Курсовая

Курсовая Кремнистые породы - коллекторы

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.1.2025





Федеральное агентство по образованию и науке РФ

Иркутский государственный технический университет

Кафедра ГСПиРМПИ
             КРЕМНИСТЫЕ

ПОРОДЫ-КОЛЛЕКТОРЫ

Курсовая работа по «Геологии»
                                                         Выполнил: студент группы НБ-07-2

                                                    Нестеренко Артём Юрьевич

                                              Проверил: Рапацкая Р.А.
Иркутск 2008

Содержание

Введение………………………………………………………………………...3

1.Породы коллекторы.

1.1.          Общие сведения………………………………………………………4

1.2.          Основные признаки пород коллекторов…………………….............4

2.Кремнистые коллекторы.

2.1.    Кремнистые породы-коллекторы о. Сахалин……………….............9

2.2.    Кремнистые породы-коллекторы месторождения Санта-Мария в Калифорнии(«Монтерей»)………………………………………………….18

Заключение……………………………………………………………...............21

Список литературы……………………………………………………………..22

 
                                               

ВВЕДЕНИЕ

     Коллекторами нефти и газа являются горные породы, обладающие способностью вмещать эти флюиды и отдавать их при разработке.

     Горные породы расчленяются на три основные группы: изверженные, осадочные и метаморфические. Последние являются результатом более или менее глубокого изменения изверженных и осадочных пород.

     В природных условиях залежи нефти и газа чаще всего приурочены к терригенным и карбонатным отложениям. Породы, образовавшиеся при высокой температуре (изверженные и метаморфические), не могут служить коллекторами для углеводородов. Нахождение в этих породах нефти и газа является следствием миграции их в выветрелую часть пород, в которых в результате выщелачивания или выветривания, а также действия тектонических сил могли образоваться вторичные поры и трещины. Коллекторы изверженных и метаморфизованных пород относят к группе смешанных коллекторов.

     Коллекторы нефти и газа бывают в основном двух типов: гранулярные и трещинные. Обычно гранулярными коллекторами являются песчано-алевритовые породы, характеризующиеся гранулярной пористостью и межзерновой проницаемостью; часть известняков и доломитов с оолитовой и трубчатой структурой пор подобны гранулярным коллекторам.

     Большая часть нефтяных и газовых подземных резервуаров сложена породами осадочного происхождения: песчаниками, известняками и доломитами. Другие горные породы только иногда служат коллекторами нефти. Так, на Шаимском месторождении в Западно-Сибирской низменности нефть нефть обнаружена не только в песчаниках, но и в выветрелой части фундамента, сложенного гранитами. На месторождении Панхедл (Техас) нефть была обнаружена в размытом граните, базальном конгломерате. На месторождениях Колорадо (Флоренс, Тоу-Крик, Ренджели и др.) и Калифорнии (Санта-Мария, Буена-Виста-Хилс) нефть получена из трещиноватых глинистых сланцев.
1. ПОРОДЫ-КОЛЛЕКТОРЫ

1.1.  Общие сведения
     Коллекторы нефти и газа - горные породы, которые обладают емкостью, достаточной для того, чтобы вмещать УВ разного фазового состояния (нефть, газ, газоконденсат), и проницаемостью, позволяющей отдавать их в процессе разработки. Среди коллекторов нефти и газа преобладают осадочные породы. В природных условиях залежи нефти и газа чаще всего приурочены к терригенным и карбонатным отложениям, в других осадочных толщах они встречаются значительно реже. Магматические и метаморфические породы не являются типичными коллекторами. Нахождение в этих породах нефти и газа - это следствие миграции углеводородов в выветрелую часть породы, где в результате химических процессов выветривания, а также под воздействием тектонических процессов могли образоваться вторичные поры и трещины.

     Нефтяные и газовые месторождения на земном шаре встречаются в разных районах, в границах различных геоструктурных элементов. Они известны как в геосинклинальных, так и в платформенных областях и предгорных прогибах.

     Скопления нефти и газа установлены в отложениях всех возрастов, начиная от кембрия и кончая верхним плиоценом. Кроме того, известны скопления нефти и газа как в более древних докембрийских, так и в более молодых четвертичных отложениях. Наибольшее количество залежей в разрезе осадочного чехла на территории бывшего СССР приходится на отложения каменноугольного (29 %), девонского (19 %) и неогенового (18 %) возраста.

     По разным оценкам запасы нефти распределяются в коллекторах следующим образом: в песках и песчаниках - от 60 до 80 %; в известняках и доломитах - от 20 до 40 %; в трещиноватых глинистых сланцах, выветрелых метаморфических и изверженных породах -  около   1 %. В странах Ближнего и Среднего Востока разрабатываются главным образом карбонатные коллекторы мезозойского возраста. На территории бывшего Советского Союза более 70 % нефтяных и газовых залежей  приурочены к терригенным породам-коллекторам.
1.2. Основные признаки пород-коллекторов
     К основным признакам, характеризующим качество коллектора, относятся пористость, проницаемость, плотность, насыщение пор флюидами (водо-, нефте- и газонасыщенность), смачиваемость, пьезопроводность, упругие силы пласта. Совокупность этих признаков, выраженных количественно, определяет коллекторские свойства породы.

