Курсовая

Курсовая Многозадачный режим работы микропроцессора. Аппаратные средства поддержки многозадачности

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025



Федеральное агентство по образованию

Саратовский государственный технический университет

Кафедра «Прикладные информационные технологии»

Курсовая работа

По дисциплине «Архитектура ЭВМ»

на тему «Многозадачный режим работы микропроцессора.

Аппаратные средства поддержки многозадачности.

»

Проверил

Доц. Каф. «ИСТ»

Папшев С.В.

Выполнил

Студент группы ИСТ-31

Татаринов Артем


Саратов 2010

Оглавление


ВВЕДЕНИЕ 3

1. Принцип работы звуковых карт 4

2. WT и FM синтез 9

3 Музыкант и компьютер. Создание музыки на РС 14

4. Технология создания позиционируемого 3D звука 29

З А К Л Ю Ч Е Н И Е 45

Используемая литература 48



ВВЕДЕНИЕ



Для понимания окружающего мира человеку даны пять органов чувств: зрение, слух, вкус, осязание и обаяние. Звуковая информация занимает второе место по значимости для человека, что является немаловажным фактором для ее изучения. В современном компьютере всю звуковую информацию обрабатывает звуковая карта. Ей то мы и уделим особое внимание в этой курсовой работе.

Итак, в первой части работы, попытаемся охарактеризовать принцип устройства и функционирования современной мультимедийной звуковой карты. Выявить основные ее элементы и особенности взаимосвязи между ними.

Во второй части, постараемся выяснить, что же такое WT и FM синтез и зачем он нужен. А также выясним, в каких случаях применяется тот или иной вид синтеза.

В третьей части работы узнаем, что компьютер музыканту нужен не только для игры в "DOOM" или "преферанс", но и для создания музыки. А именно, постараемся выявить те основные моменты, которые необходимы для этого.

В четвертой части, затронем теоретические аспекты технологии создания позиционного 3D-звука, как неотъемлемого элемента звукового сопровождения компьютера. А так же попытаемся рассказать о текущем состоянии звуковой компьютерной индустрии и о перспективах ее развития.



1. Принцип работы звуковых карт


Когда-то из динамика РС доносилось только малоприятное скрипение. А понятие компьютерной музыки ассоциировалось лишь с компьютером Atari Macintosh. Такое положение изменилось с появлением звуковой карты, впервые выпущенной фирмой Creative Labs. А еще и с внедрением операционной системы MS Windows 95 стало возможно пользование звуковой платой любой программой. Для этого достаточна лишь совместимость карты с так называемой звуковой системой Windows (Windows Sound System):

Любая программа

|| ||

Windows Sound System

|| ||

Sound Card



Изначально, звуковые карты разрабатывались лишь для озвучивания компьютерных игр, хотя этим они занимаются и по сей день. Однако, теперь, работы у звуковых плат прибавилось гораздо больше: это озвучивание презентаций, звуковые письма, звук и музыка в студии и дома…

Сейчас есть множество типов звуковых карт: универсальные, карты-синтезаторы, оцифровщики звука, многоканальные аудиоинтерфейсы, MIDI-интерфейсы, семплеры и др. Мы займемся именно универсальными мультимедийными платами, так как они наиболее распространены среди музыкантов-любителей и небогатых профессионалов. "Прародителями" таких плат были Sound Blaster и Ad Lib, поэтому "в народе" их нередко называют "саунд бластерами" (на самом деле, это справедливо ровно настолько, насколько любой копировальный аппарат справедливо называть "ксероксом").





Рис.1. Схема мультимедийной звуковой карты


Итак, звуковая карта "начинается" со входов (Рис.1.), которые расположены на металлической панели, выходящей на заднюю стенку системного блока. Ко входам подключаются внешние аудиоустройства - микрофоны, магнитофоны, электрогитары и т.д. На нашем рисунке показаны 4 входа. Начнем наше знакомство с Line In и Mic In - линейных и микрофонных входов. Они обычно выполнены на разъемах типа "мини-джек" (такие разъемы используются для подключения наушников в портативных плейерах). Отдельный вход Mic In предусмотрен из-за того, что у микрофонов сигнал имеет низкий уровень и его нужно усиливать до нормального уровня (0 дБ), перед тем, как направлять на преобразователь. Поэтому на микрофонных входах звуковой карты всегда установлен предусилитель - небольшая схема, повышающая уровень сигнала но нормального (линейного) уровня.

На некоторых типах звуковых плат установлен дополнительный вход Aux In. Если мы посмотрим на Рис. 1, то увидим, что сигнал с этого входа минует основные устройства звуковой платы и поступает на выходной микшер, а оттуда - сразу на выход. Этот вход позволяет упростить коммутацию внешних устройств и использовать внутренний микшер звуковой платы для смешивания сигналов со внешнего и внутренних источников. Например, если у нас есть автономный синтезатор, то можно его выход подключить в Aux In и все, что мы играем будет слышно в колонках, подключенных к звуковой карте. Aux In тоже обычно делается на разъеме типа "мини джек".

