Курсовая Стальной каркас промышленного здания
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Министерство образования и науки Российской Федерации
Государственное образовательное учреждение
Высшего профессионального образования
Оренбургский государственный университет
Архитектурно-строительный факультет
Кафедра строительных конструкций
Курсовая работа
по дисциплине «Металлические конструкции»
Стальной каркас I-го промышленного здания
Пояснительная записка
ОГУ 270102. 1.1 06. 010 МК
Руководитель проекта
Никулина О.В.
Исполнитель
студент гр. С-2.
Иванов А.А..
Содержание
Исходные данные для проектирования
1 Расчет стропильной фермы
1.1 Построение геометрической схемы фермы
1.2 Сбор нагрузок на ферму
1.2.1 Постоянная нагрузка
1.2.2 Снеговая нагрузка
1.3 Определение расчетных усилий в элементах фермы
1.3.1 Построение диаграмм от постоянной нагрузки и от снеговой нагрузки на половине пролета
1.3.2 Определение расчетных усилий в элементах фермы
1.4 Подбор сечений элементов фермы
1.4.1 Подбор сечения элементов верхнего пояса
1.4.2 Подбор сечения элементов нижнего пояса
1.4.3 Подбор сечения элементов раскосов
1.4.4 Подбор сечения элементов стоек
1.4.5 Составление таблицы подбора сечений для элементов фермы
1.5 Расчет узлов фермы
1.5.1 Расчет К-образного верхнего узла фермы
1.5.2 Расчет Т-образного верхнего узла фермы
1.5.3 Расчет опорного узла фермы
1.5.4 Расчет укрупнительного узла фермы
2 Расчет поперечной рамы
2.1 Компоновка поперечной рамы
2.2 Сбор нагрузок на поперечную раму
2.2.1 Постоянная нагрузка
2.2.2 Снеговая нагрузка
2.2.3 Ветровая нагрузка
2.2.4 Крановая нагрузка
3 Расчет ступенчатой колонны
3.1 Статический расчет рамы выполнен с помощью программы “METAL”
3.2 Назначение расчетных длин участков ступенчатой колонны
3.3 Расчет верхней части ступенчатой колонны
3.4 Подбор сечения и конструирование узлов нижней части колонны
3.4.1 Определение усилий в ветвях колонны
3.4.2 Подбор сечения подкрановой ветви колонны
3.4.3 Подбор сечения шатровой ветви колонны
3.4.4 Подбор сечения раскосов соединительной решетки
3.5 Конструирование и расчет узла сопряжения верхней части колонны с нижней (подкрановой траверсы)
3.6 Расчет и конструирование базы подкрановой ветви
3.7 Расчет анкерных болтов базы подкрановой ветви
3.8 Расчет анкерной плитки
3.9 Проверка сечения траверсы на изгиб и срез от действия силы приходящейся на один анкерный болт
4 Подбор сечений элементов связевой системы
Список использованных источников
Исходные данные для проектирования
1. | Пролет L, м | 36,0 |
2. | Длина здания , м | 204,0 |
3. | Шаг рам В, м | 6,0 |
4. | Отметка головки кранового рельса , м | 9,6 |
5. | Грузоподъемность крана Q, кН | 500 |
6. | Режим работы крана | 4К |
7. | Тепловой режим здания | Н/О |
8. | Район строительства | г. Казань |
9. | Высота фермы на опоре , м | 3,15 |
10. | Уклон верхнего пояса ферм | 0,015 |
11. | Сечение элементов ферм: | |
пояса | | |
решетка | | |
12. | Ветровая нагрузка II, | 0,3 |
13. | Снеговая нагрузка IV, | 2,4 |
14. | Температура наиболее холодной пятидневки | -32 |
1 Расчет стропильной фермы
1.1 Построение геометрической схемы фермы
Пролет фермы .
Рисунок 1 – Геометрическая схема фермы
.