     Пористость - совокупность всех пор независимо от их формы, размера, связи друг с другом. Понятие пористости соответствует полной пористости породы и численно выражается через коэффициент пористости:
 
Кп = Vпор/Vпороды ∙ 100 %.
 
     Открытая пористость - совокупность сообщающихся между собой пор, численно соответствующая отношению объема сообщающихся пор к объему породы.

     Эффективная пористость - совокупность пор, через которые может осуществляться миграция данного флюида. Она зависит от количественного соотношения между флюидами, физических свойств данного флюида, самой породы. По А. А. Ханину (1969), эффективная пористость - объем поровой системы, способной вместить нефть и газ с учетом остаточной водонасыщенности.

     Наиболее высокие значения характерны для полной пористости, затем открытой и минимальные для эффективной пористости.

     Полная пористость может быть открытой в песках и слабо уплотненных песчаниках. С увеличением глубины залегания открытая пористость снижается интенсивнее, чем полная. Величина полной пористости колеблется от долей процента до десятков процентов.

     По генезису поры могут быть первичными и вторичными. Первичные поры между обломочными зернами называются межзерновыми, внутри органических остатков - внутриформенными. Вторичные поры - трещины и каверны.

     Размеры порового пространства - от долей микрометров до десятков метров.   В обломочных породах - песчаных и алевритовых - размер пор обычно меньше 1 мм. По размеру выделяются поры сверхкапиллярные > 0,1 мм; капиллярные 0,0002-0,1 мм; субкапиллярные  < 0,0002 мм; ультракапиллярные  < 0,1 мкм.

     Размеры и конфигурация внутриформенной пористости определяется морфологическими особенностями фоссилизированных органических остатков.

     Каверны - поры, образованные в результате растворения составных частей хемогенных или биогенных пород или разложения соединений, неустойчивых в определенных термобарических обстановках. Каверны по размеру бывают от долей миллиметров до нескольких километров и разделяются на мелкие - 0,1-10 мм; крупные (микрополости) - 10-100 мм и пещеристые полости - > 100 мм.

     Склонность породы к растрескиванию характеризуется ее пластичностью. Пластичность - способность твердого тела под действием механических напряжений изменять свою форму без нарушения связей между составляющими частями. Коэффициент пластичности (Кпл) - отношение всей работы, затраченной на разрушение образца, к работе, затраченной на пластическую деформацию.   Коэффициент пластичности меняется от 1 до бесконечности (∞). По степени пластичности выделяются три группы пород:

1) Хрупкие 2) Пластично-хрупкие 3) Высокопластичные

     Трещины в породах бывают открытые и закрытые (за счет вторичного смыкания и минерализации). Вследствие тектонических процессов образуются системы трещин, ориентированных в определенной плоскости. Если вдоль трещин не происходит смещение пород или оно незначительно, то система трещин называется трещиноватостью. В одном пласте может быть несколько систем трещин, обычно разновозрастных.

     Практический интерес представляют только открытые трещины, по которым может осуществляться миграция УВ. Обычно трещинная пористость составляет 2-3 %, иногда до 6 %.

     При характеристике трещин различают густоту, плотность и раскрытость трещин. Густота трещин - количество трещин на 1 м длины в направлении, перпендикулярном простиранию трещин. Плотность трещин - густота трещин на 1 м2 площади. Если в пласте одна система трещин, то величина плотности соответствует густоте. Раскрытость трещин - расстояние между стенками трещин.

     Трещинные поры разделяются по степени раскрытости. По                                                                                                                                                           К. И. Багринцевой (1977), трещины подразделяются на очень узкие (0,001-0,01 мм), узкие (0,01-0,05 мм), широкие (0,05-0,1 мм), очень широкие (0,1-0,5 мм) и макротрещины (> 0,5 мм). Е. М. Смехов (1974) предлагал различать микротрещины (< 0,1 мм) и макротрещины (> 0,1 мм).

     Особую значимость приобретает характеристика трещин в коллекторах сложного типа, которым свойственно наличие нескольких видов пористости. В табл. 2 приводится генетическая классификация трещин ВНИГРИ (Методические рекомендации..., 1989).