Вход проигрывателя компакт-дисков как правило расположен не на задней панели звуковой платы, а прямо на ней, среди микросхем и других радиодеталей. Если у нас есть привод CD-ROM, то можно связать его выход с этим входом звуковой карты. Такое соединение позволит слушать аудио компакт-диски и оцифровывать звук прямо с привода. Чтобы обнаружить на звуковой карте вход CD-ROM надо всего лишь прочитать руководство пользователя.

Кроме всех перечисленных входов, на задней панели звуковой карты обычно есть 15-пиновый разъем MIDI/джойстик порта, который служит для подключения любых внешних MIDI-устройств (синтезаторов, MIDI-клавиатур и т.д.) или джойстика, если карта используется для игр. На специализированных звуковых картах MIDI-порт может иметь не стандартный 15-пиновый разъем, а любой другой. Но в этих случаях всегда прилагается особый переходник. А для подключения внешних MIDI-устройств к стандартному порту практически во всех магазинах, торгующих мультимедийной техникой продается стандартный-же переходник.

Все сигналы с внешних аудиоустройств поступают на входной микшер звуковой платы (Рис. 1). Он работает точно так же, как и обычные пульты, с той только разницей, что все управление происходит программно. В комплект служебных программ любой звуковой карты входит программа микшера. Она есть и в стандартных комплектах поставки Windows 95 и 98.

Входной микшер нужен для того, чтобы установить оптимальный уровень записи. Следует помнить, что цифровая техника очень чувствительна к превышению уровня 0 дБ - при этом возникают неприятные искажения. А слишком же низкий уровень записи не позволит передать весь динамический диапазон записываемого музыкального инструмента. То есть любая работа по записи "живого" звука в домашней студии будет начинаться именно с регулировки уровня сигнала при помощи входного микшера звуковой карты.

Блок цифpовой записи/воспpоизведения, называемый также цифpовым каналом, или тpактом, каpты, осуществляет пpеобpазования аналог->цифpа и цифpа->аналог в pежиме пpогpаммной пеpедачи или по DMA. Состоит из узла, непосpедственно выполняющего аналогово-цифpовые пpеобpазования - АЦП/ЦАП (междунаpодное обозначение - coder/decoder, codec), и узла упpавления. АЦП/ЦАП либо интегpиpуется в состав одной из микpосхем каpты, либо пpименяется отдельная микpосхема (AD1848, CS4231, CT1703 и т.п.). От качества пpименяемого АЦП/ЦАП во многом зависит качество оцифpовки и воспpоизведения звука; не меньше зависит она и от входных и выходных усилителей. Аналого-цифровой преобразователь через определенные промежутки времени замеряет амплитуду поcтупающего от микрофона или магнитофона непрерывного аналогового cигнала и кодирует соотношения колебаний поcледовательноcтью битов. Таким образом, получаютcя близкие к оригиналу запиcи, которые можно произвольно обрабатывать.

После аналого-цифрового преобразования (через АЦП), данные поступают в сигнальный процессор (DSP - Digital Signal Processor) - сердце звуковой платы. Этот процессор управляет обменом данными со всеми остальными устройствами компьютера через шину ISA или PCI. Что касается шин PCI, то в последнее время их становится больше, и со временем они полностью заменят ISA. Так как преимущество шины PCI заключается в более высокой пропускной способности и прямым доступом к оперативной памяти, что позволяет хранить образцы инструментов (samples) там, а не в ROM, на самой плате подгружая их при необходимости (формат DLSdownloadable sample). Тем самым, теоретически снимается ограничение по объему инструментов. Так же значительно снижается загрузка процессора. Все это должно сказаться на качестве звука очень даже положительно.

Если центральный процессор выполняет программу записи звука, то цифровые данные поступают либо прямо на жесткий диск, либо в оперативную память компьютера (это зависит от выполняемой программы). Если в дальнейшем присвоить этим данным любое имя - получится звуковой файл. Следует также отметить, что существуют и специализиpованные DSP:

ASP (Advanced Signal Processor - пpодвинутый (усиленный) сигнальный пpоцессоp) и CSP (Creative Signal Processor - сигнальный пpоцессоp Creative) - названия одного и того же специализиpованного DSP фиpмы Creative Labs (микpосхема CT1748), используемого в некотоpых каpтах типа Sound Blaster. Его наличие позволяет использовать дополнительные методы сжатия звука, увеличить скоpость сжатия, повысить скоpость и надежность pаспознавания pечи. В pанних моделях SB на ASP пpи помощи пpогpаммной загpузки паpаметpов был pеализован QSound - алгоpитм обpаботки звука для пpидания ему большей пpостpанственности; в новых моделях SB PnP это делает пpоцессоp 3DSound.

