть добавленный ненулевой элемент соответствует индексу (l+1,1). Учитывая, что в каждой строке и в каждом столбце решетки есть хотя бы один ненулевой элемент и то, что от перестановки строк норма матрицы не меняется, мы можем предположить, что al1=0. Аналогично первому случаю имеем:
Используя неравенства
получаем:
Пусть z1=y1, z2=y2,…,zm=
тогда
где элемент
Рассмотрим последний случай. Не уменьшая общности положим, что этот ненулевой элемент соответствует индексу (l+1, m+1). В этом случае нужно учесть, что от перестановки строк и столбцов норма матрицы не изменится, поэтому можно положить, что alm=0. Рассуждая также, как и в предыдущих случаях, получаем:
где элемент
Теорема доказана. Аналогичные задачи для интегральных операторов были рассмотрены в работах [1], [5].
4. Некоторые интерполяционные свойства семейств конечномерных пространств
Пусть 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Определим семейство конечномерных пространств:
где
, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, множество M назовем сетью.
Определим семейство конечномерных пространств

|e| - количество элементов множества e.
При q=∞ положим

Данные пространства являются конечномерными аналогами сетевых пространств, введенных в [1].
Будем говорить что {AN} ↪ {BN} если существует константа c, такая что
для любого
, где c не зависит от
.
Лемма 4.1 Пусть 1 ≤ q <q1≤ ∞, 1 ≤ p ≤ ∞,
. Тогда имеет место вложение
↪ 
то есть

где с не зависит от выбора N.
Доказательство. Пусть
(1)
то есть
↪
Теперь рассмотрим случай, когда 1 ≤ q <q1< ∞, и воспользуемся неравенством (1)





Лемма доказана.
Лемма 4.2 Пусть 1≤p<p1<∞, 1≤q,q1≤∞. Тогда имеем место вложение
↪ 
Доказательство.
Согласно условию леммы, нам достаточно доказать вложения при p < p1 :
↪ 
Получаем:



Лемма доказана.
Лемма 4.3 Пусть 1<p<∞, 1≤q≤∞, M=
. Тогда


Равенства понимаются с точностью до эквивалентности норм, причем константы не зависят от
.
Доказательство. Сначала докажем соотношение:
(2)
Заметим, что

Поэтому

Теперь покажем обратное неравенство. Пусть
. Учитывая выбор
имеем.



~
~
Заметим, что


Согласно (2) получаем:

то есть
↪
.
Докажем обратное включение. Пусть
Введем следующие обозначения:

Тогда
.
Пусть для определенности
.
Возможны следующие случаи:
.
В первом случае получаем, что

.
Во втором случае
, следовательно
. Представим
, тогда
. Здесь и далее
- целая часть числа
.
Получаем

Заметим, что существует
такое, что

Положим
Тогда
.

.
Таким образом, получаем


Из того, что

Имеем

То есть
. Следовательно
↪
где соответствующие константы не зависят от N.
Лемма доказана.
Для пары пространств
определим интерполяционные пространства
аналогично [5] .
Пусть
, тогда

где
При q=∞

Лемма 4.4 Пусть
, d>1. Тогда

Справедлива следующая
Теорема 4.1 Пусть ≤p0<p1<∞, 1<q0,q1≤∞, M – произвольная сеть. Тогда
↪ 
где
Доказательство.
Учитывая, что
↪
нам достаточно, доказать следующее вложение
↪ 

Пусть
Рассмотрим произвольное представление a=a0+a1, где
тогда


(3)
Так как представление a=a0+a1 произвольно, то из (3) следует

Где
Рассматривая норму элемента в пространстве и применяя
лемму 4.4 , получаем:

Теорема доказана.
Теорема 4.2 Пусть 1≤p0<p1<∞, 1<q0,q1≤∞,
Тогда имеет место равенство

Это равенство понимается в смысле эквивалентности норм с константами, не зависящими
N.
Доказательство. По теореме 4.1 и того, что
является обобщением пространств Лоренца нам достаточно доказать следующее вложение:
↩ 
.
Определим элементы
и
следующим образом

, тогда
.
Заметим что
(4)
где
(5)
где
Тогда

Из (4) и (5) имеем:


Оценим отдельно каждое из слагаемых последнего равенства, используя неравенство Гельдера:

~




где
.
Таким образом, получаем, что
Аналогично рассмотрим второе слагаемое:

~
~

~ 
Таким образом, получаем

где c не зависит от
.
Теорема доказана.
Теорема 4.3 Пусть
- матрица
, тогда
~ 
Причем соответствующие константы не зависят от
Доказательство.
Воспользуемся эквивалентными представлением нормы
и неравенством о перестановках, получим
~
где
- невозрастающая перестановка последовательности 
Применим неравенство Гельдера

Учитывая лемму 3, имеем

Обратно, пусть e произвольное множество из M1,
, где

Тогда


В силу произвольности выбора e из M1 получаем требуемый результат.
Следствие. Пусть
- матрица