     Проницаемость - способность горных пород пропускать сквозь себя жидкость или газ. Пути миграции флюидов - поры, каверны, соединяющиеся каналами, трещины. Чем крупнее пустоты, тем выше проницаемость. Для оценки проницаемости обычно используется линейный закон фильтрации Дарси, согласно которому скорость фильтрации жидкости в пористой среде пропорциональна градиенту давления и обратно пропорциональна динамической вязкости жидкости. Закон Дарси применим при условии фильтрации однородной жидкости, при отсутствии адсорбции и других взаимодействий между флюидом и горной породой. Величина проницаемости выражается через коэффициент проницаемости (Кпр):
                                    Кпр = Q m L / D p F ,
     где Q - объем расхода жидкости в единицу времени; D р - перепад давления; L - длина пористой среды; F - площадь поперечного сечения элемента пласта; m - вязкость жидкости. Выразив величины, входящие в приведенное выше уравнение, в системе единиц СИ, получим:  Q = м3/ с;  D р = Н/ м2;  L = м;  F = м2;  m = Н×с/ м2;  Кпр = м2.  Единица проницаемости в системе СИ соответствует расходу жидкости 1м3/с при фильтрации ее через пористый образец горной породы длиной 1м, площадью поперечного сечения 1 м2 при вязкости жидкости н×с/м2 при перепаде давления 1н/м2.

     Практической единицей измерения проницаемости является дарси. 1 дарси - проницаемость пористой системы, через которую фильтруется жидкость с вязкостью 1 сантипуаз (сП), полностью насыщающая пустоты среды, со скоростью 1 см3/с при градиенте давления        1 атм (760 мм) и площади пористой среды 1 см2. 1 дарси = 0,981 × 10-12 м2.
     Различают несколько видов проницаемости:
     Абсолютная проницаемость - это проницаемость горной породы применительно к однородному флюиду, не вступающему с ней во взаимодействие, при условии полного заполнения флюидом пор среды. Абсолютная проницаемость измеряется в сухой породе при пропускании через последнюю сухого инертного газа (азота, гелия).

     В природе не встречаются породы, не заполненные флюидами (различными газами, жидкими углеводородами, водой и т.д.). Обычно поровое пространство содержит в различных количествах воду, газ и нефть (в залежах). Каждый из флюидов оказывает воздействие на фильтрацию других. Поэтому редко можно говорить об абсолютной проницаемости в природных условиях.

     Эффективная (фазовая) проницаемость - проницаемость горной породы для данного жидкого (или газообразного) флюида при наличии в поровом пространстве газов (или жидкостей). Этот вид проницаемости зависит не только от морфологии пустотного пространства и его размеров, но и от количественных соотношений между флюидами.

     Относительная проницаемость - отношение эффективной проницаемости к абсолютной. Относительная проницаемость породы для любого флюида возрастает с увеличением ее насыщенности этим флюидом.

     Все породы в той или иной мере проницаемы. Все породы по своим свойствам являются анизотропными, следовательно, и проницаемость в пласте по разным направлениям будет различной. В обломочных породах Кпр по наслоению выше, чем в направлении, перпендикулярном наслоению. В трещиноватых породах по направлению трещин проницаемость может быть очень высокой, а вкрест простиранию трещин может практически отсутствовать.

     Максимальны значения проницаемости для трещинных пород. Наиболее распространенное значение Кпр для промышленно продуктивных пластов от 1·10-15 до 1·10-12 м2. Проницаемость более 1·10-12 м2 является очень высокой, характерна для песков, песчаников до глубин 1,5-2 км и трещинных карбонатных пород.
     Плотность породы - отношение массы породы (г) к ее объему (см3). Плотность зависит от плотности твердой, жидкой и газообразной фаз, структурно-текстурных признаков породы, а также от пористости.

     Различные литологические типы пород с глубиной уплотняются по-разному. Кd - коэффициент уплотнения породы, представляющий собой отношение плотности породы (dп) к плотности твердой фазы или минералогической плотности (dт). Коэффициент уплотнения - безразмерная величина, показывающая, во сколько раз плотность породы меньше плотности ее твердой фазы. По мере уплотнения dп®dт, а Кd®1. Коэффициент уплотнения связан с величиной полной пористости соотношением Кs = 1-Кп. Глинистые породы достигают Кd = 0,80-0,85 к глубине 1,5-2 км, затем темп уплотнения понижается. Песчаные и алевритовые породы достигают Кd = 0,90-0,95 к глубинам 3,5-5 км. Быстро уплотняются хемогенные известняки, для которых уже на глубине 0,5-1 км Кd = 0,95-0,97.

     Насыщенность пор флюидами - заполнение порового пространства пород-коллекторов жидкими и/или газовыми фазами. В зависимости от флюида-заполнителя выделяются водо-, нефте- и газонасыщенность; выражаются в процентах.

     Водонасыщенность - степень заполнения порового (пустотного) пространства водой.  Вода в породе может быть свободная и связанная. Свободная вода перемещается в поровом пространстве при формировании скоплений УВ и может полностью или частично вытесняться, связанная - остается. Физически связанная вода зафиксирована в породе вследствие проявления молекулярных сил (сорбция), химически связанная находится в структуре минералов (например гипс). С точки зрения водонасыщенности представляют интерес свободная и физически связанная вода - та и другая занимают пустотное пространство пород.