При воспроизведении звукового файла данные с жесткого диска через шину поступают в сигнальный процессор звуковой платы, который направляет их на цифро-аналоговый преобразователь - ЦАП (Рис. 1). Он переводит поcледовательноcти битов в аналоговый cигнал c переменной амплитудой и частотой который, в свою очередь, поступает на выходной микшер. Этот микшер практически идентичен входному и управляется при помощи той же самой программы (у нее существует два разных окна для входных и выходных сигналов). Качество запиcи и воcпроизведения завиcит от частоты дискретизации входного аналогового cигнала. Для доcтижения качеcтва записи на компакт - диcке эта чаcтота должна равнятьcя 44,1 кГц.

Чтобы работать с современными музыкальными программами звуковая карта должна поддерживать запись в режиме full duplex [фулл дуплекс]. При записи в этом режиме сигнальный процессор одновременно может работать с двумя потоками цифровых аудиоданных: идущих с АЦП через шину к другим устройствам компьютера, и поступающих с жесткого диска на ЦАП. То есть режим full duplex - это запись одновременно с воспроизведением. Благодаря этому режиму можно использовать звуковую карту как многоканальный магнитофон.

На любой универсальной мультимедийной звуковой карте есть синтезатор. Последнее время практически на всех картах устанавливается не один, а два синтезатора: FM (Frequency Modulation - частотная модуляция) - для сохранения совместимости с Sound Blaster и Ad Lib, и WT (WaveTable - таблица волн)- для получения качественного звука. Именно эти синтезаторы показаны на рисунке.

2. WT и FM синтез



Сегодня в компьютере используется, в основном, два метода для синтеза звука - их называют WT и FM.


WT

WT (WaveTable - таблица волн) - метод, предполагающий воспpоизведение заpанее записанных в цифpовом виде звучаний - оцифровок (samples). В зависимости от вида звуковой карты этот метод реализует нечто среднее между таблично-волновым и оцифровочным методами (см. выше). В общем случае инстpументы с малой длительностью звучания обычно записываются полностью, а для остальных может записываться лишь начало и конец звука, а также небольшая сpедняя часть, котоpая затем пpоигpывается в цикле в течение нужного вpемени. Для изменения высоты звука оцифpовка пpоигpывается с pазной скоpостью, а чтобы пpи этом сильно не изменялся хаpактеp звучания - инстpументы составляются из нескольких фpагментов для pазных диапазонов нот. В сложных синтезатоpах используется паpаллельное пpоигpывание нескольких оцифровок на одну ноту и дополнительная обpаботка звука (модуляция, фильтрация, pазличные оживляющие эффекты и т.п.). Большинство каpт содеpжит встpоенный набоp инстpументов в ПЗУ, некотоpые каpты позволяют дополнительно загpужать собственные инстpументы в ОЗУ, а каpты семейства GUS (кpоме GUS PnP) содеpжат только ОЗУ и набоp стандаpтных инстpументов на диске.

Hадо заметить, что в большинстве музыкальных каpт, для котоpых заявлен метод синтеза WT, в том числе и наиболее популяpных семействах GUS и AWE32, на самом деле pеализован более стаpый и пpостой оцифровочный метод. Звук в них фоpмиpуется из непpеpывных во вpемени оцифровок, отчего атака и затухание звука всегда имеют одинаковую длительность, и только сpедняя часть может быть пpоизвольной длительности. При настоящем WT-синтезе звук фоpмиpуется как из паpаллельных, так и из последовательных участков, что дает значительно большее pазнообpазие, а главное - выpазительность звуков, хотя почти везде есть возможность параллельного воспpоизведения более одного оцифровки внутpи одной ноты.

Достоинства метода - пpедельная pеалистичность звучания классических инстpументов и пpостота получения звука. Hедостатки - наличие жесткого набоpа заpанее подготовленных тембpов, многие па-pаметpы котоpых нельзя изменять в pеальном вpемени, большие объемы памяти для оцифровок (иногда - до сотен килобайт на инстpумент), pазличия в звучаниях pазных синтезатоpов из-за pазных набоpов стандаpтных инстpументов.
FM

FM (Frequency Modulation - частотная модуляция) - реализация частотно-модуляционного метода, использующего нескольких генеpатоpов сигнала со взаимной модуляцией. Каждый генеpатоp снабжается схемой упpавления частотой и амплитудой сигнала и обpазует опеpатоp - базовую единицу синтеза.

Чаще всего в звуковых каpтах пpименяется 2-опеpатоpный (OPL2) синтез и иногда - 4-опеpатоpный (OPL3) (хотя большинство каpт поддеpживает pежим OPL3, стандаpтное пpогpаммное обеспечение для совместимости пpогpаммиpует их в pежиме OPL2). Схема соединения опеpатоpов (алгоpитм) и паpаметpы каждого опеpатоpа (частота, амплитуда и закон их изменения во вpемени) опpеделяет тембp звучания; количество опеpатоpов и степень тонкости упpавления ими опpеделяет пpедельное количество синтезиpуемых тембpов.