1.2 Сбор нагрузок на ферму
1.2.1 Постоянная нагрузка
Таблица 1 – Сбор постоянной нагрузки
№ | Наименование нагрузки | , кПа | | , кПа |
1. | Защитный слой | 0,3 | 1,3 | 0,39 |
2. | Гидроизоляционный четырехслойный ковер | 0,2 | 1,3 | 0,26 |
3. | Железобетонная ребристая плита (3х6) | 1,6 | 1,1 | 1,76 |
4. | Прогоны сплошные | 0,08 | 1,05 | 0,084 |
5. | Собственный вес стропильной фермы | 0,4 | 1,05 | 0,42 |
6. | Связи | 0,04 | 1,05 | 0,042 |
| Всего: | | | 2,956 |
Узловая постоянная нагрузка находится по формуле:
,
где – коэффициент надежности по ответственности здания.
Так как здание относится ко второму уровню ответственности, то коэффициент надежности по ответственности здания равен /3/.
.
Рисунок 2 – Расчетная схема при расчете стропильной фермы на постоянную нагрузку
Опорные реакции стропильной фермы от постоянной нагрузки, находятся следующим образом:
.
1.2.2 Снеговая нагрузка
Узловая снеговая нагрузка на ферму находится по формуле:
;
.
При расчете стропильных ферм учитывается два варианта загружения снегом:
I. Снег на всем пролете
Рисунок 3 – Расчетная схема при расчете стропильной фермы на I вариант снеговой нагрузки
Опорные реакции стропильной фермы от I варианта снеговой нагрузки, находятся следующим образом:
.
II. Снег на половине пролета
Рисунок 4 – Расчетная схема при расчете стропильной фермы на II вариант снеговой нагрузки
Опорная реакция стропильной фермы от II варианта снеговой нагрузки, находится следующим образом:
.
Опорная реакция стропильной фермы от II варианта снеговой нагрузки, находится следующим образом:
.
Проверка правильности нахождения опорных реакции и стропильной фермы, от II варианта снеговой нагрузки:
;
;
реакции найдены верно.
1.3 Определение расчетных усилий в элементах фермы
Усилия в элементах фермы от отдельных видов загружения можно определить графическим методом, а именно построением диаграммы Максвелла-Кремоны.
Таблица 2 – Определение усилий в элементах фермы
Наименование элемента | Обозначение на диаграмме | Усилия, кН | Nрасч. | |||
От постоянной нагрузки | От снега I варианта | От снега II варианта | Å | Θ | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Верхний пояс | В-2 | -497,20 | -403,68 | -282,57 | | 900,88 |
C-3 | -497,20 | -403,68 | -282,57 | | 900,88 | |
D-5 | -795,51 | -645,88 | -403,67 | | 1441,39 | |
E-6 | -795,51 | -645,88 | -403,67 | | 1441,39 | |
F-8 | -894,88 | -726,55 | -363,31 | | 1621,43 | |
G-9 | -894,88 | -726,55 | -363,31 | | 1621,43 | |
H-11 | -795,51 | -645,88 | -242,20 | | 1441,39 | |
I-12 | -795,51 | -645,88 | -242,20 | | 1441,39 | |
J-14 | -497,20 | -403,68 | -121,10 | | 900,88 | |
K-15 | -497,20 | -403,68 | -121,10 | | 900,88 | |
Нижний пояс | 1-N | 273,50 | 222,06 | 161,47 | 469,56 | |
4-N | 671,21 | 544,96 | 363,31 | 1216,17 | | |
7-N | 870,02 | 706,37 | 403,67 | 1576,39 | | |
10-N | 870,02 | 706,37 | 302,75 | 1576,39 | | |
13-N | 671,21 | 544,96 | 181,65 | 1216,17 | | |