     Количество воды в породе после заполнения последней флюидом является ее остаточной водонасыщенностью. Содержание остаточной воды тем выше, чем более дисперсна порода. Например, в уплотненных мелкозернистых песчаниках остаточная водонасыщенность составляет 10-30 %, а в глинистых алевролитах - 70-75 %. При подготовке исходных данных для подсчета запасов нефти и газа из величины средней пористости пород продуктивного пласта необходимо вычесть содержание остаточной воды.

     Нефте- и газонасыщенность - степень заполнения порового пространства породы соответственно нефтью или газом.

     Смачиваемость - способность породы смачиваться жидкостью. В нефтяной геологии представляет интерес смачиваемость минеральных фаз водой и нефтью. Выделяются гидрофильные и гидрофобные минералы. Гидрофильные минералы способствуют повышению доли остаточной воды по отношению к нефти. По отношению к нефти  также выделяются смачиваемые ею минеральные фазы, которые способствуют понижению нефтеотдачи.
     Пьезопроводность - способность среды передавать давление. В случае несжимаемости среды процесс перераспределения давления происходит мгновенно. В нефтяном пласте, который характеризуется значительным проявлением упругих сил, перераспределение давления, вызванное эксплуатацией пласта, может длиться очень долго. Скорость передачи давления характеризуется коэффициентом пьезопроводности (χ, см2/с):
                                  χ = Кпр / m (mbж + bп), 
     где Кпр - коэффициент проницаемости, дарси; m  - вязкость жидкости в пластовых условиях, сП; m - коэффициент пористости породы, доли ед.; bж - коэффициент сжимаемости жидкости, 1/атм; bп - коэффициент сжимаемости породы, 1/атм.

     Упругие силы пласта - силы упругости породы. Степень упругости определяется коэффициентом объемного упругого расширения (коэффициент сжимаемости), показывающим, на какую часть от своего первоначального объема изменяется объем жидкости или горной породы при изменении давления на 1 атм:
bнефти = (7 - 140) ∙ 10-5 1/атм; bпесчан. = (1,4 - 1,7) ∙ 10-5 1/атм.
2.КРЕМНИСТЫЕ КОЛЛЕКТОРЫ.

2.1. Кремнистые породы коллекторы о. Сахалин.
     К кремнистым породам приурочено Окружное месторождение нефти на восточном побережье Сахалина. Основной продуктивный горизонт здесь - пиленгская свита миоценового возраста мощностью от 100 до 500 м и более, представленная тонким переслаиванием пелитоморфных кремнистых и глинисто-кремнистых пород с единичными маломощными прослоями туфов, песчаников и алевролитов. Продуктивные отложения перекрыты глинистыми породами борской свиты и образуют пластовую ловушку высотой около 600 м, которая практически до замка заполнена нефтью. Породы пиленгской свиты характеризуются интенсивной трещиноватостью ( рис. 1 ), благодаря чему в пределах столь мощной толщи существует единая гидродинамическая система. Трещиноватость пород определяет и их сравнительно хорошие фильтрационные свойства, о чем свидетельствуют результаты испытания скважин, в которых получены притоки нефти с дебитами до 156 т/сут.

     Учитывая своеобразие и сложность строения рассматриваемых пород-коллекторов, их изучение возможно только при определении широкого круга разнообразных параметров и комплексном использовании полученных результатов. Так, при исследовании вещественного состава и физических свойств пород использовали: литолого-петрографический метод - 450 определений; силикатный анализ-145; рентгеноструктурный анализ-15; ИК-спектроскопию и дифрактометрию-10; абсолютную пористость- 525; открытую пористость, по методу Преображенского - 652; абсолютную газопроницаемость матрицы на установке ГК-5 - 220; нефтенасыщенность прямым методом в аппаратах Закса на образцах с естественным насыщением, отобранных из продуктивной части горизонта на растворе с нефтяной основой - 60; трещинные параметры (трещинные пористость и проницаемость, плотность трещин) в шлифах и аншлифах по методу ВНИГРИ - 317. Привлекались также определения органического углерода - 220, люминесцентно-битуминологического анализа - 220, люминесцентной микроскопии - 31, электронной микроскопии- 14. Кроме того, были учтены результаты полевых работ по изучению трещиноватости в районах выхода пород на дневную поверхность, отдельные параметры, применяемые при подсчете запасов нефти и газа, и результаты опытно-методических работ, выполненных в центральной лаборатории ПГО Сахалингеология.

     Основные компоненты кремнистых и глинисто-кремнистых пород - аутигенный кремнезем, глинистые минералы и обломочный материал, смешанные в различных пропорциях.