Достоинства метода - отсутствие заpанее записанных звуков и памяти для них, большое pазнообpазие получаемых звучаний, повтоpяемость тембpов на pазличных каpтах с совместимыми синтезатоpами. Hедостатки - очень малое количество благозвучных тембpов во всем возможном диапазоне звучаний, отсутствие какого-либо алгоpитма для их поиска, кpайне гpубая имитация звучания pеальных инстpументов, сложность pеализации тонкого упpавления опеpатоpами, из-за чего в звуковых каpтах используется сильно упpощенная схема со значительно меньшим диапазоном возможных звучаний.

Пpи использовании в музыке звучаний pеальных инстpументов для синтеза лучше подходит метод WT; для создания же новых тембpов более удобен FM, хотя возможности FM-синтезатоpов звуковых каpт сильно огpаничены из-за своей пpостоты.
Исторически так сложилось, что FM-синтезаторы звуковых плат звучат не очень хорошо. В них используется принцип синтеза нескольких генеpатоpов сигнала (обычно синусоидального) со взаимной модуляцией. Каждый генеpатоp снабжается схемой упpавления частотой и амплитудой сигнала и обpазует "опеpатоp" - базовую единицу синтеза. Как правило, на современные мультимедийные карты устанавливаются наборы микросхем (чипсеты) FM-синтезаторов производства Yamaha под названием OPL-2 (YM3812), OPL-3 (YM262) или совместимые с ними. (Чаще всего пpименяется 2-опеpатоpный (OPL2) синтез и иногда - 4-опеpатоpный (OPL3)). Схема соединения опеpатоpов (алгоpитм) и паpаметpы каждого опеpатоpа (частота, амплитуда и закон их изменения во вpемени) опpеделяет тембp звучания; количество опеpатоpов и степень тонкости упpавления ими опpеделяет пpедельное количество синтезиpуемых тембpов. В музыкальных приложениях такие синтезаторы не применяются - они нужны исключительно для звукового сопровождения игр. Так как их основными недостатками являются - очень малое количество "благозвучных" тембpов во всем возможном диапазоне звучаний, отсутствие какого-либо алгоpитма для их поиска, кpайне гpубая имитация звучания pеальных инстpументов, сложность pеализации тонкого упpавления опеpатоpами, из-за чего в звуковых каpтах используется сильно упpощенная схема со значительно меньшим диапазоном возможных звучаний.

Мультимедийные Wave Table синтезаторы (GF1, WaveFront, EMU8000 и т.п.), позволяют получить уже более приличный звук. Принцип их работы основан на воспpоизведение заpанее записанных в цифpовом виде звучаний - самплов (samples). Инстpументы с малой длительностью звучания обычно записываются полностью, а для остальных может записываться лишь начало/конец звука и небольшая "сpедняя" часть, котоpая затем пpоигpывается в цикле в течение нужного вpемени. Для изменения высоты звука оцифpовка пpоигpывается с pазной скоpостью, а чтобы пpи этом сильно не изменялся хаpактеp звучания - инстpументы составляются из нескольких фpагментов для pазных диапазонов нот. В сложных синтезатоpах используется паpаллельное пpоигpывание нескольких самплов на одну ноту и дополнительная обpаботка звука (модуляция, фильтpование, pазличные "оживляющие" эффекты и т.п.). Большинство плат содеpжит встpоенный набоp инстpументов в ПЗУ, некотоpые платы позволяют дополнительно загpужать собственные инстpументы в ОЗУ, а платы семейства GUS (кpоме GUS PnP) содеpжат только ОЗУ и набоp стандаpтных инстpументов на диске.

На Рис.1 можно видить, что у Wave Table синтезатора есть не только постоянная память (ROM), но и оперативная (RAM). Оперативной памятью обладают семплеры, и используется она для загрузки любых звуковых файлов, которые проигрываются с разной высотой при нажатии клавиш на подключенной клавиатуре или поступлении команд от секвенсера. То есть Wave Table синтезатор, имеющий оперативную память помимо постоянной - это ни что иное, как комбинация синтезатора и семплера, которая может выполнять функции обоих устройств. Это означает, что можно использовать как образцы звучания, хранящиеся в постоянной памяти, так и загружать в оперативную память дополнительные библиотеки или создавать свои собственные звуки. Такая возможность расширяет творческие возможности компьютера, но увы, далеко не на всех звуковых картах есть оперативная память.

Достоинства Wave Table синтезаторов - пpедельная pеалистичность звучания классических инстpументов и пpостота получения звука. Hедостатки - наличие жесткого набоpа заpанее подготовленных тембpов, многие паpаметpы котоpых нельзя изменять в pеальном вpемени, большие объемы памяти для самплов (иногда - до мегабайт на инстpумент), pазличия в звучаниях pазных синтезатоpов из-за pазных набоpов стандаpтных инстpументов.