16-N | 273,50 | 222,06 | 60,55 | 469,56 | | |
Раскосы | 1-A | -389,96 | -316,61 | -230,26 | | 706,57 |
2-1 | 319,06 | 259,05 | 172,70 | 578,11 | | |
4-3 | -248,16 | -201,48 | -115,13 | | 449,64 | |
5-4 | 177,26 | 143,92 | 57,57 | 321,18 | | |
7-6 | -106,31 | -86,31 | 0,00 | | 192,62 | |
8-7 | 35,45 | 28,78 | -57,57 | 64,23 | -22,12 | |
10-9 | 35,45 | 28,78 | 86,35 | 121,8 | | |
11-10 | -106,31 | -86,31 | -86,35 | | 192,66 | |
13-12 | 177,26 | 143,92 | 86,35 | 321,18 | | |
14-13 | -248,16 | -201,48 | -86,35 | | 449,64 | |
16-15 | 319,06 | 259,05 | 86,35 | 578,11 | | |
L-16 | -389,96 | -316,61 | -86,35 | | 706,57 | |
Стойки | 3-2 | -50,55 | -41,04 | -41,04 | | 91,59 |
6-5 | -50,55 | -41,04 | -41,04 | | 91,59 | |
9-8 | -50,55 | -41,04 | -20,52 | | 91,59 | |
12-11 | -50,55 | -41,04 | 0,00 | | 91,59 | |
15-14 | -50,55 | -41,04 | 0,00 | | 91,59 |
Усилия в элементах фермы от снега на всем пролете (I варианта) находятся по формуле:
где – усилия в элементах фермы от постоянной нагрузки;
– узловая снеговая нагрузка;
F – узловая постоянная нагрузка.
Расчетные усилия в элементах фермы находятся по формуле:
;
где – усилия в элементах фермы от снега на половине пролета (II варианта).
1.4 Подбор сечений элементов фермы
Выбор стали для элементов фермы:
Для температуры наиболее холодной пятидневки принимаем из таблицы /1/ сталь для второй группы конструкций марки С255 ГОСТ 27772-88.
Плотность сталь: .
1.4.1 Подбор сечения элементов верхнего пояса
Для панелей D-5, E-6, F-8, G-9, H-11, I-12, максимальное усилие равно:
– сжатие.
Расчетные длины панелей:
,
где d – длина верхней панели между раскосом и стойкой.
Задаемся начальной гибкостью , тогда по таблице 72 /1/ коэффициент .
Требуемая площадь сечения:
.
где - коэффициент условия работы (таблица 6 /1/, );
- расчетное сопротивление стали сжатию, растяжению и изгибу назначенное по пределу текучести. Определяется по таблице /1/ в зависимости от марки стали для толщин не более
Минимальная площадь сечения:
.
Из сортамента ГОСТ 26020-83 выбираем двутавр 35К2: ; ; .
;
.
По таблице 72 /1/ коэффициент .
Придельная гибкость сжатых элементов находится по таблице /1/, пункт 1. а): ;
.
Проверка сечения на устойчивость:
,
т.е. условие выполняется.
Для панелей B-2, C-3, J-14, K-15, максимальное усилие равно:
– сжатие.
Расчетные длины панелей:
.
Задаемся начальной гибкостью , тогда по таблице 72 /1/ коэффициент .
Требуемая площадь сечения:
.
Минимальная площадь сечения:
.
Из сортамента ГОСТ 26020-83 выбираем двутавр 30К2: ; ; .
;
.
По таблице 72 /1/ коэффициент .
Придельная гибкость сжатых элементов : ;
.
Проверка сечения на устойчивость:
,
т.е. условие выполняется.
1.4.2 Подбор сечения элементов нижнего пояса
Для панелей 4-N, 7-N, 10-N, 13-N, максимальное усилие равно:
– растяжение.
Расчетные длины панелей: ,
где - длина нижней панели между стойками.
.
Требуемая площадь сечения:
.
Из сортамента ГОСТ 26020-83 выбираем двутавр 26К2: ; ; .
;
.
