Курсовая

Курсовая на тему Расч т для привода

Работа добавлена на сайт bukvasha.net: 2014-12-04

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 15.3.2025


Задание №6
на проект по курсу «Детали машин» привод УИПА

I Кинематическая схема
II Исходные данные
Параметры
Обозн.
Вариант
1
2
3
4
5
6
7
8
9
10
Скорость каната
V, м/мин
15
Ширина барабана
B, мм
280
Диаметр барабана
D, мм
180
Номин. число условие на барабанах
F, кн
18,0
Коэффициент перегрузки
K
1,8
Долговечность
Ц, ч
1800
Режим Работы
График нагрузки
Вариант
Зона
Поз
Обозначение
Наименование
кол
Прим
Документация
Сборочный чертеж
Сборочные единицы
х
1
Маслоуказатель
1
2
Крышка
1
3
Колесо червячное
Детали
4
Корпус
1
5
Крышка
1
6
Отдушина
1
7
Прокладка
1
8
Крышка
1
9
Пробка
1
10
Прокладка
1
11
Прокладка
1
12
Прокладка
2
13
Крышка
2
14
Вал
1
15
Кольцо
1
16
Колесо зубчатое
2
17
Стакан
1
18
Прокладка
1
Вариант
Зона
Поз
Обозначение
Наименование
кол
Прим
21
Колесо зубчатое
2
22
Крышка
2
23
Кольцо
2
24
Вал
1
Стандартные изделия
Болт ГОСТ Т808-Т0
30
М6х20
4
31
М12х30
24
32
М12х40
10
33
М16х140
6
Гайка ГОСТ S91S=10
34
МК-ГН
4
35
М16-ТН
6
36
Гайка М64х2
1
Гост 4811-88
Шайба ГОСТ 11311-88
37
12.02
40
38
Шайба 64 ГОСТ 118 Т2-80
1
39
Кольцо А40 ГОСТ 13942-80
1
40
Кольцо А160 ГОСТ 13943-80
2
41
Манжета ГОСТ 8152-19
1.1-55х80
1
42
1.1-90х125
2
43
Подшипник 208
1
44
Подшипник 21313
2
45
Подшипник 7212
2
46
Подшипник 2218
2
47
Шпонка 20х12х15
2
48
Кольцо А90 ГОСТ 13942-80
2
Вариант
Зона
Поз
Обозначение
Наименование
кол
Прим
Документация
Сборочный чертеж
Детали
1
Швеллер 12<=440
4
2
Швеллер 16<=500
2
3
Швеллер 16<=1390
2
4
Швеллер 16<=270
3
5
Лист б=8 360х190
1
6
Лист б=8 320х80
1
7
Лист б=8 380х170
2
8
Лист б=8 780х450
1

1. Определение силовых и кинематических параметров привода
Мощность на валу рабочего органа P=2FeV/1000, где F – эквивалентная сила сопротивления
Fe=Fmax-Ke, где Ke – коэффициент эквивалентной нагрузки

Fe=Kt∙Ke=18∙0,82=14,76 kH
P=2∙14,76∙103/60∙1000=5,9 кВт
КПД привода: n=n1∙n2∙n3∙n42, где
n1 – КПД муфты=0,99
n2
n3 – КПД цилиндрической передачи=0,97
n4 – КПД пыра подшипников=0,99
n=0,99∙0,8∙0,97∙0,99=0,475
Mощность двигателя Pдв=P/n=5,9/0,475=7,9 кВт
Принимаем двигатель n1 132 ММУЗ
Мощность двигателя Pдв=11 кВт
Частота вращения пд=1455 мин-1
Передаточное число привода: и=пу/пвых
где: пвых=V/ПД=12/3,14∙0,28=13,64 мин-1
и=1455/13,64=105,7
Принимаем передаточное число цилиндрической передачи и12
Передаточное число быстроходной передачи
Иб=и/ит=106,7/4=26,6
Принимаем и1=4в=2S
Крутящий момент на валу двигателя
Т1=9550 ∙ Рчв/пчв=9550 ∙ 11/1455-72,2Нм
Моменты на последующих валах
Т21∙и1∙п1∙п2∙пи=72,2∙25∙0,99∙0,8∙0,99=14+4 Нм
Т32∙и2∙п3∙п4=1415∙0,99∙4∙5434 Нм
Частота вращения валов
n2= n1/ и1=1455/25=58,2 мин-1
n3= n2/ и2=58,2/4=14,9 мин-1