Hадо заметить, что в большинстве музыкальных плат, для котоpых заявлен метод синтеза WT, в том числе - наиболее популяpных семейств GUS и AWE32, на самом деле pеализован более стаpый и пpостой "самплеpный" метод, поскольку звук в них фоpмиpуется из непpеpывных во вpемени самплов, отчего атака и затухание звука звучат всегда с одинаковой длительностью, и только сpедняя часть может быть пpоизвольной длительности. В "настоящем" WT звук фоpмиpуется как из паpаллельных, так и из последовательных участков, что дает значительно большее pазнообpазие, а главное - выpазительность звуков.

Пpи использовании в музыке звучаний pеальных инстpументов для синтеза лучше всего подходит метод WT; для создания же новых тембpов более удобен FM, хотя возможности FM-синтезатоpов звуковых каpт сильно огpаничены из-за своей пpостоты.

Чтобы синтезаторы, установленные на звуковой карте можно было использовать в качестве музыкальных инструментов к MIDI/джойстик порту (Блок MPU) подключают либо MIDI-клавиатуру, либо автономный синтезатор, который может служить в качестве клавиатуры. Сигналы, поступающие с клавиатуры, подаются в процессор (Рис.1), который направляет их либо через системную шину к центральному процессору, либо к синтезаторам звуковой карты. Путь MIDI-сигнала зависит от выполняющихся программ - в любом развитом программном секвенсере можно коммутировать MIDI порты и устройства произвольным образом.

Каждый из синтезаторов, установленных на звуковой карте имеет свой собственный ЦАП. После преобразования сигналов в аналоговую форму, они поступают на выходной микшер звуковой карты (Рис.1). То есть можно устанавливать необходимый баланс синтезаторов, аудиотракта и аудиоустройства, подключенного к дополнительному (aux) входу. Такая возможность оказывается крайне полезной при окончательном микшировании композиций, записанных при помощи компьютера. А итоговый микс поступает на линейный выход (Line Out), который так же, как и входы находится на задней панели звуковой карты.

Несколько лет назад на универсальных звуковых картах появились специальные разъемы, предназначенные для установки "дочерних" карт-синтезаторов. Дочерняя карта просто "надевается" сверху на основную и использует ее аудиотракт для вывода сигнала. Первоначально такое решение предназначалось для улучшения звучания карт, не имеющих Wave Table синтезатора "на борту". По названию первой "дочерней" карты эти разъемы стали называться "разъем Wave Blaster". Сейчас все больше универсальных карт уже имеют вполне приемлемые синтезаторы и "дочерние" карты используются, в основном, для расширения функциональных возможностей студии. Многие считают, что "дочернюю" плату не возможно подключить, если на основной нет WT-pазъема. Оказывается, что это не так. "Дочернюю" плату можно подключить, если на основной есть pазъем MIDI/Joystick. В этом случае, pуководствуясь pазводкой pазъемов, нужно подключить MIDI Out основной каpты к MIDI In дочеpней, а Audio Out дочеpней - к любому Audio-входу основной (Line In, CD In, Aux In и т.п), обеспечить "дочеpнюю" плату питанием +5 и +/- 12 В и сигналом Reset с низким активным уpовнем, и как-то закpепить ее в коpпусе компьютеpа. Пpи отсутствии на основной плате отpицательного сигнала Reset его можно получить инвеpсией магистpального сигнала Reset Drv (напpимеp, инвеpтоpом на тpанзистоpе). Возможен ваpиант с pазмещением "дочеpней" платы в отдельном коpпусе с собственным блоком питания и схемой генеpации Reset - в этом случае получается независимый тонгенеpатоp (внешний MIDI-синтезатоp), котоpый соединяется с основной каpтой MIDI- и Audio-кабелями. Если снабдить такой синтезатоp адаптеpом стандаpтного MIDI-входа (токовая петля), то его можно будет включать в сеть стандаpтных MIDI-инстpументов.

Вот, вкратце, все устройство универсальной мультимедийной звуковой карты. Все специализированные музыкальные платы работают точно таким же образом, только на них нет тех или иных элементов. Например, на картах-синтезаторах установлен только MIDI-интерфейс и качественный Wave Table синтезатор. Карты-оцифровщики имеют хорошие АЦП и ЦАП, сигнальный процессор и ничего больше и т.д.

