Курсовая Расчет двигателя
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Государственное образовательное учреждение
высшего профессионального образования
ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ
Филиал г. Салехард
Кафедра АТХ
Курсовая работа
По дисциплине:
«Теория, расчет и конструкция тепловых двигателей и энергетических установок»
На тему: «Расчет двигателя»
Салехард 2009г.
ЗАДАНИЕ
Выполнить расчет четырехтактного дизельного двигателя по следующим исходным данным:
Параметры | ЯМЗ - 238А |
Номинальная мощность ,кВт | 200 |
Номинальная частота вращения, мин-1 | 2300 |
Число и расположение цилиндров | 8-V |
Степень сжатия e | 16,5 |
S/D | 1,0 |
Диаметр цилиндра D, мм | 125 |
Ход поршня S, мм | 125 |
Рабочий объем цилиндров Vл, л | 11,85 |
Скорость поршня ,м/с | 9,8 |
Минимальный удельный расход топлива, г/кВт × ч | 209 |
Расположение клапанов | верхнее |
1. Тепловой расчет двигателя
При тепловом расчете вновь проектируемого двигателя предварительно рассчитывают параметры действительного цикла, строят индикаторную диаграмму и определяют основные размеры: диаметр и ход поршня.
Исходными данными для расчета являются: Ре - мощность (номинальная),
nн - частота вращения (номинальная), e - степень сжатия.
В ходе расчета необходимо задаваться некоторыми коэффициентами, принимая во внимание данные по существующим двигателям. Порядок расчета следующий.
1.1 Процессы впуска и выпуска
а). Задаемся значениями: То; ро ; Тr ; рr; DТ; ра.
Температура То и давление ро окружающей среды принимаются в соответствии со стандартными атмосферными условиями: То=273+15=298 К; ро=0,1 МПа.
Температура Тr и давление рr остаточных газов зависят от частоты вращения и нагрузки двигателя, сопротивления выпускного тракта, способа наддува.
Для двигателей с газотурбинным наддувом:
рr=( 0,75…0,95 )рк= ( 0,75ч0,95 )Ч0,22 = 0,165 ч 0,209 МПа, рr=0,209 МПа
давление надувочного воздуха рк для существующих двигателей:
рк=(1,5…2,2)ро.= (1,5…2,2)Ч0,1 = 0,15 ч 0,22 МПа, рк=0,22 МПа
Температура остаточных газов зависит в основном от коэффициента избытка воздуха a, степени сжатия e, частоты вращения коленчатого вала, нагрузки.
DТ-степень подогрева свежего заряда во впускном тракте зависит от частоты вращения, наличия наддува и принимается для дизельных с наддувом 0…10. Принимаем значение DТ =100 .
Давление в конце впуска ра принимается из следующих соотношений
ра = рх - Dра = 0,22 – 0,022 = 0,198 МПа
У двигателей потери давления Dра за счет сопротивления впускного тракта находятся: Dра = ( 0,03 ч 0,1 )Ч рх = 0,0066 ч 0,022 МПа, Dра = 0,022МПа
б). Определяем величины: gr (коэффициент остаточных газов), Тa (температура конца наполнения) и hv (коэффициент наполнения) по следующим формулам:
Температура воздуха за компрессором:
,
где nк - показатель политропы сжатия в компрессоре, принимается в пределах 1,4…2. Примем nк = 1,6.
в). В зависимости от принятого значения коэффициента избытка воздуха a определяем массу свежего заряда, введенного в цилиндры двигателя (ориентировочно):
М1 = a lо / 29, кмоль,
где lo = 14,5 кг. воздуха/ кг. топлива – для дизельного двигателя.
М1 = 1,7*14,5 / 29=0,85 кмоль
Для принятия значения a необходимо учесть способ смесеобразования, примем 1,7.
Масса воздуха в кмолях: Lo =lo/29 = 14,5/29 = 0,5 кмоль
1.2 Процесс сжатия
Определяем параметры процесса сжатия: n1; рс; Тс; Мс.
а). Показатель политропы сжатия п1 определяется из соотношения:
n1 = 1,41 – 100/nн=1,41 – 100/2300=1,366 ,
где nн – номинальная частота вращения коленчатого вала двигателя.
б). Давление конца сжатия:
.