Придельная гибкость растянутых элементов находится по таблице /1/, при воздействии на конструкцию нагрузок статических, .
Проверка сечения на прочность:
, т.е. условие выполняется.
Для панелей 1-N, 16-N, максимальное усилие равно:
– растяжение.
Расчетные длины панелей: .
Требуемая площадь сечения:
.
Из сортамента ГОСТ 26020-83 выбираем двутавр 20К2:
; ; .
;
.
Придельная гибкость растянутых элементов: .
Проверка сечения на прочность:
, т.е. условие выполняется.
1.4.3 Подбор сечения элементов раскосов
Для опорных раскосов 1-A, L-16, максимальное усилие равно:
– сжатие.
Расчетные длины раскосов:
.
Задаемся коэффициентом .
Требуемая площадь сечения:
.
Из сортамента ТУ 36-2287-80 выбираем профиль сварной квадратного сечения размером , толщиной :
; .
.
По таблице 72 /1/ коэффициент .
Придельная гибкость сжатых элементов : ;
.
Проверка сечения на устойчивость:
,
т.е. условие выполняется.
Для раскосов 2-1, 16-15, максимальное усилие равно:
– растяжение.
Расчетные длины раскосов:
.
Требуемая площадь сечения:
.
Из сортамента ТУ 36-2287-80 выбираем профиль сварной квадратного сечения размером , толщиной : ; .
.
Придельная гибкость растянутых элементов: .
Проверка сечения на прочность:
, т.е. условие выполняется.
Для раскосов 4-3, 14-13, максимальное усилие равно:
– сжатие.
Расчетные длины раскосов:
.
Задаемся начальной гибкостью , тогда по таблице 72 /1/ коэффициент .
Требуемая площадь сечения:
.
Из сортамента ТУ 36-2287-80 выбираем профиль сварной квадратного сечения размером , толщиной :
; .
,
По таблице 72 /1/ коэффициент .
Придельная гибкость сжатых элементов :
;
.
Проверка сечения на устойчивость:
, т.е. условие выполняется.
Для раскосов 5-4, 13-12, максимальное усилие равно:
– растяжение.
Расчетные длины раскосов:
.
Требуемая площадь сечения:
.
Из сортамента ТУ 36-2287-80 выбираем профиль сварной квадратного сечения размером , толщиной :
; .
.
Придельная гибкость растянутых элементов: .
Проверка сечения на прочность:
, т.е. условие выполняется.
Для раскосов 7-6, 11-10, максимальное усилие равно:
– сжатие.
Расчетные длины раскосов:
.
Задаемся начальной гибкостью , тогда по таблице 72 /1/ коэффициент .
Требуемая площадь сечения:
.
Из сортамента ТУ 36-2287-80 выбираем профиль сварной квадратного сечения размером , толщиной :
; .
.
По таблице 72 /1/ коэффициент .
Придельная гибкость сжатых элементов :
;
.
Проверка сечения на устойчивость:
,
т.е. условие выполняется.
Для раскосов 8-7, 10-9, максимальные усилия равны:
– растяжение; – сжатие.
Расчетные длины раскосов:
.
Требуемая площадь сечения:
.
Из сортамента ТУ 36-2287-80 выбираем профиль сварной квадратного сечения размером , толщиной : ; .
.
По таблице 72 /1/ коэффициент .
Придельная гибкость сжатых элементов :
;
.
Проверка сечения на прочность:
, т.е. условие выполняется.
1.4.4 Подбор сечения элементов стоек
Для стоек 3-2, 6-5, 9-8, 12-11, 15-14, максимальное усилие равно: – сжатие.
Расчетные длины стоек:
.
Задаемся начальной гибкостью , тогда по таблице 72 /1/ коэффициент . Требуемая площадь сечения:
.
Из сортамента ТУ 36-2287-80 выбираем профиль сварной квадратного сечения размером , толщиной : ; .
,
По таблице 72 /1/ коэффициент .
Придельная гибкость сжатых элементов :
;
.