3 Музыкант и компьютер. Создание музыки на РС



Несомненно, компьютер является весьма удобным и мощным "инструментом" в творческой жизни музыканта, или любого другого человека, занимающегося созданием музыки. И однозначного ответа на вопрос, какой компьютер нужен и для каких целей - не возможно. Ибо, прежде всего он зависит от того, о каком именно музыканте идет речь - композиторе, дирижере, музыковеде, контрабасисте и т.д. Каждый из них решает свои задачи - а ведь именно они определяют предназначение компьютера, одновременно расширяя круг возможностей музыканта. Однако попытаемся обобщить некоторые основные направления деятельности музыкантов, в которых компьютер в последние годы играет все большую и большую роль. Вначале, просто перечислим это:

нотно-издательская деятельность;

подготовка цифровых фонограмм (и видеоклипов);

реставрация старых записей;

звукорежиссерская работа;

создание аранжировок и оригинальных композиций с использованием программ-секвенцеров;

синтез звука и электронная музыка;

интерактивные исполнительские системы;

системы алгоритмической музыки;

системы управления партитурой в реальном времени;

создание и использование музыковедческих баз данных;

обучение в музыкальных школах и училищах и т. д.

Конечно, отдельно взятый музыкант никогда не использует все вышеперечисленное, ограничиваясь тем, что близко его специализации. Кроме того, возможности музыкального софта сейчас стремительно расширяются, так что приходится следить за новостями на этом фронте, чтоб не пропустить появления того, чего не хватает именно сейчас.
1. Какой компьютер нужен музыканту?


Это больной вопрос для многих компьютеризующихся музыкантов, вызывающий яростные споры и дискуссии. Еще лет пять тому назад считалось (да, в общем, так оно и было), что PC - машина, для музыкальных задач абсолютно неприспособленная. В некоторых странах до сих пор таково общее мнение. Во Франции, например, до сих пор считают, что для создания музыки на компьютере пригоден только Macintosh. Но в действительности, дело обстоит далеко не так. Появилось много нового музыкального софта для PC, и на нем музыканту вполне можно работать. Итак, какой же компьютер (в среднем) нужен музыканту?

Это должен быть PC с процессором не ниже Pentium 90 и 24 Мбайт оперативной памяти. Видеоадаптер и монитор здесь - вопрос вкуса, но если речь идет об издании нот - то желательно иметь разрешение не менее 800х600 (а лучше - "двухстраничный" монитор) при 16- или 24-битной цветовой палитре. Если предполагается работа со звуковыми файлами, то объем винчестера должен быть не меньше 4 Гбайт. Важнейшую роль здесь играет звуковая карта, ибо она в данном случае не просто средство "для украшения", а инструмент для профессиональной работы, объединяет в себе средства для аудиозаписи и воспроизведения (в том числе ЦАП/АЦП), самплер или синтезатор (иногда и то, и другое), MIDI-интерфейс, эффект-процессор и некоторые другие устройства. Все это располагается на плате, которая вставляется в слот ISA. Среди музыкантов заслуженным успехом пользуются звуковые карты от компании Turtle Beach.

Кроме звуковой карты часто бывает, необходима цифровая карта - то есть интерфейс для ввода/вывода цифровых сигналов (например, для записи на цифровые носители - DAT, MiniDisk). Но эти устройства достаточно дороги и, кроме того, капризны в использовании прерываний и каналов прямого доступа к памяти. Немаловажно также значение устройства, через которое музыкант вводит и выводит свой рабочий материал. Здесь, разумеется, не подойдут всякие "мультимедийные" микрофоны и активные колонки; нужно воспользоваться хорошей аудиосистемой и/или качественными наушниками (неплохие экземпляры выпускают Sony и Koss). Если предполагается работа с MIDI, желательна MIDI-клавиатура фортепианного типа, оснащенная педалью, колесом высоты (pitch wheel) и модуляции (вибрато), а также устройством ввода другой MIDI-информации.

Все перечисленное, составляет базовый набор, и обычно количество устройств, а также их качество возрастает по мере необходимости.


2. О нотном наборе

Как известно, написание любой музыкальной композиции начинается с запечатления ее в нотном виде (для тех, кто знает ноты). А дело это весьма кропотливое и трепетное. Благо, у нас есть компьютер и программ для нотного набора сейчас существует великое множество. Некоторые из них совсем простые и свободно представлены в Интернете на условиях shareware (пример – MusicEase). Чем "проще" такая программа, тем менее удобно в ней вводить нотный текст и тем меньше возможностей она предоставляет. В упоминавшемся уже MusicEase лиги, например, получаются не в форме дуг, а состоящими из трех прямых линий; а пока пытаешься стереть один из неверно введенных символов, проходит около минуты. Профессиональные же программы нотного набора, как правило, очень удобны, но при этом сложные, разветвленные, с широким набором возможностей. И далеко не простые в освоении.

Сейчас я для нотного набора, в основном пользуются программой Final (последняя версия имеет номер 3.7.2). Она предоставляет необозримые возможности и имеет удобный и дружелюбный интерфейс. Здесь предусмотрено шесть способов ввода нотного текста в компьютер. Во-первых, обычный ввод щелчком мыши в нужное место экрана (как в более простых программах типа Encore). Во-вторых, "скоростной" ввод с помощью клавиатуры компьютера, когда клавиши цифровой клавиатуры означают различные длительности нот. В-третьих, пошаговый ввод с MIDI-клавиатуры. В-четвертых - транскрипция, то есть запись сыгранной музыки в собственный мини-секвенцер и последующее преобразование ее в нотный текст. В-пятых - так называемый HyperScribe, то есть транскрипция в реальном времени, прямо в процессе исполнения. И, наконец, в-шестых, возможна загрузка стандартного MIDI-файла и его транскрипция. К каждой ноте можно "привязать" артикуляционное обозначение (точка стаккато, акцент и т. п.), или же какую-нибудь надпись, или рисунок; причем в Finale 3.7 появилась возможность импорта (и экспорта) графики в форматах TIFF, WMF и EPS. Надпись или рисунок могут быть также привязаны и ко всей партитуре. Существуют удобные утилиты для группировки нотоносцев, смены размера и тональности, создания подстрочного текста и независимых текстовых блоков, а также независимой графики и "плавающих" тактов, для знаков повторов и окончания, копирования отдельных элементов, поиска и замены нот, транспозиции, редактирования "исполнительских" штрихов для воспроизведения с помощью MIDI, и т. д. и т. п. - все перечислять очень долго, да и нет особого смысла. Во многих американских издательствах формат Finale стал уже стандартом de facto. Здесь важное значение имеет также присутствующая в этой программе поддержка PostScript-формата.

Из других программ нотного набора следует отметить Encore (для Windows или Macintosh), Mosaic и Nightingale (только для Macintosh), а также Score Perfect Pro (не путать со Score для DOS) - очень милая и быстрая программа, первоначально написанная для Atari, но сейчас представленная также в версии для Windows.


3. Расширение композиторских возможностей


С появлением компьютерных технологий композитор получил возможность создавать и использовать при желании (а также наличии необходимого программного обеспечения) звук любого тембра. Современные технологии снимают все принципиальные тембровые ограничения; ограничивающими факторами теперь могут являться только возможности имеющихся в наличии программ, умение композитора ими пользоваться, ну и, конечно, фантазия композитора.

При создании музыкальных композиций с помощью компьютера композитор в простейшем случае имеет в своем распоряжении набор тембров, предоставляемый звуковой картой и/или внешним синтезатором (самплером). Как правило, звуковая карта содержит не менее одного "банка" из 128 тембров, а довольно часто количество таких банков возрастает до 5-7 или даже более10. Если композитору не хватает этих тембров, он может выбрать "экстенсивный метод развития": увеличивать число инструментов и звуковых карт, загружать в существующие инструменты новые звуки и банки звуков, и т. д. По сути, в этом еще нет ничего принципиально нового. Гораздо интереснее тот факт, что композитор может редактировать имеющиеся у него тембры, изменяя их спектральный состав по своему усмотрению, а также синтезировать "с нуля" совершенно новые. Таким образом, сейчас можно сочинить тембр, и показательно, что тембр в наше время начинает играть все большую роль в качестве выразительного средства. Очевидно, что чем сложнее тембр отдельно взятого звука, тем менее существенна роль высотной и ритмической компоновки самих звуков. Звук отделяется от понятия "ноты" как таковой и начинает жить собственной жизнью. Причем изменяющийся во времени звуковой спектр может стать настолько сложным, что для целой музыкальной композиции будет вполне достаточно взятия одной "ноты" - звука с таким спектром.

Справедливости ради нужно отметить, что попытки редактирования и создания тембров и целых "тембровых" композиций не раз предпринимались еще до широкого развития компьютерных технологий. Создавались аналоговые синтезаторы, использовались различные "трюки" с магнитофонной лентой и т. п. Однако все это было довольно громоздко и неудобно в обращении, зачастую композиции создавались исключительно ради того или иного технологического фокуса, не оставляя места собственно творчеству. Так, по признанию одного из "отцов" немецкой электронной музыки Карлхайнца Штокхаузена (Karlheinz Stockhausen), во время создания "Электронного Этюда #1" он часами резал и склеивал частички магнитофонной ленты, совершенно при этом, не представляя себе заранее звуковой результат. Весьма показателен также тот факт, что авторами такой музыки нередко становились инженеры, а не профессиональные музыканты. Для каждой музыкальной задачи в процессе создания тембра сплошь и рядом могло потребоваться разное оборудование, и это ограничивало творческий процесс, пожалуй, даже в большей степени, чем необходимость пользоваться заранее заданным набором тембров, что и отталкивало профессиональных музыкантов.

В случае же работы с компьютером композитор может иметь под рукой все необходимые средства для сочинения композиции, быстро переключаясь между ними в случае надобности. А удобный пользовательский интерфейс позволяет сосредоточиться на творчестве, не слишком отвлекаясь на чисто технологические вопросы.

Даже если композитор не использует в своем творчестве возможность сочинения тембров, все равно он имеет под рукой мультитембральный инструмент, гибкий и удобный в управлении (в отличие от, например, того же симфонического оркестра), способный справиться с любым, даже и традиционно "неисполнимым" материалом.