в). Температура конца сжатия:
г). Масса рабочей смеси в конце сжатия:
, кмоль
д). Теплоемкость рабочей смеси в конце сжатия:
Сv.c=20,16+1,74×10 -3Тс=20,16+1,74×10 -3.1149,58=22,16,
кДж/(кмоль.град).
1.3 Процесс сгорания
а). Определяют массу продуктов сгорания в цилиндрах двигателя.
где С = 0,87; Н = 0,125 – соответственно элементарный состав топлива для дизтоплива (ориентировочно).
б). Определяют температуру газов в цилиндре в конце процесса сгорания из уравнений:
Сrz – теплоемкость продуктов сгорания при постоянном давлении:
Сrz =(20,2 + 0,92/a) + (15,5 + 13,8/a) 10 –4 Тz + 8,314 ,
m -коэффициент молекулярного изменения рабочей смеси в ходе сгорания
m=
x - коэффициент использования теплоты в ходе сгорания, для дизелей - x=0,7…0,9, примем 0,8.
Нu- низшая теплотворная способность топлива: для дизтоплива - ;
Подставим и после преобразования получим:
0,00244ЧTz2 +30.04ЧTz + ( - 66192.74 ) = 0
Tz1 = 2220.46 K
Тz2 = отрицательная температура, а она не может быть такой в конце процесса сгорания.
в). Определяют максимальное давление газов в цилиндре по формулам:
рz = l × рc = 1,5Ч8,96 = 13,44 МПа
где l степень повышения давления, которое примем равным 1,5.
1.4 Процесс расширения
Определяем параметры процесса расширения: n2; рb; Тb.
а). Показатель политропны расширения n2 определяется из соотношения:
n2 = 1,22 + 130 / nн.=1,22+130/2300=1,276
б). Давление и температура конца расширения:
где - степень последующего расширения,
- степень предварительного расширения.
Полученные расчетные значения (указанны в скобках) термодинамических параметров процессов цикла необходимо сопоставить с данными табл. 1.
Таблица 1 Предельные значения параметров процессов цикла
Тип двигателя | pc , МПа | pz , МПа | Тс , К | Тz ,К | Тb, К |
Двигатели с наддувом | 6…8 (8,96) | 10…15 (13,44) | 1000 (1149,58) | 1900…2800 (2220,46) | 1100…1200 (1082,1) |
1.5 Индикаторные показатели цикла
а). Определяем среднее индикаторное давление (теоретическое) газов
МПа
б). Определяют среднее индикаторное давление (действительное) газов:
pi = jп р11,
где jп – коэффициент полноты индикаторной диаграммы, учитывающий ее скругление в ВМТ и НМТ, как результат наличия фаз газораспределения, угла опережения впрыскивания топлива или зажигания, а также скорости сгорания топлива. Значения jп принимаются для дизельных двигателей 0,9…0,96.
pi =0,96Ч1,26=1,2096 МПа
в). Определяем индикаторный КПД цикла:
,
г). Определяем индикаторный удельный расход топлива:
1.6 Эффективные показатели двигателя
а). Определяем среднее давление механических потерь:
,
где - средняя скорость поршня, принимается по двигателю-прототипу (сп= 9,8 ),
и - эмпирические коэффициенты, приведенные в табл. 2.
Таблица 2 Значения коэффициентов и
Тип двигателя | | |
Дизели с неразделенной камерой сгорания | 0,105 | 0,012 |
Дизели с разделенной камерой сгорания | 0,105 | 0,0138 |
б). Определяем среднее эффективное давление газов:
=1,2096-0,2226=0,987 МПа.
в). Определяем механический КПД двигателя:
.
г). Определяем эффективный КПД двигателя:
.
д). Определяем удельный эффективный расход топлива:
.
Полученные расчетные значения (указаны в скобках) индикаторных и эффективных показателей сопоставляем с данными табл.3.