p0<p1, q0<q1,
тогда


Доказательство. Из теоремы 3 следует, что



Воспользуемся интерполяционными теоремами 1,2, получаем

то есть

С другой стороны по лемме 1 и теореме 3 имеем

,
Следствие доказано.
Заключение
В данной курсовой работе приведены и доказаны некоторые свойства конечномерных пространств, а именно пространств Лоренца и сетевых пространств.
Полученные результаты могут быть полезны для студентов, магистрантов, аспирантов и преподавателей. Кроме того, данный материал может быть использован для чтения спецкурсов и спецсеминаров.
Список использованной литературы
1. Берг Й., Лефстрем Й. Интерполяционные пространства. Введение. М.: Мир, 1980.
2. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов. М.: Наука, 1965.
3. Костюченко А.Г., Нурсултанов Е.Д. Об интегральных операторах в пространствах. Фундаментальная и прикладная математика. Т.5. №2, 1999. С. 475-491.
4. Костюченко А.Г., Нурсултанов Е.Д. Теория управления катастрофами. //Успехи математических наук, 1998. Т.53. Выпуск 2.
5. Нурсултанов Е.Д. Сетевые пространства и неравенства типа Харди-Литтлвуда //Матем.сборник.-1998.-Т.189, №3.-С.83-102.
6. Таджигитов А.А. О зависимости нормы матрицы от взаимного расположения ее элементов. // Материалы Международной научной конференции "Современные проблемы теории функций и их приложения", Саратов, Россия, 2004, с. 177-178.
7. Таджигитов А.А. О норме и спектральном радиусе неотрицательных матриц. //Материалы Международной научно-практической конференции "Современные исследования в астрофизике и физико-математических науках", Петропавловск, 2004, с. 104-107.
8. Таджигитов А.А. Интерполяционные свойства конечномерных пространств. //Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов 2005", Астана, 2005, с. 41-42.
Определим семейство конечномерных пространств
|e| - количество элементов множества e.
При q=∞ положим
Данные пространства являются конечномерными аналогами сетевых пространств, введенных в [1].
Будем говорить что {AN} ↪ {BN} если существует константа c, такая что
Лемма 4.1 Пусть 1 ≤ q <q1≤ ∞, 1 ≤ p ≤ ∞,
то есть
где с не зависит от выбора N.
Доказательство. Пусть
то есть
Теперь рассмотрим случай, когда 1 ≤ q <q1< ∞, и воспользуемся неравенством (1)
Лемма доказана.
Лемма 4.2 Пусть 1≤p<p1<∞, 1≤q,q1≤∞. Тогда имеем место вложение
Доказательство.
Согласно условию леммы, нам достаточно доказать вложения при p < p1 :
Получаем:
Лемма доказана.
Лемма 4.3 Пусть 1<p<∞, 1≤q≤∞, M=
Равенства понимаются с точностью до эквивалентности норм, причем константы не зависят от
Доказательство. Сначала докажем соотношение:
Заметим, что
Поэтому
Теперь покажем обратное неравенство. Пусть
~
Заметим, что
Согласно (2) получаем:
то есть
Докажем обратное включение. Пусть
Тогда
Пусть для определенности
Возможны следующие случаи:
В первом случае получаем, что
Во втором случае
Получаем
Заметим, что существует
Положим
Таким образом, получаем
Из того, что
Имеем
То есть
Лемма доказана.
Для пары пространств
Пусть
где
При q=∞
Лемма 4.4 Пусть
Справедлива следующая
Теорема 4.1 Пусть ≤p0<p1<∞, 1<q0,q1≤∞, M – произвольная сеть. Тогда
где
Доказательство.
Учитывая, что
Пусть
Так как представление a=a0+a1 произвольно, то из (3) следует
Где
лемму 4.4 , получаем:
Теорема доказана.
Теорема 4.2 Пусть 1≤p0<p1<∞, 1<q0,q1≤∞,
Это равенство понимается в смысле эквивалентности норм с константами, не зависящими
Доказательство. По теореме 4.1 и того, что
Определим элементы
Заметим что
где
где
Тогда
Из (4) и (5) имеем:
Оценим отдельно каждое из слагаемых последнего равенства, используя неравенство Гельдера:
где
Таким образом, получаем, что
~
Таким образом, получаем
где c не зависит от
Теорема доказана.
Теорема 4.3 Пусть
Причем соответствующие константы не зависят от
Доказательство.
Воспользуемся эквивалентными представлением нормы
где
Применим неравенство Гельдера
Учитывая лемму 3, имеем
Обратно, пусть e произвольное множество из M1,
Тогда
В силу произвольности выбора e из M1 получаем требуемый результат.
Следствие. Пусть
p0<p1, q0<q1,
Доказательство. Из теоремы 3 следует, что
Воспользуемся интерполяционными теоремами 1,2, получаем
то есть
С другой стороны по лемме 1 и теореме 3 имеем
Следствие доказано.
Заключение
В данной курсовой работе приведены и доказаны некоторые свойства конечномерных пространств, а именно пространств Лоренца и сетевых пространств.
Полученные результаты могут быть полезны для студентов, магистрантов, аспирантов и преподавателей. Кроме того, данный материал может быть использован для чтения спецкурсов и спецсеминаров.
Список использованной литературы
1. Берг Й., Лефстрем Й. Интерполяционные пространства. Введение. М.: Мир, 1980.
2. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов. М.: Наука, 1965.
3. Костюченко А.Г., Нурсултанов Е.Д. Об интегральных операторах в пространствах. Фундаментальная и прикладная математика. Т.5. №2, 1999. С. 475-491.
4. Костюченко А.Г., Нурсултанов Е.Д. Теория управления катастрофами. //Успехи математических наук, 1998. Т.53. Выпуск 2.
5. Нурсултанов Е.Д. Сетевые пространства и неравенства типа Харди-Литтлвуда //Матем.сборник.-1998.-Т.189, №3.-С.83-102.
6. Таджигитов А.А. О зависимости нормы матрицы от взаимного расположения ее элементов. // Материалы Международной научной конференции "Современные проблемы теории функций и их приложения", Саратов, Россия, 2004, с. 177-178.
7. Таджигитов А.А. О норме и спектральном радиусе неотрицательных матриц. //Материалы Международной научно-практической конференции "Современные исследования в астрофизике и физико-математических науках", Петропавловск, 2004, с. 104-107.
8. Таджигитов А.А. Интерполяционные свойства конечномерных пространств. //Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов 2005", Астана, 2005, с. 41-42.