2 Выбор материала червячной пары
2.1 Скорость скольжения в зоне контакта

По таблице 3.1 принимаем материал венца червячного колеса, бронзу БРР10 Ф
Механические свойства δ=275 мПа; δт=200 мПа
2.2 Допускаемые напряжения
Эквивалентное число циклов перемен напряжений по контакту
N He2=60∙ п2 lh Σkm1;3∙t=60∙58,2∙12000(13∙0,2+0,83∙0,65+0,453∙0,15)=2.29∙107 по изгибу
N Fe2=60∙ п2 ch: Σ4m19∙t1=60∙58,2∙12000(13∙0,2+0,89∙0,65+0,459∙15)=12∙107
Коэффициент долговечности по контактным напряжениям изгиба

Коэффициент долговечности по контактным напряжениям

Допускаемое контактное напряжение
δHP2=0,9бв kul=0,9∙275∙0,9=222 мПа
Предельное допускаемое контактное напряжение
(δHP2)max=4δT2=4∙200=800 мПа
Предельное допускаемое контактное напряжение
(δHP2)max=δFpH2=0,8δr2=0,8∙200=160 мПа
Допускаемое напряжение изгиба
δHP2=0/6 δb2∙RFl=0,16∙275∙0,76=33,4 мПа
2.3 По таблице3.4 принимаем число винтов червяка
Z=2

3 Расчет червячной передачи
3.1 Число зубьев червячного валика
Z2=Z1∙u=2∙25=50
3.2 Ориентировочное значение коэффициента диаметра червяка
д1=0,25∙ Z2=0,27∙50=12,5
Отношение среднего по времени момента к рабочему:
mp=Σk1m:t1=0,2+0,8∙0,65∙0,45∙0,15=0,787
3.3 Коэффициент деформации червяка по табл. 3.5
Q=121
3.4 Коэффициент неравномерности распределения нагрузки
KHB=1+(Z2/Q)3(1-mp)=1+(50/121)3∙(1-0,787)=1,015
Коэффициент динамичности KHХ=1,1
3.5 Межосевое расстояние

Принимаем dw=200мн

3.6 Предварительное значение модуля:
 m=2aw/g+Z2=2∙200/12,5∙50>6,4 мм
Принимаем m=6.3
3.7 Коэффициент диаметра червяка
g=2aw/m-Z2=2∙200/6,3-50=13,5
Принимаем g=12,5
3.8 Коэффициент диаметра смещения червяка:
x=2aw/m-Z2+9/2=200/6,3-50+12,5/2=0,496
3.9 Контактное напряжение на рабочей поверхности зуба червячного колеса
,
где Ev – приведенный модуль упругости=1,26
мПа<GHP=222мПа

3.10 Предельное контактное напряжение на рабочей поверхности зуба
 мПа<(GHP2)max2=800 мПа
3.11 Угол подъема вышки червяка

3.12 Приведенное число зубьев червячного колеса
7V2=72/cosγ=50/cos39,09=51,9
3.13 По табл. 3.6 выбираем коэффициент формы зуба колеса
YF2=1,44
3.14 Коэффициент неравномерности распределения нагрузки и динамичности
KEP=KHP2 1,015   KFV=KV=1.1
3.15 Напряжение изгиба и точил зуба червячного колеса
GFH2=1500T2∙YT2∙KFP∙Kkp∙cosα/22∙g∙m3=20,5<GFP2=33,4 мПа
3.16 Предельное напряжение изгиба у ножки зуба
GFH2=β=Gf2=1,8∙20,5=36,9 мПа= GFH2=160 мПа
4 Расчет геометрии червячной передачи
4.1 Длительные диаметры
d1=mφ=6,3∙12,5=78,75 мм
d2=mz2=6,3∙50=315 мм
4.2 Диаметры вершин
da1=d1+2ha∙m=78,75+2∙6,3=91,35 мм
da2=d2+2(ha+x) ∙m=315+2∙(1+0,496) ∙6,3=333,8 мм
4.3 Наибольший диаметр червячного колеса
dam2=da2+bm/2+2=333,8+6,3∙6/2+4=343,25 мм
Принимаем da2=344мм
4.4 Высота витка червяка
h1=h∙m=2,2∙6,3=13,86 мм
4.5 Расчет диаметра впадин
d cp1=da1-2h=72,5-2∙13,86=44,78 мм
d cp2=da2-2(ha+C+x)m=315∙2(1+6,2+0,496) ∙6,3=311,6 мм
Принимаем da2=343 мм

4.6 Длина нарезной части червяка
b0=(12+0,1Z2)m=(n+0,1∙50) ∙6,3=100,8 мм
для исследованного червяка: b1>b10+4m=100,8+4,63=126 мм
4.7 Ширина венца червячного колеса
b2=0,75da1=0,75∙91,35=68,5 мм
Принимаем b2=63 мм
4.8 Радиус вышки поверхности вершин зубьев червячного колеса:
K=0,5d1=m=0,5∙78,75-6,3=33,075

5 Расчет сил зацепления и петлевой расчет червячной передачи
5.1 Окружная скорость червяка
V1=Пd11/60∙103=3,14∙78,75-1455/60∙103=6 м/с
5.2 Скорость скольжения
VS=V/cosγ=6/cos9,09=6,08 м/с
5.3 По табл. 10 выбираем угол трения ρ∙ρ=1.15 коэффициент потерь в зацеплении
φ=1-tg8/tg(4+5)=1-tg9,04/tg19,09+1,15=20,14
5.4 Определить относительные потери в уплотн. по табл. 31:
φу=0,055
5.5 КПД червячной передачи
n=1- φ3- φy=1-0,114-0,055=0,837
5.6 Поверхность теплопередачи редуктора
м3 с учетом цилиндрической передачи
S=2S =2∙1,3=2,6 м2

5.7 Температура масляной ванны:
tn=103p1(1-h)kt∙S(1+ φ)+t0=590C,
где кт – коэффициент теплопередачи=16Вт/Н2С,
φ – коэффициент теплоёмкости=0,3
5.8 По табл. 3.14 (1) назначаем степень точности передачи. Окружная сила на колесе осевом на червяке
Ft2=Fa1=2∙103∙T2∙d2=2∙103∙1414/315=8978
5.9 Осевая сила на колесе, окружная на червяке
Fa2=Ft1=2∙103T2
d1Un=2∙103∙1414/78,75-25∙0,83=1728H
5.10 Радиальные силы

6 Выбор материала цилиндрической зубчатой передачи
По табл. 2.2 принимаем материал для изготовления зубчатых колец сталь 40х
Термообработка – улучшение механических свойств
для шестерки δв=900мПа G=750мПа 269…302НВ
для колеса δв=750мПа 235…262 НВ
при расчетах принимаем НВ1=280, НВ2=250
6.1 Допустимые напряжения
6.1.1 Допустимое конкретных напряжений
δHP=0,9∙Gnl:mb∙knl/Sn, где Gnl:mb – предел контактной выносливости, соответствующий базовому числу циклов перемены напряжения
Gnl:mb=2HB+70
Gnl:mb1=2HB1+70=2∙280+70=630 мПа
Gnl:b2=2∙250+70=570 мПа
KHL – коэффициент долговечности
,
где NHO – базовое число циклов перемены напряжений
NHO=30(НВ)2,4
NHO1=30∙2802,4=2,24∙107
NHO2=30∙2502,4=1,7∙107

NHE – эквивалентное число циклов перемены напряжений
(NHO=30(HB)2,4)NHl=60∙nhkl∙ Σkm13t.
Находим Σkm13t=13∙0,2+0,83∙0,65+0,453∙0,15=0,546
NHE1=60∙58,2∙12000∙0,546=2,24∙107
NHЕ2=60∙14,9∙12000∙0,546=0,57∙107
Тогда KHL=1,
Sn – коэффициент безопасности = 1,1
GHP1=0,9∙650∙1/1,1=515 мПа; GHP2=0,9∙570∙1,26/1,1=588 мПа;
GHP=0,45 (GHP1+GHP2)=0,45(5152+588)1,1=496 мПа
6.1.2 Допускаемые напряжения при расчетах на установл. изгиб
G=p=0,4G0F ∙limo=KFl1, где G Flimo=предел выносливости зубьев при изгибе
G0=limb=1,8HB
G0=limbk=1,8∙280=504 мПа
G0=limb2=1,8∙250=1150 мПа
NF0 – базовое число циклов перемены направлений = 4∙106
KFL – коэффициент долговечности
NFE=60∙n∙h0∙Σkm:bt – эквивалентное число циклов
Σkm:bt=16∙0,2i+0,8=0,65∙0,456∙0,15=0,37
NFE1=60∙58,2∙12000∙0,37=1,54∙107
NFE2=60∙14,9∙12000∙0,37=0,38∙107
KHL=1;
GFP1=0,4∙504∙1=201 мПа
GFP2=0,4∙450∙1,01=181 мПа
Предельные допустимые напряжения изгиба
GFlimH1=4,8∙250=1200 мПа
GFlimH2=0,9(1344/1,75)=691 мПа
GFpH2=0,9(1200/1,75)=675 мПа

7 Расчет цилиндрической зубчатой передачи
Исходные данные:
Крутящий момент на валу шестерни Т12/2=1414/2=707 мм
Частота вращения шестерни п1=58,2мин-1
Придаточное число U=4
Угол наклона зубьев β=200
Относительная ширина зубчатого венца ψbd=0,7
Коэффициент, учитывающий распределение нагрузки по ширине венца Кпр=1,1; КFP=1,23
Коэффициент, учитывающий влияние вида зубчатой передачи дн=0,002; дF=0,006
Коэффициент, учитывающий влияние вида разности молов д0=61
Предельное значение округлённой динамической силы Whmax=4104 мм; WFmax=4104 мин-1
Коэффициент, учитывающий распределение нагрузки между зубьями: KHh=1,06; Kkl=1,2
Коэффициент материала Zm=271H
Вспомогательный коэффициент K2>430
7.1 Коэффициент относительной ширины
Ψba=2ΨbL/U+1=2∙0,7/4+1=0.28
Принимаем Ψba=0,25
7.2 Угол профиля
hf=arctg(tg2/cosB)=arctg(tg200/cos200)=21,1730

7.3 Межосевое расстояние
 мм
Принимаем dm=315 315 мм
7.4 Коэффициент, учитывающий наклон зуба
Yβ=1-β/140=0,857
7.5 Принимаем число зубьев шестерни
Z1=22
7.6 Модуль зацепления
 мм
Принимаем m=5мм
ZC=2aw∙cosβ/w=2∙315∙cos20/5=118,4
Принимаем ZC=118
Z1=Z1/U+1=118/U+1=23,6
Принимаем Z1=24

7.7 Число зубьев колеса
Z2=ZC-Z1=118-24=94
7.8 Передаточное число
U=Z2/Z1=94/24=3,917
ΔU=Σ(4∙3,92)14y∙100%=2,08%<4%
7.9 Длинное межосевое расстояния

7.10 Угол зацепления
dtω=arcos(a/aw∙cosαt) ∙arccos(313,93/315∙cos21,173)=21,67
7.11 Значение
invαtω=tgdecos-αω=tg21,67-21,67/180π=0,01912
invαt=tgαt-dt=tg21,173-21,173/180π=0,01770
7.12 Коэффициент суммы смещения

7.13 Разбиваем значение коэффициента суммы смещения
α1=0,126; α2=0
7.14 Коэффициент уравнительного смещения
Δy=xΣ-y=0,216-0,213=0,003
7.15 Делительный диаметр
d1=mt/cosβ1=5,24/cos20=127,7мм
d2=mt2/cosβ1=5,94/cos20=500,16мм
7.16 Диаметр вершины
da1=d1+2∙(1+x1- Δy) ∙m=127,7+2∙(1+0,216∙0,003) ∙5=137,7 мм
da2=d2+2∙(1+x2- Δy) ∙m=500,16+2∙(1+0,003 ∙0) ∙5=510,16 мм
7.17 Диаметр основной окружности
db1=d1∙cos2t=127,7∙cos21,173=119,08 мм
7.18 Угол профиля зуба в точке на окружности
α a1=arccos(dB1/dA1)=arccos(119,08/27,7)=30,140
α a2=arccos(dB2/dA2)=arccos(466,4/510,16)=23,90
7.19 Коэффициент торцевого перекрытия
d2=Z1∙tg2a1+Z2∙tg2a2(Z1+Z2)tg αzω/2π=24∙tg30,14+94∙tg23,9-(24+94)tg21,67/2π=1,575

7.20 Ширина зубчатого венца колеса
bw2=xb2∙aw=0,25∙315=78,75 мм
7.21 Принимаем bw2=78мм
Осевой шаг
Pk=AH/sinB=π∙S/sin200=45,928 мм
7.22 Коэффициент осевого перекрытия

7.23 Ширина зубчатого вала шестерни
bw1= bw2+5=78+5=83 мм
7.24 Коэффициент, учитывающий суммарную длину контактных линий

7.25 Начальные диаметры
dw1=2aK1/U+1=2∙315/3,917+1=128,14 мм
dw2=dw1∙U=128,14∙3,92=501,86 мм

7.26 Исходная расчетная окружная сила при расчете на контактную прочность
FHT=2∙103T/dw1=2∙103∙707/123,14=11035
При расчете на выносливость при изгибе
FKT=2∙103T/d1=2∙103+707/127,7=11073,71H
7.27 Окружная скорость
V=Tdw1∙m/60∙103=128,14∙58,2/60∙103=0,39 м/с
7.28 Окружная динамическая сила
 H/мм
7.29 Коэффициент динамической нагрузки
KHV=1+WHV∙bw2∙dw2/2∙103∙T1∙K ∙KHP=1,003
KFV=1+WFV∙bw2∙d1/2∙103∙T1∙K ∙KFB=1,006
7.30 Удельная окружная сила
WHT= FHT/ bw2∙ K ∙ KFB∙ KHV=11035/78∙1,06∙1,1∙1,003=164H/мм
WFT= FKB/ bw2∙ K ∙ KFB∙ KFV=11073/78∙1,2∙1,23∙1,006=211H/м2

7.31 Эквивалентное число зубьев
ZV1=Z1/cos3B=24/cos3200=28,9
ZV2=Z2/cos3B=94/cos3200=113,3
7.32 Принимаем коэффициент, учитывающий перекрытие
YE=3,6
7.33 Коэффициенты формы зуба
YF1=3,63; YF2=3,6
7.34 Направление изгиба
 мПа
7.35 Коэффициенты безопасности по направлению изгиба
SF1=GFP1/GF1=201/131=1,53
SF2=GFP2/GF2=181/130=1,39
7.36 Основной угол наклона (изгиба) зуба
Bb=arcsin(sinβ∙cosα)=arcsin(sin200∙cos200)=18,750
7.37 Коэффициент учитывающий форму сопряжения поверхностей
 
7.38 Контактные напряжения

7.39 Коэффициент безопасности по контактному напряжению
SH1=Gmax-GV ∙ √B=459∙√1,8=616 мПа<Gpmax=1792 мПа
7.40 Наибольшие контактные напряжения
GVmax=GV ∙√B =459∙√1,8=616 мПа< Gpmax
7.41 Наибольшие напряжения изгиба
GFm1=GF1B=B1∙1.8=236мПа<GFpn1=691мПа
GFm2=GF2B=B0∙1.8=234мПа<гGFpn2=617мПа
7.42 Силы действующие в зацеплении
а) окружная
Ft1=Ft2=2n/d=2∙707∙103/127,7=11073H
б) радиальная
FZ1=FZ2=Ft∙tgα/cosβ=11073 tg200/cos200=4298H
в) осевая

Fa1=Fa2=Ft∙tgβ=11073∙tg200=4030H

8 Компоновка редуктора
Последовательно определяем диаметры валов по формуле:
, где [Σ] – допускаемое нарушение кручений=15…30мПа
 Принимаем d=30мм
 Принимаем d2=70мм
 Принимаем d3=100мм
Толщина спинки корпуса редуктора
V=0,025dw+3=0,025∙315+3=10,8 мм
Принимаем V=12мм
Диаметр болтов:
d1=0,003wT+R=0,003-315+12=21,45 мм
Принимаем d1=24 мм
d1=16 мм, d3=12 мм
Расчет входного вала:
Исходные данные:
Ft=1728H; F2=3268H; F0=8978H
d=78,75мм; T=72,2Hм
Момент возникающий
Мн=0,17=0,1∙72,2=7Нм
Определение опорных реакций и изгибающих моментов
Вертикальная плоскость

Горизонтальная плоскость

Суммарные изгибающие моменты


Принимаем материал вала сталь 40х
Gg<900мПа; [G-l]=80мПа
Определим диаметры вала в сечении Д
Приведенный момент

Расчетный диаметр вала

Диаметр впадин червяка dt1=44,78>392 мм

9 Расчет промежуточного вала
Исходные данные
Ft1=11073H; Fy1 =4289H; Fa1=4030H;d1=127,2 мм
Ft2=80,78H; Fy1 =3269H; Fa1=1728H;d1=315 мм
Т=707 мм
Определим опорные реакции изгибающих моментов.
Вертикальная плоскость

Горизонтальная плоскость


Проверочный расчет вала на выносливость
Материал вала сталь 40х
ТВ=900мПа; Т1=450мПа; Σ=250мПа; ψ0=0,1. Сечение I-I
Эффективные коэффициенты концентрации нарушений от шпоночного газа по табл. 5.12 [2]
Ka=2,15:KT=2,05
Масштабный коэффициент табл. 5.16[2]
Er=ra=0,6
Коэффициент состояния поверхности
KCr=Kru=1,15
KCD=KE+KT-1/Eζ=2,05+1,15-1/0,64=3,59
KζD=Kζ+KTr-1/Eζ=2,05+1,15-1/0,64=344
Эффективные коэффициенты напряжений от посадки границы колеса по табл. 5.15[2]
KAD=4,5; KJD=3,16
Окончательных принимаем: KED=451 KKD=3,44
Осевой и номерный момент по табл. 5.9[2] W0=89100 ммВ
Напряжение изгиба и кручения


Коэффициент запаса прочности


10 Расчет выходного вала
Исходные данные:
Ft=18000H; Ft=11073H; Ft=4289H
Fa=4030H; d=500,16 мм; T=2717мм
Определение опорных реакций и изгибающих моментов
Вертикальная плоскость
RaB=RBB=Ft1=11073H
MCB=MDB=RAB∙a=-4073-0,085=-941Hm
Горизонтальная плоскость
RBr=Ft∙Ft1=18000-4282=13711H
MBr=-F2∙c=-18000∙0,16=2280Hm
MCr=-F2∙(c+a)+RBr∙a=-18000∙0,245+1374∙0,085=-3245Hm
MCHr=-Ft(c+a)+RAr∙a+Fa1∙d/2=-18000∙0,245+13711∙0,085+4030∙500,16∙10-3/2=-2237Hm
Суммарные изгибающие моменты

Принимаем материал вала сталь45
Ев=600мПа;[Т-1]=55мПа

Определяем диаметр вала в сечении
Приведенный момент

Расчетный диаметр вала
мм

11 Расчет подшипников входного вала
Радиальные нагрузки

Осевая сила Fa=8978Н
Расчет подшипников В
Принимаем предварительно подшипник 27313
С=89000; С0=71400; l=0,753; Ч=0,796

Следовательно, работает только один pxg
Эквивалентная нагрузка
P=(xvF2+ЧFa)∙Kb∙KT ,
где Кб – коэффициент безопасности, Кт – температурный коэффициент
Р=(0,4∙1∙2550∙0,796∙8978) ∙1,7∙1=10613Н
Расчет подшипников А
Эквивалентная нагрузка
P=VF2∙VS∙KT=1∙1304∙1,3∙1=16,05H
Требуемая динамическая грузоподъемность
 
Принимаем подшипник 908, у которого С=25600Н

12 Расчет подшипников промежуточного вала
Радиальные нагрузки

Осевая нагрузка Fa=1728Н
Предварительно принимаем подшипник 72R
C=72200H; C0=58400H; l=0,35; Ч=1,71
Расчетная осевая нагрузка
Fa=0,83l1FZ1v=0,83∙0,5∙14752=4285H
Fan=Fa1 – Fa=4285 – 1129=6013H
Эквивалентная нагрузка
P1=VF2T ∙Kb∙Kt=1∙14752∙1,3∙1=19178H
PII=(xVF2II+ЧFaII) ∙Kb∙Kt=(0,4∙1∙16152∙1,71∙6013) ∙1,3∙1=21766H
Долговечность наиболее нагружаемого подшипника


13 Расчет подшипников выходного вала
Радикальные нагрузки

Эквивалентная нагрузка
P=VF2∙Kb∙R=1∙17623∙1,3∙1=22910H
Требуемая динамическая грузоподъёмность

Принимаем подшипник С=12100Н

14 Расчет шпонки выходного вала
Исходные данные:
d=95мм; b=0,5мм; h=14мм; t1=9мм; l=110мм; T=2717мм
Рабочая длина шпонки
lp=l-b=110-25=85 мм
Напряжение на рабочих группах шпонки


15 Подбор смазки для редуктора
Сорт масла выбираем по окружной скорости колес по формуле
Δ=2T/DT=0,39 м/с
и по контактным напряжениям в зубе шестерни [I]=496 мПа
По таблице рекомендуемых сортов смазочных масел выбираем масло
U – F – A – 68 ГОСТ17-47 94-87
Объем масла, заливаемого в редуктор рассчитывается по формуле:
Uмаслабв∙0,35=11∙0,35=3,15 л

1. Реферат Этические нормы профессионального поведения специалиста по связям с общественностью
2. Реферат на тему History Of Parish Councils Essay Research Paper
3. Курсовая на тему Рейтинговая оценка деятельности Тюменского Государственного Университета
4. Реферат Браун, Ди
5. Реферат Формування іміджу рекламного агентства Аlmedia group
6. Реферат Маркетинговый анализ предприятия 3
7. Реферат на тему Передаточное отношение многоступенчатых передач
8. Реферат Гильотен, Жозеф Игнас
9. Реферат Процес глобалізації міжнародних економічних відносин
10. Реферат Понятие достоверности исторического источника Полнота и точность информации источника