Таблица 3 Предельные значения индикаторных и эффективных показателей современных поршневых двигателей
Тип двигателя | pi, МПа | hi | bi, г/кВт*ч | pe, МПа | he | be, г/кВт.ч |
Дизели с наддувом | 0,8…2 ( 1,2096 ) | 0,42…0,5 ( 0,42 ) | 200…170 ( 201,68 ) | 0,7…1,8 ( 0,987 ) | 0,38…0,45 ( 0,34 ) | 210…175 ( 246 ) |
1.7 Определение основных размеров двигателя
а). Определяем рабочий объем одного цилиндра по заданным значениям мощности, частоты вращения и расчетному значению среднего эффективного давления газов (ре):
, л ,
где - число цилиндров двигателя,- тактность двигателя.
.
Литраж двигателя состовляет 10,432 л.
б). Выбираем отношение хода (S) поршня к диаметру (D) по прототипу двигателя и задаемся : по прототипу равняется 1,0:
, мм;
S = (S/D) × D=1,0*119=119 мм.
Определяем литровую мощность по прототипу и по проектируемому двигателю:
Результаты теплового расчета сводим в табл. 4.
Таблица 4 Характеристика двигателей
Параметры двигателя | Ре, кВт | nн, мин-1 | e | D, мм | S, мм | S/D | Vл , Л | bе , г/кВт*ч | Рл, |
Прототип | 200 | 2300 | 16,5 | 125 | 125 | 1,0 | 11,85 | 209 | 16,88 |
Проектир. | 200 | 2300 | 16,5 | 119 | 119 | 1,0 | 10,576 | 246 | 18,91 |
2. Построение расчетной индикаторной диаграммы
Индикаторная диаграмма дизельного двигателя построена для номинального режима работы двигателя, т. е. при Ne = 200 кВт и n = 2300 мин –1, аналитическим методом.
Для дизелей отношение изменяется в пределах 1…d .
Масштабы диаграммы: масштаб хода поршня Ms= 1 мм в мм; масштаб давлений Мр = 0,05 МПа в мм.
Величины в приведенном масштабе, соответствующие рабочему объему цилиндра и объему камеры сгорания:
AB=S/Ms=119/l,0 = 119 мм; ОА = АВ/(ε–1)= 119/(16,5–1)= 7,68 мм.
Максимальная высота диаграммы (точка г) pz/Mp =13,44/0,05=268,8 мм.
Ординаты характерных точек:
pа/Mp =0,198/0,05 = 3,96 мм;
рс/Мр= 8,96/0,05 = 179,26 мм;
рb/Мр=0,511/0,05 = 10,22 мм;
рг/Мр = 0,209/0,05 = 4,18 мм;
рк/Мр=0,22/0,05=4,4 мм.
Построение политроп сжатия и расширения аналитическим методом:
а) политропа сжатия px=pa(Va/Vx)n1. Отсюда
рх/Мр , мм =(ра/Мр)(ОВ/ОХ)n1= 3,96(133,07/ОХ)1,36 мм,
б) политропа расширения px=рb(Vb/Vx)n2 Отсюда
рх /Мр, мм =(рb/Мр)(ОВ/ОХ)n2= 10,22(133,07/ОХ)1,282 мм.
Результаты расчета точек политроп приведены в табл 5.
Таблица 5
| | | Политропа сжатия | Политропа расширения | ||||
№ | ОХ | ОВ/ОХ | (ОВ/ОХ)^n1 | px/Mx, мм | рх, Мпа | (ОВ/ОХ)^n2 | px/Mx, мм | рх, Мпа |
1 | 7,68 | 16,49 | 46,01 | 179,20 | 8,96 | 35,75 | 268,80 | 13,44 |
2 | 10,00 | 12,67 | 32,08 | 127,06 | 6,35 | 25,53 | 209,35 | 10,47 |
3 | 20,00 | 6,33 | 12,45 | 49,29 | 2,46 | 10,54 | 86,45 | 4,32 |
4 | 40,00 | 3,17 | 4,83 | 19,12 | 0,96 | 4,35 | 35,70 | 1,78 |
5 | 60,00 | 2,11 | 2,78 | 10,99 | 0,55 | 2,59 | 21,28 | 1,06 |
6 | 80,00 | 1,58 | 1,87 | 7,42 | 0,37 | 1,80 | 14,74 | 0,74 |
7 | 90,00 | 1,41 | 1,60 | 6,32 | 0,32 | 1,55 | 12,68 | 0,63 |
8 | 100,00 | 1,27 | 1,38 | 5,47 | 0,27 | 1,35 | 11,09 | 0,55 |
9 | 110,00 | 1,15 | 1,21 | 4,80 | 0,24 | 1,20 | 9,82 | 0,49 |
10 | 126,68 | 1,00 | 1,00 | 3,96 | 0,20 | 1,00 | 8,20 | 0,41 |
Скругление индикаторной диаграммы. Начало открытия впускного клапана (точка г') устанавливается за 20° до прихода поршня в в.м.т., а закрытие (точка а") — через 56° после прохода поршнем н.м.т.; начало открытия выпускного клапана (точка b') принимается за 56° до прихода поршня в н.м.т., а закрытие (точка а') — через 20° после прохода поршнем в.м.т. Учитывая быстроходность двигателя, угол опережения впрыска равным 20°, а продолжительность периода задержки воспламенения ∆φ>= 8°.