Проверка сечения на устойчивость:
, т.е. условие выполняется.
1.5 Расчет узлов фермы
Конструктивно принимаем для всех раскосов профиль сварной квадратного сечения размером , толщиной .
Сварочную проволоку выбираем по таблице /1/: Св-08А.
1.5.1 Расчет К-образного верхнего узла фермы
Расчет узла начинается с назначения размеров деталей усиления.
Рисунок 8 – Конструктивное оформление промежуточного К-образного узла
Для этого узлы вычерчивают в масштабе и устанавливают размеры наклонных планок, ребер и если требуется фасонок усиления узлов. Планки принимаем толщиной
Раскос 10-9
По нормальным напряжениям:
,
где ; ; ;
, т.к. отношение
две продольные грани гнутой трубы (стр. 12 /7/);
по таблице 3 /1/; .
, т.е. условие выполняется.
На сдвиг:
,
где ;
по таблице 3 /1/; ;
по таблице /1/;
, т.е. условие выполняется.
Раскос 11-10
По нормальным напряжениям:
,
где ; ; ;
, т.к. отношение
две продольные грани гнутой трубы (стр. 12 /7/);
, т.е. условие выполняется.
На сдвиг:
,
где ;
, т.е. условие выполняется.
Шов Ш1
В К-узлах определяют расчетное усилие на
,
где – максимальное усилие, действующее на планку, определяется по формуле:
,
здесь – угол наклона планки;
– угол наклона раскоса;
– расчетное усилие в элементе пояса рассчитываемого узла;
, , ;
; ;
; – размеры по рисунку 8;
– узловая нагрузка;
;
.
Тогда из условия обеспечения прочности сварного шва, приваривающего планку к стенке:
,
получим катет
;
Определяем коэффициент провара по таблице /1/: , .
по таблице 56 /1/;
,
где по таблице /1/ нахожу ;
;
; - пункт /1/.
Выбираем расчетное сечение сварного шва:
.
Расчетное сечение – является сечение по металлу сварного шва.
.
Окончательно принимаем .
1.5.2 Расчет Т-образного верхнего узла фермы
Стойка в ферме дополнительно рассчитывается как внецентренно нагруженная от действия поперечной силы (формула 23 /1/) из плоскости фермы.
Рисунок 9 – Конструктивное оформление Т-образного верхнего узла
,
где - высота пояса;
- геометрическая длина стойки;
- угол наклона стойки.
Задаемся начальной гибкостью
(из таблицы 72 /1/).
,
где N – усилие в стойке;
.
Проверяем условие:
,
где - коэффициент определяемый по таблице 74 /1/, для этого нужно определить относительный эксцентриситет и условную гибкость ;
- площадь сечения раскоса.
Относительный эксцентриситет:
,
где - коэффициент влияния формы сечения, определяемый по таблице 73 /1/;
;
;
Тогда
тип сечения №4
Момент сопротивления равен:
,
где - момент инерции;
- наружный размер стойки.
Тогда ;
,
т.е условие выполняется.
1.5.3 Расчет опорного узла фермы
Расчет нижнего опорного узла фермы с восходящим опорным раскосом состоит из проверки прочности сварных швов, соединяющих элементы узла, и назначения размеров опорного фланца из условия работы его торца на смятие.
Рисунок 10 – Конструктивное оформление опорного узла
Опорная реакция равна:
.
Определение толщина фланца:
,
где - расчетное сопротивление смятию торцевой поверхности, определяется по таблице /1/;
;
.
Принимаем минимальную толщину фланца
Шов Ш2
Проверяем шов Ш2, прикрепляющий элементы опорного узла к фланцу.
;
, по рисунку 10.
Задаемся катетом равным по таблице /1/.
Определяем коэффициент провара по таблице /1/: , .
по таблице 56 /1/;
,
где по таблице /1/ нахожу ;
;
; - пункт /1/.