     Обломочный материал представлен частицами мелкоалевритовой размерности, имеющими пирокластический и реже терригенный характер. Пирокластические обломки состоят из андезитов и плагиоклазов, терригенные - преимущественно из кварца. Содержание обломочного материала незначительно и редко превышает 20 %. Поскольку тип цементации базальный, наличие ограниченного объема обломочных частиц не оказывает никакого влияния на емкостно-фильтрационные свойства пород.

     Глинистые минералы по результатам рентгеноструктурного анализа представлены гидрослюдой и смешаннослойным гидрослюдисто-монтмориллонитовым комплексом. Гидрослюда составляет наиболее крупные частицы пелитовой фракции; ее содержание не превышает 10 % от общего объема. Смешаннослойный гидрослюдисто-монтмориллонитовый комплекс, судя по широкому распространению его в прослоях витрокластических туфов, превращенных в бентонитовую глину, образовался вследствие разложения тонкой витрокластики. Содержание глинистых минералов варьирует в пределах 5-55%.

     Кремнистый материал присутствует в виде опала, кристобалита, халцедона. По результатам дифрактометрии и ИК-спектроскопии. наиболее распространенной модификацией кремнезема является кристобалит. Все минералы кремнезема имеют форму глобулей ( рис. 2 ). Глобулярная структура кремнезема свидетельствует об его коагуляции и выпадении из растворов. Однако наличие в породах скелетных остатков планктонных кремнеорганизмов, и в первую очередь полурастворенных опаловых панцирей диатомей, а также результаты исследований подобных пород формации монтерей, Западной Камчатки и юго-запада СССР позволяют предполагать преимущественно органогенную первичную природу кремнезема. Постседиментационные преобразования биогенного кремнезема, по-видимому, происходили в такой последовательности: растворение скелетных форм кремнеорганизмов, перераспределение кремнезема в осадках, вторичное его осаждение, переход неустойчивых модификаций кремнезема в устойчивые. Содержание свободного кремнезема изменяется от 35 до 85 %.

     Помимо основных породообразующих компонентов в породах присутствуют новообразования пирита, кальцита, сидерита и глауконита, суммарное содержание которых редко достигает 10 %.

     По соотношению кремнистого и глинистого материалов породы разделены на кремнистые и глинисто-кремнистые. К первым относятся разновидности, в которых кремнезем составляет более 55 % объема породы, ко вторым - менее 55 %. Граничное содержание кремнезема выбрано по уровню изменения внешнего облика пород и их физических свойств.

     Среди кремнистых пород выделены опоковидные силициты (по внешнему сходству с опоками) и халцедонолиты. Опоковидные силициты представлены светло-серыми разностями и отличаются от халцедонолитов, имеющих самую разнообразную окраску, преимущественно модификацией кремнезема. В опоковидных силицитах преобладает кристобалит; в халцедонолитах присутствует халцедон с незначительной примесью менее устойчивых модификаций кремнезема.

     Глинисто-кремнистые породы названы кремнистыми аргиллитами. Это темно-серые разновидности, содержащие кремнезем в виде кристобалита и частично опала. Резкое различие в окраске опоковидных силицитов и кремнистых аргиллитов обусловлено более высоким содержанием в последних глинистого материала.

     Опоковидные силициты составляют около 50 % объема свиты, кремнистые аргиллиты - 35-40 %, халцедонолиты - 5-10 %. Породы ритмично переслаиваются, мощность отдельных прослоев 1-5 см.

     Выделенные литотипы различаются как по вещественному составу, так и    по физическим свойствам (см. таблицу ). Их особенностью является высокая трещиноватость. Наблюдаются тектонические и диагенетические трещины. Первые обособляются в три системы: одна проходит по напластованию; две другие образуют с трещинами первой двугранные углы 60-90°, а между собой - 45-82°. Плотность трещин систем примерно одинаковая и составляет 12-20/м, раскрытость их 1-3 мм и более. Среди диагенетических трещин выделяются две группы: первая характеризуется субпараллельной ориентировкой их относительно друг друга и слоистости; вторая представлена слабоизвилистыми трещинами типа сутурных швов, развитых под углами 45-70° к слоистости. Плотность открытых трещин этих групп 50-1050/м, раскрытость 5-55 мкм. Степень трещиноватости пород прямо зависит от содержания кремнезема и его преобладающей модификации ( рис. 3 , а).

     Матрица пород практически непроницаемая, открытая пористость ее может достигать довольно значительных величин, что обусловлено своеобразной глобулярно-пластинчатой микроструктурой пелитовой составляющей. Исследования под электронным микроскопом показали, что свободный кремнезем выделяется в виде глобулей диаметром 0,8-4 мкм, беспорядочно рассеянных в породе или образующих крупные почковидные агрегаты - глобулиты (см. рис. 2 ). Глобули имеют правильную шарообразную форму с зачатками кристаллографической огранки. Интенсивность огранки возрастает по мере перехода опала в более устойчивые модификации и наиболее характерна для халцедона. Глобули кремнезема образуют жесткий каркас, полости которого рыхло заполнены пластинками глинистых минералов, ориентированных по наслоению. Описанная микроструктура характеризуется существенным незаполненным пространством, приуроченным преимущественно к участкам развития глобулей. Поры между ними имеют треугольную и четырехугольную форму, размеры их редко достигают 4 мкм. Объем порового пространства определяется числом глобулей и плотностью их упаковки. Наиболее крупные поры отмечаются в опоковидных силицитах (около 30 % пор диаметром 1-4 мкм, остальные меньше 1 мкм); в кремнистых аргиллитах и халцедонолитах их сечение не превышает 1 мкм. Последние отличаются высокой плотностью упаковки глобулей, обусловленной кристаллографической огранкой халцедона, в результате чего для этих пород уже не улавливается четкая зависимость открытой пористости матрицы от содержания кремнезема (см. рис. 3 , б). Между пластинками глинистых минералов развиты редкие щелевидные поры раскрытостью до 0,5 мкм, которые не оказывают заметного влияния на емкостные свойства. Однако данные поры, как и густая сеть диагенетических трещин, обеспечивают связь между участками развития глобулей, о чем может свидетельствовать незначительная разница между абсолютной и открытой пористостью, не превышающая 1-2 %.

     Гидрофильность пород и наличие субкапиллярных и тонких капиллярных пор создают благоприятные условия для заполнения открытых пор матрицы только остаточной водой, не участвующей в фильтрации. Это подтвердилось при моделировании остаточной водонасыщенности методом центрифугирования, по результатам которого содержание воды составило 90-98 % от объема открытых пор. Иными словами, если бы первоначально породы были насыщены водой, то нефть не смогла бы проникнуть в поры матрицы и находилась бы только в трещинах. На самом же деле последующие прямые определения на образцах с естественным насыщением убедительно показали, что в матрице есть нефть и содержание ее доходит до 62 % объема пор (см. таблицу ). В результате изучения этого обстоятельства установлено, что при погружении образцов с естественным насыщением в модель пластовой воды происходит интенсивное вытеснение нефти ( рис. 4 ) за счет противоточной капиллярной пропитки образцов водой, обусловленной формированием остаточной воды, которую порода может удерживать, вследствие чего удаляется равноценный объем нефти. В лабораторных условиях этот процесс длился 3-4 сут. и в ряде случаев завершался полным замещением нефти водой (см. таблицу ). Количественная оценка вытесненного объема нефти проводилась по схеме: выбирали однородный образец с естественным насыщением, делили его на две части; на одной определяли первоначальную нефтенасыщенность прямым методом, другую помещали в модель пластовой воды и после завершения процесса противоточной капиллярной пропитки определяли прямым методом остаточную нефтенасыщенность. По полученным результатам рассчитывали коэффициент вытеснения - отношение замещенного объема нефти к первоначальному. Для кремнистых аргиллитов коэффициент вытеснения преимущественно равен единице (см. рис. 3 , г), для опоковидных силицитов он значительно ниже, что можно объяснить наличием в этих породах более крупных пор. В пластовых условиях процесс противоточной капиллярной пропитки должен протекать интенсивнее и полнее, чем в лабораторных, поскольку с повышением давления, температуры и увеличением насыщенности газами резко возрастает разница в поверхностном натяжении нефти и воды, о чем свидетельствуют результаты опытов [6]. В какой-то мере это подтверждают прямые замеры на образцах, отобранных из продуктивной части горизонта на обычном глинистом растворе, которые контактировали с ним в течение 12-24 ч (с момента выбуривания до консервации на устье). Остаточная нефтенасыщенность этих образцов, определенная прямым методом, составила всего 2-10% от объема пор, или 4-20% от первоначальной нефтенасыщенности. В условиях отсутствия фильтрации по матрице из-за перепада давлений столь существенное снижение нефтенасыщенности могло произойти преимущественно вследствие противоточной капиллярной пропитки вскрываемых пород водным фильтратом глинистого раствора.

     По мнению некоторых исследователей, породы пиленгской свиты являются также и нефтематеринскими, основой ОВ которых послужили остатки отмерших диатомовых водорослей.

     При люминесцентно-микроскопическом исследовании пород установлена равномерно рассеянная битуминозная текстура с различной цветовой характеристикой и интенсивностью свечения. Опоковидные силициты имеют более яркую люминесценцию и содержат более легкий битумоид, чем кремнистые аргиллиты. На контактах различных пород наблюдается перераспределение битумоидов с внедрением более легких в направлении пород с большим сечением пор. Поверхности стенок трещин люминесцируют в темно-бурых тонах без признаков вторичного битумоида. Однако вероятнее, что по трещинам мигрировал очень легкий битумоид, который к моменту исследований выветрился. Следовательно, можно говорить об общем направлении миграции битумоидов, происходящей от пород с меньшими размерами пор (кремнистые аргиллиты, халцедонолиты) к породам с более крупными порами (опоковидные силициты) и затем, видимо, к трещинам.

     Подводя итоги вышеизложенного, можно сделать заключение.

Кремнистые и глинисто-кремнистые породы пиленгской свиты обладают удовлетворительными коллекторскими свойствами.

     По существующей классификации породы-коллекторы можно отнести к трещинно-поровому типу. Фильтрация в них происходит по трещинам, а основной объем нефти сосредоточен в порах матрицы. При разработке месторождения движение нефти к скважинам будет осуществляться по трещинам, которые, в свою очередь, будут пополняться нефтью, вытесняемой из матрицы благодаря режиму растворенного газа и противоточной капиллярной пропитки в зоне подъема водонефтяного контакта. Противоточная капиллярная пропитка может обеспечить высокую нефтеотдачу пород, что значительно повышает их промышленную ценность.

     Подобные кремнистые породы широко развиты в осадочных бассейнах северо-западного сектора Тихоокеанского подвижного пояса и образуют, как правило, весьма мощные массивные резервуары, надежно перекрытые глинистыми толщами. Принимая во внимание особенности этих пород, отмеченные на примере пиленгской свиты Окружного месторождения, с ними следует связывать перспективы нефтегазоносности региона.
.

Рис 1. Северо-Восточный Сахалинский бассейн. Строение .

Рис 2. Месторождения о. Сахалин.
Рис. 3. Пришлифовка образца пород пиленгской свиты


Светлые разности - опоковидные силициты, темные - кремнистые аргиллиты
Рис. 4. Опоковидный   силицит.

                              
Сфотографирован с помощью сканирующего электронного микроскопа, x3000 раз. Шарообразные выделения - глобули кристобалита
Рис. 5. Основные зависимости между физическими свойствами пород и их вещественным составом

      

      

                                           
1 -опоковидные силициты; 2 - халцедонолиты; 3 - кремнистые аргиллиты



Рис. 6. Вытеснение нефти из образца с естественным насыщением при процессе противоточной капиллярной пропитки в лабораторных условиях. Образец находится в стакане, заполненном моделью пластовой воды. Каплеобразные выделения - вытесненная нефть

2.2. Кремнистые породы-коллекторы месторождения Санта-Мария в Калифорнии («Монтерей»).
     В Калифорнии месторождения с залежами нефти в породах фундамента известны в трех межгорных бассейнах: Сан-Хоакин (Эдисон, Маунтин-Вью), Лос-Анджелес (Уилмингтон, Лонг-Бич, Плайя-дель-Рей, Эль-Сегундо) и Санта-Мария на одноименном месторождении. Все они, за исключением последнего, связаны в антиклинальными структурами, выраженными по фундаменту и вышележащим осадочным породам, также продуктивным. На месторождении Санта-Мария ловушка образована в результате выклинивания и срезания основной продуктивной толщи – базальных песчаников миоценового возраста – поверхностью несогласия на склоне погребенного выступа францисканского фундамента, из которого тоже получены притоки нефти. Небольшие количества нефти из трещиноватых гранитов, кварцитов и других пород докембрийского возраста получены в некоторых осадочных бассейнах Скалистых гор.

     В результате изучения месторождения района Санта Мария в Калифорнии выясняется влияние дизъюнктивных нарушений на перемещение нефти. Согласно Коллуму (R. Е. Collom)17, на месторождениях Санта Мария и Ломпок продуктивны трещиноватые кремнистые сланцы в нижней части формации Монтерей; это, вероятно, и нефтематеринские породы. На месторождении Санта Мария, кроме того, нефть содер-жптся в песчаных слоях формации Вакерес, которая, в нормальных условиях подстилает формацию Монтерей. Очевидно, имела место боковая миграция нефти из формации Монтерей по дизъюктивному нарушению, по которому обе формации приведены в соприкосновение. На соседнем месторождении Касма-лия продуктивен примерный стратиграфический эквивалент кремнистых сланцев месторождения Сайта Мария. На месторождении Кэт Кэньон, расположенном в том же районе, нефть содержится в песчаниках, залегающих, невидимому, несогласно на продуктивных горизонтах месторождения Сайта Мария.

Существуют убедительные доказательства наличия разрывов, по которым могла происходить миграция из формации Монтерей в вышележащие слои. Большая часть нефти, первоначально присутствовавшей на рассматриваемой площади, рассеялась. Об этом свидетельствуют многочисленные выходы и остатки нефти, приуроченные к обширной площади поверхностного распространения формации Монтерей, и мощная толща насыщенных нефтью сланцев, обнажающаяся на гребне возвышенностей в районе Касмалия.

Самый горячий приверженец теории дальней боковой миграции - это Рич (J. L. Rich)79. Основные положения его теории сводятся к следующему. Нефть может переходить из нефтелроизводящих отложений в проницаемые слои несколькими способа ми: вследствие уплотнения сланцев, по трещинам, под влиянием капиллярных сил. Дальнейшая миграция по проницаемым слоям контролируется характером пористости и сил, вызывающих движение- В таких слоях, как подвергшиеся выщелачиванию известняки, или в условиях несогласного перекрытия, пути для продвижения нефти могут представлять собой ряд взаимосообщающихся каналов растворения, достаточно крупных для того, чтобы миграция осуществлялась единственно в силу высокой подвижности нефти. Однако сквозь плохо проницаемые породы, часто слагающие природные резервуары, миграция должна осуществляться под воздействием таких факторов, как сжатие.

     Основным источником кремнезема и ОВ в этих кремнистых толщах Калифорнии как и в современных осадках, были диатомовые и в меньшей степени желто-зеленые водоросли, характеризующиеся повышенным содержанием липидов (5–38 %). Главная особенность этих водорослей – жировой обмен, т. е. способность накапливать в качестве запасных веществ липиды. Накопление липидов в больших количествах происходит, видимо, в очень специфических условиях и в исключительных случаях. Вероятно, с этим процессом – выборочным накоплением “масла”, связана резко повышенная, но неравномерная битуминозность диатомовых илов зон апвеллинга, диатомитов некоторых районов Тихоокеанского пояса. Следующим по значимости поставщиком исходного ОВ в осадок являлись бактерии, также характеризующиеся повышенным содержанием липидов. ОВ в виде нитевидных покровов (бактериальные маты) было установлено в формации монтерей при помощи сканирующего электронного микроскопа. По данным пиролиза, оно характеризуется необычайно высоким кислородным индексом и пиком Si и, кроме того, способно удерживать азот.

Существует  утверждение, что ранее диатомовые не рассматривались как важный продуцент SiO2 и органического вещества. Более того, диатомовые настолько интенсивно "вытягивают" SiO2 из морской воды, что они начиная с кайнозоя стали главным породообразующим организмом, для кремнистых отложений, а до того были радиолярии. Сейчас радиолярии вытеснены в мировом океане из своей экологической ниши, которую они занимали весь палеозой и мезозой, диатомовыми и сохраняют за собой только экваториальный пояс кремненакопления.


Рис. 7 побережье калифорнии, расположение месторождения Санта-Мария.

Рис. 8 нефтегазоносный бассейн Калифорнии (Санта-Мария)
Заключение


     В настоящем время рассматривается лишь ограниченный круг вопросов, связанный с породами-коллекторами нефти и газа - основные свойства, петрографические признаки, некоторые классификации. Большое количество последних свидетельствует о разностороннем подходе к изучению коллекторов (петрографическом, генетическом, емкостно-фильтрационном и др.) и сложности самого объекта исследований.

     До сих пор не разработана систематика пород-коллекторов, основанная на анализе зависимостей между структурно-текстурными и фильтрационно-емкостными параметрами, не всегда удается достаточно надежно увязывать характер пористого пространства с определенными геологическими процессами и стадиями литогенеза.

     Принципы типизации терригенных и карбонатных коллекторов и простейшие приемы их петрографического определения - это первый шаг в освоении сложного вопроса изучения и прогноза природных резервуаров нефти и газа.
Список литературы

1. Ханин А. А. Породы-коллекторы нефти и газа и их изучение. М.: Недра, 1969. 356 с.

2. Бурлин Ю. К. Природные резервуары нефти и газа. М.: Изд-во Моск. ун-та, 1976. 136 с.

3. Органическое вещество кайнозойских кремнистых пород бассейнов северо-западной части Тихоокеанского пояса /О.К. Баженова, Ю.К. Бурлин, Е.Е.

4. Рассел У.Л. Основы нефтяной геологии. Л., Гостоптехиздат, 1958

5. Страхов Н.М. О некоторых вопросах геохимии кремнезема. - В кн.: Геохимия кремнезема. М., 1966, с. 5-10.

6. Смехов Е.М. Теоретические и методические основы поисков трещинных коллекторов нефти и газа. Л., Недра, 1974.

7. Bramleite M.N. The Monterey formation of California and the origin of its siliceous rocks. - U. S. Geol. Surv., Prof. Paper, N 212, Washington, 1946.



1. Реферат Налоговые льготы РФ
2. Реферат на тему Humanity S Inhumane Actions To Essay Research
3. Реферат на тему Crucible Essay Research Paper John Proctor in
4. Реферат Социология конфликта изучение и проблематика
5. Реферат Понятие виды и функции юридической ответственности за экологические правонарушения
6. Реферат на тему Pornography Essay Research Paper Pornography 2
7. Реферат Структура курсу Біологія
8. Диплом на тему Differences between American English and British English
9. Реферат на тему Hamlet Characters Essay Research Paper In the
10. Курсовая на тему Линейные электрические цепи