Рис 3.1 Индикаторная диаграмма
3. Построение внешней скоростной характеристики двигателя
Внешняя скоростная характеристика строится для двигателей, используемых в качестве энергетической установки автотранспортных средств.
Внешняя скоростная характеристика дизельного двигателя представлена в Приложении 2. В основу определения энергетических и экономических показателей двигателя положены следующие эмпирические зависимости, предложенные С.Г. Лейдерманом:
Численные значения коэффициентов в уравнениях приведены в табл. 6
Таблица 6
Коэффициенты для построения скоростной характеристики
Тип двигателя | | | | | | |
Дизель с неразделенной камерой сгорания | 0,7 | 1,3 | 1 | 1,55 | 1,55 | 1 |
Задаемся частотой вращения из расчета, чтобы отношение было кратным 0,1 т.е. =0,2; 0,3; 0,4…1,0; - для дизелей и бензиновых двигателей средней и большой мощностей.
Для дизеля строится регуляторная ветвь скоростной характеристики из условия, что на этом участке мощность, момент и часовой расход топлива изменяются по линейному закону. При работе на регуляторе частота вращения изменяется от до (максимальной частоты вращения на холостом ходу)
= ( 1+0,08 )Ч2300 = 2484об/мин
где d- коэффициент неравномерности регулятора, принимается в пределах 0,07…0,08.
Часовой расход топлива ВТ.х на регуляторной ветви определяется из соотношения:
ВТ.х =(0,25…0,30)ВТ.мах = ( 0,25 ч 0,30 ) Ч 49,2 = 14,76 кг/ч
Вращающий момент и часовой расход топлива подсчитываются по формулам:
, кНм,
где - частота вращения коленчатого вала в , -мощность в кВт;
.
Все расчетные данные заносятся в табл. 7
Таблица 7 Показатели двигателя для построения скоростной характеристики
обороты | Ре, кВт | be,г/кВт ч | Te,Нм | Bt, кг/ч |
460 | 43,2 | 253,872 | 934,4348 | 10,96727 |
690 | 68,4 | 239,112 | 986,3478 | 16,35526 |
920 | 94,4 | 228,288 | 1020,957 | 21,55039 |
1150 | 120 | 221,4 | 1038,261 | 26,568 |
1380 | 144 | 218,448 | 1038,261 | 31,45651 |
1610 | 165,2 | 219,432 | 1020,957 | 36,25017 |
1840 | 182,4 | 224,352 | 986,3478 | 40,9218 |
2070 | 194,4 | 233,208 | 934,4348 | 45,33564 |
2300 | 200 | 246 | 865,2174 | 49,2 |
Рис 4.1. Внешне скоростная характеристика двигателя
4. КИНЕМАТИЧЕСКИЙ РАСЧЕТ ДВИГАТЕЛЯ
Конечной целью кинематического расчета двигателя является определение ускорения поршня.
Основными геометрическими параметрами, определяющими законы движения элементов КШМ, являются: r – радиус кривошипа коленчатого вала (r=59,5 мм), lш – длина шатуна (lш =228,8мм). Параметр l = r/ lш является критерием кинематического подобия КШМ. Для двигателя l = r/ lш =0,26. Порядок кинематического расчета двигателя следующий.
а). Определяем по формулам перемещение Sx, скорость Cп и ускорение поршня jп в зависимости от угла поворота коленчатого вала (с интервалом 30о).
,
,
б). Полученные значения кинематических параметров оформляем в таблицу 8: