Курсовая Электрооборудование промышленности
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Федеральное агентство по образованию
Омский государственный технический университет
Нижневартовский филиал
Кафедра «Электрическая техника»
Курсовая работа
Электрооборудование промышленности
Выполнил: Черкасов К.Ю. ЗИЭ-416
Проверил: Хамитов Р.Н.
Нижневартовск 2010
Техническое задание и исходные данные на проектирование.
Задание 1
1. Спроектировать управляемый выпрямитель (УВ) для электродвигателя постоянного тока тиристорного электропривода. Вычертить принципиальную электрическую схему УВ с соблюдением правил выполнения типовых электрических схем. Технические данные электродвигателя даются в табл.7.5. [3]
2. Построить регулировочную характеристику выпрямителя.
3. Вычислить минимальное
4. Вычертить кривые мгновенных значений фазных напряжений
Технические данные двигателей постоянного тока серии 2П
№ | Ud,В | Pн,кВт | Тип двигателя | η, % | Lя.ц.,мГн | nном, об/мин | ξп | ξм |
10 | 220 | 11 | 2ПН160L | 79 | 3,1 | 1500 | 0,75 | 1,1 |
Задание 2
Спроектировать двухзвенный преобразователь частоты (ПЧ) с автономным инвертором для электропитания асинхронного двигателя в энергосберегающем электроприводе переменного тока. Технические данные даются в табл.7.6 .[3].
Вычертить электрическую функциональную схему электропривода переменного тока с преобразователем частоты в соответствии с правилами ГОСТ. Построить таблицу для алгоритма переключения силовых ключей П4 с интервалами проводимости ключей 180 эл. град. вычертить в масштабе кривые мгновенных значений трёхфазных напряжений на выходе П4. По оси абсцисс рекомендуется масштаб 30 эл. град. в
Технические данные асинхронных двигателей серии RA
№ | Uл,В | Pн,кВт | Тип двигателя | ηн,% | cosφ | Nном,об/мин |
10 | 380 | 55,0 | RA250M2 | 93,0 | 0,89 | 2965 |
Аннотация
В данной курсовой работе рассмотрены и рассчитаны управляемый выпрямитель (УВ) и преобразователь частоты (ПЧ) для электротехнического комплекса и системы. Выбраны схемы УВ и ПЧ для данного варианта задания. В работе представлены: регулировочная характеристика, кривые мгновенных значений фазных напряжений и напряжений на выходе тиристорной группы (для минимального и максимального углов отпирания), временные диаграммы выходного напряжения ПЧ с ШИМ регулированием, временные диаграммы ступенчатых трехфазных выходных напряжений ПЧ.
В данной работе использовано: 35 стр., 7 рис, 1 таблица, 5 приложений
СОДЕРЖАНИЕ
ВВЕДЕНИЕ.............................................................................................................. 5
1. РАСЧЕТ УПРАВЛЯЕМОГО ВЫПРЯМИТЕЛЯ ДЛЯ ЭЛЕКТРОДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА ТИРИСТОРНОГО ЭЛЕКТРОПРИВОДА
1.1. Выбор рациональной схемы управляемого выпрямителя и силовая часть электропривода............................................................................................ 6
1.2. Расчет и выбор преобразовательного трансформатора.............................. 6
1.3. Выбор тиристоров....................................................................................... 8
1.4. Выбор сглаживающего реактора................................................................. 9
1.5. Описание работы схемы УВ....................................................................... 10
1.6. Регулировочная характеристика выпрямителя. Расчет
2. РАСЧЕТ ДВУХЗВЕННОГО ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ ДЛЯ ЧАСТОТНО-РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА ПЕРЕКАЧКИ ЖИДКОСТИ
2.1. Описание электрической схемы электропривода...................................... 14
2.2. Структура и принцип действия преобразователя частоты с промежуточным звеном постоянного тока........................................................................................ 14
2.3. Расчет инвертора........................................................................................ 15
2.4. Потери мощности в IGBT.......................................................................... 16
2.5. Расчет выпрямителя................................................................................... 19
2.6. Расчёт параметров охладителя................................................................... 21
2.7. Расчет сглаживаемого фильтра.................................................................. 22
2.8. Расчет снаббера.......................................................................................... 24
ЗАКЛЮЧЕНИЕ...................................................................................................... 29
БИБЛИОГРАФИЧЕСКИЙ СПИСОК..................................................................... 30
ПРИЛОЖЕНИЯ...................................................................................................... 31
ВВЕДЕНИЕ
Цель и задача проекта и пути решения этой задачи.
Целью курсовой работы является выбор схемы и расчет УВ. Для регулируемого электропривода постоянного тока. Частота вращения двигателя регулируется как известно двумя способами:
1. Понижением напряжения на якорной обмотке при этом частота вращения уменьшается
2. Полюсное регулирование, путем уменьшения напряжения на обмотке возбуждения, при этом частота вращения увеличивается за номинальную.
В курсовой работе проводится расчет управляемого выпрямителя для якорного регулирования скорости.
Выполняется расчет (электрический и тепловой) преобразователя частоты на IGBT транзисторах, для частотно-регулируемого энергосберегающего электропривода в асинхронном двигателе. Нагрузкой АД служит центробежный насос для перекачки жидкости.
1. РАСЧЕТ УПРАВЛЯЕМОГО ВЫПРЯМИТЕЛЯ ДЛЯ ЭЛЕКТРОДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА ТИРИСТОРНОГО ЭЛЕКТРОПРИВОДА
1.1. Выбор рациональной схемы управляемого выпрямителя и силовая часть электропривода
Рациональную схема управляемого выпрямителя выбирается по выходной мощности выпрямителя
если
В данном варианте
(Ошибка в Рис1:
R
и
L
убрать, включить ДПТ двигатель постоянного тока)
1.2. Расчет и выбор преобразовательного трансформатора TV
(П1 стр.31)
Теоретическое значение напряжения вентильной обмотки трансформатора
где
Необходимые запасы напряжения вентильной обмотки
коэффициент запаса
коэффициент
коэффициент
Расчетное действующее значение тока вторичной обмотки определяют по формуле
где
где
Коэффициент схемы
Действующее значение тока вентильной обмотки
Где
Коэффициент трансформации трансформатора
Расчетная типовая мощность трансформатора
Где коэффициент
На основании расчетных данных (
Sтип=16 кВА,
Коэффициент трансформации трансформатора для теоретических значений
1.3. Выбор тиристоров
Среднее значение прямого тока тиристора (VS1,VS2,VS3,VS4,VS5,VS6 на схеме П1) в заданной схеме управления определяется по формуле
Расчетное значение максимального обратного напряжения, прикладываемого к тиристорам, вычисляется по формуле
По полученным данным выбираем силовой тиристор, имеющий параметры
Выбираем силовой тиристор [3] табл. П3
Т123-250 средний, прямой, ток Itav=290А, импульсное повторяющееся прямое и обратное напряжение 600 В(шестой класс), охладитель стандартный О161-80 (см [4] или [5]).
1.4. Выбор сглаживающего реактора
Требуемая суммарная индуктивность якорной цепи преобразователь – двигатель
m- число пульсаций выпрямленного напряжения за период частоты напряжения сети.
Необходимая индуктивность сглаживающего реактора
Индуктивность фазы трансформатора, приведенная к контуру двигателя
Если
Выбираем сглаживающий реактор по следующим данным: индуктивность Lср=0,169 мГн, ток у реактора Iср=Id.ном.=47.69. Выбираем реактор РТСТ-165-0,19.
Р – реактор ; Т – трёхфазный ; С – сглаживающий ; Т – токоограничивающий.
масса m=52 кг.
1.5. Описание работы схемы УВ.
Схема приведена в Приложении 1
На схеме:
- входной согласующий трансформатор ТV;
- автоматический выключатель QF;
- силовые предохранители FU;
- контактор КМ;
- блок силовых полупроводниковых приборов UZ;
- дроссель L;
- приборы индикации тока и напряжения на выходе устройства RS;
- органы контроля и управления устройства SB;
- блоки системы управления преобразователем U;
- блоки источника питания системы управления G;
- входные и выходные зажимы силовых цепей X1, Х2.
Трехфазное напряжение питания Uc=380 В промышленной частоты f=50 Гц, через входные клеммы подается на разъединитель, предназначенный для предотвращения подачи напряжения на установку при наладке, профилактических осмотрах с целью обеспечения видимого разрыва электрической цепи. При включении разъединителя напряжение подается на согласующий трансформатор (схема соединения звезда-звезда), осуществляющий гальваническое разделение и согласование напряжения сети с входным напряжением выпрямителя. При замыкании автоматического выключателя, установленного для защиты питающих сетей и цепей нагрузки от токов короткого замыкания и тепловой защиты от длительной перегрузки, напряжение через предохранители подается на входные клеммы силового контактора. Силовой контактор предназначен для автоматического и дистанционного включения установки на нагрузку и отключения вторичных цепей. При включении силового контактора и подачи управляющих выходных импульсов СИФУ на силовые полупроводниковые приборы за счет регулирования электрического угла открытия тиристоров происходит регулируемое преобразование энергии переменного тока в энергию постоянного тока.
Преобразователь выполнен по трехфазной, полностью управляемой тиристорной мостовой схеме, что позволяет при работе на электрическую машину постоянного тока получать как выпрямительный, так и инверторный режим работы или потреблять и отдавать энергию в сеть, обеспечить как двигательный, так и генераторный режим работы двигателя. Для сглаживания пульсаций выпрямленного тока в цепь нагрузки включен дроссель. Устройство позволяет регулировать напряжение в пределах 0 – Ud. Так как номинальное напряжение катушки контактора, цепей управления преобразователя и источников питания U=220 В, то для обеспечения такого уровня напряжения предусмотрен нулевой провод РЕ. Для сигнализации наличия напряжения включения и отключения преобразователя на нагрузку в схеме установки предусмотрены сигнальные индикаторы HL.
В состав трехфазного мостового тиристорного преобразователя (рис.7.1 ошибка неверная ссылка на рис.)) входят две группы тиристоров – катодная VS1, VS3, VS5 и анодная VS2, VS4, VS6, трансформатор и система импульсно-фазового управления СИФУ. Система вырабатывает импульсы управления тиристорами с заданной фазой по отношению к напряжению сети. Тиристоры в каждой группе открываются с интервалом 2π/m (m=6). Углы открытия тиристоров в обеих группах отсчитываются от моментов естественного включения, соответствующих моменту равенства фазных или линейных ЭДС. Ток в преобразователе всегда протекает по двум тиристорам, принадлежащим к различным вентильным группам, и по двум обмоткам трансформатора.
Поэтому при открывании тиристора в фазе а импульсом, поступающим от СИФУ в момент Ue+α (где Ue – угол естественного включения неуправляемого преобразователя) необходимо также подать импульс управления на VS6 фазы в. ЭДС в цепи нагрузки е2d становится равной линейной ЭДС е2аb=ea– eb. В режиме непрерывного тока в момент открывания очередного тиристора ток еще продолжает протекать через ранее открытый тиристор. Время, в течение которого ток переходит с одного тиристора на другой, называется интервалом коммутации γ.
Необходимость одновременного открывания двух тиристоров, принадлежащих разным группам, требует наличия широких импульсов управления (λу > 60°) или сдвоенных узких импульсов, сдвинутых друг от друга на 60°. Выпрямленное напряжение ud описывается кривой линейного напряжения. Пульсации кривой соответствуют шестикратной частоте по отношению к частоте переменного тока (m=6). Длительность протекания тока в каждом тиристоре равна γ+2π/3. Среднее значение тока IVS=Id/3. При больших углах управления (α>90°) тиристор до подачи импульса управления должен выдерживать без преждевременного открытия максимальное значение прямого напряжения, а после его закрытия максимальное значение обратного напряжения и начальный скачок обратного напряжения.
Обратное напряжение определяется линейным напряжением, так как в непроводящую часть периода неработающие тиристоры присоединены к двум фазам трансформатора через работающие. Ток во вторичной обмотке трансформатора переменный и равен сумме токов тиристоров, присоединенных к данной фазе. Поток вынужденного намагничивания в магнитопроводе не возникает, поскольку по вторичным обмоткам, расположенным на разных стержнях, всегда протекают противоположные по направлению и равные по величине токи.
1.6. Регулировочная характеристика выпрямителя. Расчет
Т.к. выходной ток выпрямителя, с активно–индуктивной нагрузкой, непрерывный (отсутствуют безтоковые паузы)
Где
| 00 | 300 | 450 | 600 | 900 |
U0,a | 311.22 | 269.5 | 220.1 | 155.6 | 0 |
где
| 00 | 300 | 450 | 600 | 900 |
U0,мин | 233,415 | 202,143 | 165,05 | 124.9 | 0 |
где
| 00 | 300 | 450 | 600 | 900 |
U0,Max | 342,342 | 296,48 | 242,07 | 171,171 | 0 |
0.7
Регулировочная характеристика.
Строим кривые мгновенных значений фазных U и U на выходе тиристорной группы при
Строим кривые мгновенных значений фазных U и U на выходе тиристорной группы при
2. РАСЧЕТ ДВУХЗВЕННОГО ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ ДЛЯ ЧАСТОТНО-РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА ПЕРЕКАЧКИ ЖИДКОСТИ
2.1. Описание электрической схемы электропривода
Электрическая схема электропривода приведена в приложении П2.
Основные элементы, входящие в Функциональную электрическую схему асинхронного ЭП с ПЧ: UZ – неуправляемый выпрямитель; L0, Со – фильтр; RT – термистор, ограничивающий ток заряда конденсатора С0; R0 – разрядное сопротивление для конденсатора Со, FU1, FU2 – предохранители; R, С – цепь защиты (снаббер) от перенапряжений на ключах IGBT; RS – датчик тока для организации защиты (FA) от сквозных и недопустимых токов перегрузки через IGBT; VT – VD – интегрированный трехфазный инвертор на IGBT с обратным диодным мостом.
Основные блоки в системе управления:
- блок питания, содержащий восемь развязанных между собой источников напряжения;
- микроконтроллер AD на базе сигнального процессора 1899BE1;
- плата индикации DS с переключателем способа управления местное / дистанционное;
- блок сопряжения ТВ по работе с внешними сигналами или командами;
- согласующие усилители UD – драйверы IGBT.
2.2. Структура и принцип действия преобразователя частоты с промежуточным звеном постоянного тока
В преобразователе применена наиболее распространенная для управления асинхронным короткозамкнутым двигателем схема ПЧ с автономным инвертором напряжения (АИН) с широтно-импульсной модуляцией (ШИМ) напряжения на выходе и неуправляемым выпрямителем на входе силовой части схемы и микропроцессорным управлением. При питании от сети 380 В наиболее рациональным является применение в инверторе полупроводниковых вентилей нового поколения – биполярных транзисторов с изолированным затвором IGBT.
Основные элементы, входящие в эту схему (П2): UZ – неуправляемый выпрямитель; L0, Со – фильтр; RT – термистор, ограничивающий ток заряда конденсатора С0; R0 – разрядное сопротивление для конденсатора Со, FU1, FU2 – предохранители; R, С – цепь защиты (снаббер) от перенапряжений на ключах IGBT; RS – датчик тока для организации защиты (FA) от сквозных и недопустимых токов перегрузки через IGBT; VT – VD – интегрированный трехфазный инвертор на IGBT с обратным диодным мостом.
Основные блоки в системе управления:
- блок питания, содержащий восемь развязанных между собой источников напряжения;
- микроконтроллер AD на базе сигнального процессора 1899BE1;
- плата индикации DS с переключателем способа управления местное / дистанционное;
- блок сопряжения ТВ по работе с внешними сигналами или командами;
- согласующие усилители UD – драйверы IGBT.
Работает электропривод следующим образом. При подаче силового напряжения 380В на вход выпрямителя UZ в звене постоянного тока происходит процесс заряда конденсатора фильтра C0, который определяется величинами L0, C0. Одновременно с этим в информационную часть схемы подается питание (напряжения U1 – U8). В процессе выдержки времени на установление напряжений стабилизированных источников питания U1 – U4 аппаратная защита FA блокирует открывание ключей инвертора и происходит запуск программы управления процессором по аппаратно-формируемой команде "Рестарт". Выполняется предустановка ряда ячеек ОЗУ процессора (установка начальных условий), определяется способ управления "Местное/Дистанционное", "по умолчанию" устанавливается режим работы "Подача" (Q). Если с датчиков тока фаз двигателя ТАА – ТАС, аппаратной защиты FA, напряжения сети Uс поступает информация о нормальных параметрах, то привод готов к работе, на цифровой индикатор выводятся нули, светится светодиод "Подача". В противном случае загорается светодиод "Авария" и на цифровом индикаторе появляется код срабатывания той или иной защиты.
Для управления двигателем процессор формирует систему трехфазных синусоидальных напряжений, изменяемых по частоте и амплитуде, и передает их в модулятор, в котором синусоидальные сигналы управления фазами – “стойками” инвертора, состоящими из последовательно включенных ключей IGBT, преобразуются в дискретные команды включения и отключения транзисторов классическим методом центрированной синусоидальной ШИМ. Несущая частота ШИМ составляет от 5 кГц до 15 кГц.
Методика расчета приводится для ПЧ с АИН ([3]рис. 7.2 ошибка неверная ссылка на рис), выполненного на гибридных модулях, состоящих из ключей IGBT и обратных диодов FWD, смонтированных в одном корпусе на общей тепловыводящей пластине.
2.3. Расчёт инвертора
Максимальный ток через ключи инвертора определяется из выражения:
где Pн – номинальная мощность двигателя, Вт; kI = (1,2–1,5) – коэффициент допустимой кратковременной перегрузки по току, необходимой для обеспечения динамики электропривода; k2 = (1,1–1,2) – коэффициент допустимой мгновенной пульсации тока; ηн – номинальный КПД двигателя; Uл – линейное напряжение двигателя, В.
Выпрямленное среднее напряжение:
где Ксн – схемный коэффициент неуправляемого выпрямителя.
Тип транзистора выбираем по справочнику с постоянным током IC ≥ IC.max и постоянным напряжением UСЭ ≥ Ud. Выбираем модуль (полумост) IGBT фирмы Mitsubishi третьего поколения CM150D Y-12H с параметрами приведенными в табл.
Выбираем IGBT модуль при условии Iс ≥ Iс.макс. и Uce≥Ud
Выбрали 3 модуля CM150DY-12H для функциональной электрической схемы АД электропривода с ПЧ.
Таблица 1
Тип прибора | Предельные параметры | Электрические характеристики | Обратный диод | Тепловые и механические параметры | Масса,г | |||||||||||||
UCE(sat), B | Cies, нФ | Cоes, нФ | Cres,нФ | td(on),нс | tr,нс | td(off),нс | tf,нс | |||||||||||
UCES,B | IC, A | PC, Вт | типовое | максимальное | Uf, B | trr,нс | Rth(c-f), oC/Вт | IGBT | Диод | |||||||||
Rth(j-f), oC/Вт | ||||||||||||||||||
CM300DY-12H | 600 | 300 | 1100 | 2,1 | 2,8 | 30 | 10,5 | 6 | 350 | 600 | 350 | 300 | 2,8 | 110 | 0,13 | 0,11 | 0,24 | 270 |
Примечание: UCES – максимальное напряжение коллектор-эмиттер; IC – максимальный ток коллектора; PC – максимальная рассеиваемая мощность; UCE(sat) – напряжение коллектор-эмиттер во включенном состоянии; Cies – входная емкость; Cоes – выходная емкость; Cres – емкость обратной связи (проходная); td(on) – время задержки включения; tr – время нарастания; td(off) - время задержки выключения; tf – время спада; Uf – прямое падение напряжения на обратном диоде транзистора; trr – время восстановления обратного диода при выключении; Rth(c-f) – тепловое сопротивление корпус-охладитель; Rth(j-f) – тепловое сопротивление переход-корпус.
2.4. Потери мощности в IGBT
Потери в IGBT в проводящем состоянии
где Iср = Iс.макс/k1 – максимальная величина амплитуды тока на входе инвертора; D = (tp/T) – максимальная скважность, принимается равной 0,95; cos θ – коэффициент мощности, примерно равный cosφ; Uce(sat) – прямое падение напряжения на IGBT в насыщенном состоянии при Iср и Тj=125 °С (типовое значение 2,1–2,2 В).
Потери IGBT при коммутации
где tc(on), tc(off) – продолжительность переходных процессов по цепи коллектора IGBT соответственно на открывание и закрывание транзистора, с; Ucc – напряжение на коллекторе IGBT (коммутируемое напряжение, равное напряжению звена постоянного тока для системы АИН–ШИМ), В; fsw – частота коммутаций ключей (частота ШИМ), обычно от 5000 до 15000Гц.
Суммарные потери IGBT
Потери диода в проводящем состоянии
где Iеp = Iср – максимум амплитуды тока через обратный диод, А; Uec – прямое падение напряжения на диоде (в проводящем состоянии) при Iep, B.
Потери восстановления запирающих свойств диода
где Irr. – амплитуда обратного тока через диод (равная Icp), A; trr – продолжительность импульса обратного тока, с (типовое значение 0,2 мкс).
Суммарные потери диода
Результирующие потери в IGBT с обратным диодом определяются по формуле
Максимальное допустимое переходное сопротивление охладитель - окружающая среда
где Та – температура охлаждающего воздуха, 45–50 °С; Тс – температура теплопроводящей пластины, 90–110 °С; Рm – суммарная рассеиваемая мощность, Вт, одной парой IGBT/FWD, Rth(c-f) – термическое переходное сопротивление корпус–поверхность теплопроводящей пластины модуля в расчете на одну пару IGBT/FWD, °С/Вт.
Температура кристалла IGBT определяется по формуле
где Rth(j-c)q – термическое переходное сопротивление кристалл–корпус для IGBT части модуля. При этом должно выполняться неравенство Tja ≤ 125 0C.
Температура кристалла обратного диода FWD
где Rth(j-c)d – термическое переходное сопротивление кристалл–корпус для FWD части модуля. Должно выполняться неравенство Тj ≤ 125
2.5. Расчет выпрямителя
Среднее выпрямленное напряжение
где kсн = 1,35 для мостовой трехфазной схемы; kсн = 0,9 – для мостовой однофазной схемы.
Максимальное значение среднего выпрямленного тока
где n – количество пар IGBT/FWD в инверторе.
Максимальный рабочий ток диода
где при оптимальных параметрах Г-образного LС-фильтра, установленного на выходе выпрямителя, kcc =1,045 для мостовой трехфазной схемы; kcc = 1,57 для мостовой однофазной схемы.
Максимальное обратное напряжение вентиля (для мостовых схем)
где kc ≥ 1,1– коэффициент допустимого повышения напряжения сети; k3H – коэффициент запаса по напряжению (>1,15); ΔUн – запас на коммутационные выбросы напряжения в звене постоянного тока (≈100–150 В).
Вентили выбираются по постоянному рабочему току и по классу напряжения. Выбираем диодный модуль RM150DZ-2H со средним прямым током IFAV = 150 А и импульсным повторяющимся обратным напряжением URRM = 1600 В (шестнадцатый класс). Нам потребуется три таких вентиля. Из трех диодных модулей реализуется мостовая схема трехфазного выпрямителя.
Значения, по которым выбираем вентили
Табличные значения выбранных вентилей:
Расчет потерь в выпрямителе для установившегося режима работы электропривода (
где kcs = 0,577 для мостовой трехфазной схемы; Ron – динамическое сопротивление в проводящем состоянии вентиля; Uj – прямое падение напряжения на вентиле при токе 50 мА (Uj + RonIdm/k1) – составляет около 1 В для диода или 1,3 В для тиристора; mv – число вентилей в схеме.
Максимальное допустимое переходное сопротивление охладитель-окружающая среда
где Rth(c-f) – термическое переходное сопротивление корпус–поверхность теплопроводящей пластины модуля.
Температура кристалла
где Rth(j-c)DV – термическое переходное сопротивление кристалл–корпус для одного вентиля модуля; nD – количество вентилей в модуле. Необходимо, чтобы выполнялось неравенство TjDV ≤ 140 0С.
2.6. Расчет параметров охладителя
При установке модулей (выпрямитель, инвертор) на общий охладитель требуемое сопротивление определяется аналогично суммарному сопротивлению при параллельном включении резисторов
Используя график зависимости теплового сопротивления
Определяем тепловое сопротивление охладителя
По полученным результатам выбираем охладитель для функциональной электрической схемы АД эл. привода с ПЧ.[6]
2.7. Расчет сглаживающего фильтра
Для расчета фильтра принимаем коэффициент сглаживания пульсаций S = (3 ÷ 12). Чем больше S, тем больше габариты фильтра, поэтому выбираем S = 3.
Коэффициент пульсаций на входе фильтра (отношение амплитуды напряжения к среднему значению)
(2.21)
![](ref-2_542514778-313.coolpic)
![](ref-2_542515091-199.coolpic)
где m – пульсность схемы выпрямления (m = 6 для трехфазной мостовой схемы, m = 2 для однофазной мостовой схемы).
Параметр сглаживания LC-фильтра
(2.22)
![](ref-2_542515734-639.coolpic)
![](ref-2_542516373-370.coolpic)
где S = q1вх/q1вых – коэффициент сглаживания по первой гармонике; fs – минимальная частота выходного напряжения в ПЧ, равная 30 Гц.
где Ls – индуктивность сети, приведенная к звену постоянного тока.
В качестве индуктивности используем паразитную индуктивность питающей кабельной линии, задаёмся длинной кабельной линии
(50…100)м
Выбираем погонную индуктивность из справочника
нГн.
Индуктивность дросселя LC-фильтра для обеспечения коэффициента мощности на входе выпрямителя KM=0,95 определяется из следующих условий:
![](ref-2_542517092-856.coolpic)
Индуктивность питающей сети переменного тока
(2.23)
![](ref-2_542518137-236.coolpic)
мкГн
Ёмкость конденсатора необходимой для реализации LC фильтра
; (7.42)
(2.24)
мкФ
мкФ
Определяем ёмкость Со2 необходимую для возврата реактивной энергии в фильтр
(2.26)
![](ref-2_542520321-861.coolpic)
мкФ
где Ism1– амплитудное значение тока в фазе двигателя, А; φ1– угол сдвига между первой гармоникой фазного напряжения и фазного тока
; q1– коэффициент пульсаций; fsw – частота ШИМ, Гц.
Для практической реализации фильтра используем конденсаторы с наибольшим значением емкости С01, С02, т.е. конденсаторы с емкостью 5332 мкФ.
Амплитуда тока через конденсаторы фильтра на частоте пульсаций выпрямленного тока (по первой гармонике)
(2.27)
А
А
где
- наибольшая ёмкость из
и
,
мкФ
![](ref-2_542523248-386.coolpic)
В зависимости от величины емкости С01 и амплитуды тока IC0m формируем батарею конденсаторов емкостью не менее 5332 мкФ,напряжением не менее (1,1…1,2)∙Ud, т.е. (1,1…1,2)∙513 ≥ 615,6 В.
Составляем батарею:
Выбираются небольшие конденсаторы электролитические с ёмкостью 680 мкФ напряжением 500 В, составляются пары из двух последовательно включённых конденсаторов, ёмкость такой пары 340 мкФ, рабочее напряжение 1000 В. Получается параллельно включённых порядка 8 пар, 16 конденсаторов марки Siemens Matsushita Components .Номинальный ток конденсатора свыше 300А, срок службы 15 лет.
![](ref-2_542523634-5402.coolpic)
2.8. Расчет снаббера
Снаббер защищает цепь от пробоя напряжения, а в частности защищает силовые транзисторы.
Рассматриваемая схема:
Выбранная схема обладает рядом преимуществ:
1.Малое число элементов.
2.Низкие потери мощности.
3.Подходит для средней и малой ёмкости конденсатора.
Подходит для средней и малой емкости конденсатора.
Мощность в резисторе
![](ref-2_542533231-249.coolpic)
Вт
Вт
где U – напряжение коллектор–эмиттер в установившемся режиме, которое равно напряжению звена постоянного тока преобразователя системы АИН ШИМ, ΔU – перенапряжение (рис. 7.6). Выбираем ёмкость снабберной цепи из расчёта 1 мкФ на 100А коммутированного тока.
А значит берём С=2мкФ.
Выбор величины сопротивления производится из условия минимума колебаний тока коллектора при включении IGBT
![](ref-2_542534134-277.coolpic)
Ом
Ом
где LSn – индуктивность цепей снаббера, которая не должна быть более 10 нГн.
Выбираем высокочастотные резисторы.
По величине сопротивления и мощности реализуется резистор снаббера из десяти одноваттных сопротивлений типа МЛТ 2 Ом ± 10%, соединенных параллельно, для получения эквивалентного сопротивления 0,2 Ом мощностью 10 Вт.
Собираем резистор RCH
![](ref-2_542534995-7634.coolpic)
Выбор сверхвысокочастотного диода
Снабберный диод выбирается по таблице П5 [3]. Выбираем по току в 20-50 раз меньше среднего тока IGBT транзистора
А
напряжение снабберного диода![](ref-2_542543090-199.coolpic)
Выбираем снабберный диод серии MBR5150E для функциональной электрической схемы АД электропривода с ПЧ. со следующими данными:
IFAV=5 А;URRM=1500 В;UFM=2.0 В; tвкл=175 нс; tоткл=130 нс
Для нашей схемы нам потребуется 1 диод.
Алгоритм переключения IGBT ключей.
![](ref-2_542543289-96241.coolpic)
Строим временные диаграммы ступенчатых выходных напряжений ПЧ.
![Ub](ref-2_542639530-8127.coolpic)
![](ref-2_542647657-10479.coolpic)
![Untitled1](ref-2_542658136-8040.coolpic)
Временные диаграммы выходного напряжения ПЧ с ШИМ регулированием приведены в П5.
(
) (2.31)
(2.32)
В
;
;![](ref-2_542667660-157.coolpic)
(2.33)
где
(2.34)
Рассчитываем текущие значения для каждого периода (всего 10)используя диаграммы выходного напряжения ПЧ с ШИМ регулированием.
Вт
![](ref-2_542668717-252.coolpic)
Аналогично рассчитываем для остальных значений
![](ref-2_542669371-253.coolpic)
![](ref-2_542670012-254.coolpic)
![](ref-2_542670672-271.coolpic)
![](ref-2_542671347-266.coolpic)
![](ref-2_542672029-268.coolpic)
![](ref-2_542669371-253.coolpic)
![](ref-2_542670012-254.coolpic)
![](ref-2_542674022-288.coolpic)
![](ref-2_542674720-252.coolpic)
(
)
В
;
;![](ref-2_542667660-157.coolpic)
![](ref-2_542667817-317.coolpic)
![](ref-2_542676626-192.coolpic)
ЗАКЛЮЧЕНИЕ
В данном курсовом проекте рассчитан УВ и ПЧ для функциональной электрической схемы асинхронного ЭП с ПЧ и электрической принципиальной схемы УВ. Рассчитаны все основные параметры и выбраны все необходимые элементы схемы.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Электротехнический справочник: В 4 т. Т2. Электротехнические изделия и устройства/ Под общ. ред. проф. МЭИ В.Г.Герасимова и др. М.: Издательство МЭИ, 2001. 518 с.
2. Электротехнический справочник: В 4 т. Т2. Электротехнические изделия и устройства/ Под общ. ред. проф. МЭИ В.Г.Герасимова и др. М.: Издательство МЭИ, 2001. 518 с.
3. Ковалёв Ю.З., Кузнецов Е.М. Электрооборудование промышленности: Учеб. пособие. Омск: Издательство ОмГТУ, 2006. 160 с.
4. Справочник «Охладители воздушных систем для п/п приборов»
5. Чебовский О.Г. Моисеев Л.Г. Недошивин Р.П. Силовые полупроводниковые приборы: Справочник. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1985. 512 с.
6. Охладители воздушных систем охлаждения для п/п приборов. Каталог 05.20.06-86 Информэлектра 1896. 31с.
7. Методические указания по применению государственных стандартов в курсовом и дипломном проектировании / В.К.Грунин – Омск, Изд. ОмГТУ, 2002. 38 с.
где m – пульсность схемы выпрямления (m = 6 для трехфазной мостовой схемы, m = 2 для однофазной мостовой схемы).
Параметр сглаживания LC-фильтра
где S = q1вх/q1вых – коэффициент сглаживания по первой гармонике; fs – минимальная частота выходного напряжения в ПЧ, равная 30 Гц.
где Ls – индуктивность сети, приведенная к звену постоянного тока.
В качестве индуктивности используем паразитную индуктивность питающей кабельной линии, задаёмся длинной кабельной линии
Выбираем погонную индуктивность из справочника
Индуктивность дросселя LC-фильтра для обеспечения коэффициента мощности на входе выпрямителя KM=0,95 определяется из следующих условий:
Индуктивность питающей сети переменного тока
Ёмкость конденсатора необходимой для реализации LC фильтра
Определяем ёмкость Со2 необходимую для возврата реактивной энергии в фильтр
где Ism1– амплитудное значение тока в фазе двигателя, А; φ1– угол сдвига между первой гармоникой фазного напряжения и фазного тока
Для практической реализации фильтра используем конденсаторы с наибольшим значением емкости С01, С02, т.е. конденсаторы с емкостью 5332 мкФ.
Амплитуда тока через конденсаторы фильтра на частоте пульсаций выпрямленного тока (по первой гармонике)
где
В зависимости от величины емкости С01 и амплитуды тока IC0m формируем батарею конденсаторов емкостью не менее 5332 мкФ,напряжением не менее (1,1…1,2)∙Ud, т.е. (1,1…1,2)∙513 ≥ 615,6 В.
Составляем батарею:
Выбираются небольшие конденсаторы электролитические с ёмкостью 680 мкФ напряжением 500 В, составляются пары из двух последовательно включённых конденсаторов, ёмкость такой пары 340 мкФ, рабочее напряжение 1000 В. Получается параллельно включённых порядка 8 пар, 16 конденсаторов марки Siemens Matsushita Components .Номинальный ток конденсатора свыше 300А, срок службы 15 лет.
2.8. Расчет снаббера
Снаббер защищает цепь от пробоя напряжения, а в частности защищает силовые транзисторы.
Выбранная схема обладает рядом преимуществ:
1.Малое число элементов.
2.Низкие потери мощности.
3.Подходит для средней и малой ёмкости конденсатора.
Подходит для средней и малой емкости конденсатора.
Мощность в резисторе
где U – напряжение коллектор–эмиттер в установившемся режиме, которое равно напряжению звена постоянного тока преобразователя системы АИН ШИМ, ΔU – перенапряжение (рис. 7.6). Выбираем ёмкость снабберной цепи из расчёта 1 мкФ на 100А коммутированного тока.
Выбор величины сопротивления производится из условия минимума колебаний тока коллектора при включении IGBT
где LSn – индуктивность цепей снаббера, которая не должна быть более 10 нГн.
Выбираем высокочастотные резисторы.
По величине сопротивления и мощности реализуется резистор снаббера из десяти одноваттных сопротивлений типа МЛТ 2 Ом ± 10%, соединенных параллельно, для получения эквивалентного сопротивления 0,2 Ом мощностью 10 Вт.
Собираем резистор RCH
Выбор сверхвысокочастотного диода
Снабберный диод выбирается по таблице П5 [3]. Выбираем по току в 20-50 раз меньше среднего тока IGBT транзистора
напряжение снабберного диода
Выбираем снабберный диод серии MBR5150E для функциональной электрической схемы АД электропривода с ПЧ. со следующими данными:
IFAV=5 А;URRM=1500 В;UFM=2.0 В; tвкл=175 нс; tоткл=130 нс
Для нашей схемы нам потребуется 1 диод.
Алгоритм переключения IGBT ключей.
Строим временные диаграммы ступенчатых выходных напряжений ПЧ.
Временные диаграммы выходного напряжения ПЧ с ШИМ регулированием приведены в П5.
где
Рассчитываем текущие значения для каждого периода (всего 10)используя диаграммы выходного напряжения ПЧ с ШИМ регулированием.
Аналогично рассчитываем для остальных значений
ЗАКЛЮЧЕНИЕ
В данном курсовом проекте рассчитан УВ и ПЧ для функциональной электрической схемы асинхронного ЭП с ПЧ и электрической принципиальной схемы УВ. Рассчитаны все основные параметры и выбраны все необходимые элементы схемы.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Электротехнический справочник: В 4 т. Т2. Электротехнические изделия и устройства/ Под общ. ред. проф. МЭИ В.Г.Герасимова и др. М.: Издательство МЭИ, 2001. 518 с.
2. Электротехнический справочник: В 4 т. Т2. Электротехнические изделия и устройства/ Под общ. ред. проф. МЭИ В.Г.Герасимова и др. М.: Издательство МЭИ, 2001. 518 с.
3. Ковалёв Ю.З., Кузнецов Е.М. Электрооборудование промышленности: Учеб. пособие. Омск: Издательство ОмГТУ, 2006. 160 с.
4. Справочник «Охладители воздушных систем для п/п приборов»
5. Чебовский О.Г. Моисеев Л.Г. Недошивин Р.П. Силовые полупроводниковые приборы: Справочник. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1985. 512 с.
6. Охладители воздушных систем охлаждения для п/п приборов. Каталог 05.20.06-86 Информэлектра 1896. 31с.
7. Методические указания по применению государственных стандартов в курсовом и дипломном проектировании / В.К.Грунин – Омск, Изд. ОмГТУ, 2002. 38 с.
|
|
|
|
|