Выбираем расчетное сечение сварного шва:
.
Расчетное сечение – является сечение по металлу сварного шва.
.
Окончательно принимаем .
Шов Ш3
Швом Ш3 приваривают стенку восходящего опорного раскоса к полке двутавра нижнего пояса фермы. Его катет назначают из условия равнопрочности со стенкой раскоса:
,
где – угол наклона раскоса;
- толщина стенки раскоса;
Расчетное сечение – является сечение по металлу сварного шва (см. выше).
.
Окончательно принимаем .
Шов Ш4
Шов Ш4, прикрепляющий наклонные усиливающие планки, рассчитывается на усилие:
,
где – угол наклона раскоса;
– угол наклона планки;
– расчетное усилие в раскосе рассчитываемого узла;
, , , ;
;
.
где - длина сварного шва.
Окончательно принимаем .
1.5.4 Расчет укрупнительного узла фермы
Расчет укрупнительного узла не производим, а принимаем по сортаменту фланцевых соединений растянутого пояса фермы по таблице 3 /7/.
Принимаем болты из стали марки 40Х «селект» диаметром
Размещаем болты в соответствии с таблицей 39 /1/.
Рисунок 11 – Схема фланцевого соединения
2 Расчет поперечной рамы
2.1 Компоновка поперечной рамы каркаса
Поперечные рамы каркаса состоят из колонн (стоек рамы) и ригелей (в виде ферм или сплошностенчатых сечений).
Рисунок 12 – Схема поперечной рамы однопролетного здания
Мостовой кран принимаем по приложению 1 /4/ в зависимости от грузоподъемности крана по заданию.
Принимаем кран грузоподъемностью .
Вертикальные габариты здания зависят от технологических условий производства и определяются расстоянием от уровня пола до головки кранового рельса и расстоянием от головки кранового рельса до низа несущих конструкций покрытия . В сумме эти размеры составляют полезную высоту цеха Н.
Размер диктуется высотой мостового крана:
,
где – расстояние от головки рельса до верхней точки тележки крана, определяемое по приложению 1 /4/;
– размер, учитывающий прогиб конструкции покрытия, принимаемый равный 200 -
Окончательный размер принимаем кратный
Высота цеха от уровня пола до низа стропильных ферм:
,
где – наименьшая отметка головки кранового рельса, которая задается по условию технологического процесса (по заданию ).
Окончательный размер принимаем кратный
Уточняем высоту
.
Далее устанавливаем размер нижней части колонны :
,
где по приложению 1 /4/;
- принимать произвольно.
Размер верхней части колонны :
.
Ширина верхней части колонны:
, принимаем .
Ширина нижней части колонны:
,
где из рисунка 12:
,
принимаем ;
- наружная привязка верхней части колонны;
- по приложению 1 /4/.
.
2.2 Сбор нагрузок на поперечную раму
2.2.1 Постоянная нагрузка
Постоянные нагрузки на ригель рамы обычно принимают равномерно распределенными по длине ригеля.
Суммарная нагрузка на ферму равна:
- из таблицы 1.
Погонная нагрузка на ригель рамы равна:
,
где - коэффициент надежности по назначению здания.
Рисунок 13 – Схема к расчету на постоянную нагрузку
2.2.2 Снеговая нагрузка
Погонная снеговая нагрузка на ригель рамы равна:
,
где - из таблицы 4 /3/.
Рисунок 14 – Схема к расчету на снеговую нагрузку
2.2.3 Ветровая нагрузка
Погонная фактическая, активная составляющая нагрузка на стойку рамы равна:
,
где - коэффициент надежности по ветровой нагрузки;
- нормативное значение ветрового давления, определяется по таблице 5 /3/ в зависимости от ветрового района;
с - аэродинамический коэффициент, определяемый по приложению 4 /3/ для активной и пассивной составляющих;
- коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице 6 /3/, в зависимости от типа местности.
Выбираем тип местности В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более