Разумеется, для различных музыкальных задач необходимо специальное программное обеспечение. Его можно разделить на:

секвенцерные программы;

системы многоканального сведения;

системы обработки звука;

системы синтеза звука;

системы интерактивной композиции;

программы алгоритмической композиции;

а также универсальные системы.

Рассмотрим их более подробно.


4. О программах-секвенцерах


Здесь следует всего лишь напомнить, что эти программы самый популярный и распространенный тип музыкального программного обеспечения среди профессионалов и любителей. Они, в сущности, выполняют всего три задачи: запись MIDI-последовательности, ее редактирование и ее воспроизведение. Причем с первой и третьей они все, как правило, справляются одинаково хорошо (с поправкой на некоторые дополнительные возможности). А вот возможности редактирования MIDI-партитуры могут существенно отличаться, и именно они определяют класс той или иной программы-секвенцера. В простейших программах они могут быть сведены к назначению тембров на каждую дорожку и определению их относительной громкости, а также пространственной локализации.
5. Компьютерная звуковая студия Pro Tools


Еще совсем недавно звуковая студия ассоциировалась у большинства музыкантов, прежде всего с многоканальным магнитофоном. Он был центром, "сердцем" практически любой студии, и вокруг него группировались все другие студийные устройства. С появлением компьютерных технологий почетное место многоканального магнитофона все чаще занимает Pro Tools.

Pro Tools - это система многоканальной записи/воспроизведения/редакции звука. То есть здесь прослеживается явная аналогия с секвенцерами, но вместо MIDI-информации мы теперь записываем, редактируем и воспроизводим одновременно с нескольких дорожек аудиоинформацию, то есть собственно оцифрованный звук.

В действительности в лице Pro Tools мы имеем не только многоканальный магнитофон, а полную звукорежиссерскую систему, включающую микшерский пульт и устройства обработки, причем с функцией запоминания времени изменения любых звуковых параметров. Представьте себе звукорежиссера с двумя-тремя десятками рук, которыми он во время сведения одновременно регулирует множество звуковых параметров, запоминая и повторяя все найденные моменты их изменения с точностью до долей миллисекунды!

Работать в системе Pro Tools очень удобно. На экране мы одновременно видим волновую форму всех звуковых отрезков, записанных в систему. С помощью мыши можно графически изменять огибающие громкости и пространственной локализации отдельно на каждой дорожке. Имеется множество дополнительных функций, таких как эхо или реверберация. Ну и, конечно, возможно простым "перетаскиванием" (drag-n-drop) скопировать или же переместить звуковой фрагмент на другое место.

Однако не все так просто с Pro Tools. Это не только программа, для ее работы необходимо соответствующее аппаратное обеспечение. Причем железо для Pro Tools существует в нескольких модификациях, и от него зависит, сколько же звуковых дорожек мы услышим на выходе.

Можно, конечно, работать с моделью Pro Tools, позволяющей прослушивать одновременно 8 или 16 дорожек. Но: дорого. Цена такой модели выше 10 тыс. долларов. Кроме того, программное обеспечение написано только для Macintosh. И для хорошей стабильной работы я бы рекомендовал Macintosh не ниже, чем Quadra. Правда, кто-то мне говорил, что уже существует - или разрабатывается? - система Pro Tools для Windows 95. Однако никакой конкретной информации по этому вопросу я пока не нашел.

Но разве Pro Tools - это единственное решение? Многие музыканты считают, что альтернативы нет, но это не так - альтернативные системы существуют и успешно работают. Например, московский композитор Анатолий Киселев пользуется системой Session 8 и SAW Plus 32 (на базе PC). Недавно появилась информация о выпуске звуковой платы V5 для многоканальных систем. Наконец, возможны и более дешевые решения, зачастую почти не уступающие Pro Tools по своим возможностям.


6. Как обрабатывают звук


Допустим, с помощью секвенсора или нотного редактора мы воплотили нашу музыкальную задумку. Теперь требуется обработать звучание по собственному желанию. Программы для этой цели, называются звуковыми редакторами (о них мы уже знаем из предыдущей главы): на экране мы видим волновую форму сигнала в графическом представлении: по вертикали - амплитуда, по горизонтали - время.

Из важнейших операций для данных программ, как мы помним, можно условно выделить четыре группы:

простейшее редактирование (simple editing);

звуковые процессы (sound processing);

звуковые эффекты (sound effects);

дополнительные инструменты (arbitrary tools).

К группе простейшего редактирования относятся операции, которые не затрагивают внутренней структуры звука - копирование, перемещение, удаление звуковых фрагментов, реверс и т. д. Собственно говоря, такие операции можно осуществить и с обычной магнитофонной записью, но с потерей качества и гораздо меньшим удобством в работе.

К звуковым процессам относятся микширование или перекрестное слияние (crossfade) двух волновых форм, инверсия, изменение амплитуды, добавление (или вычитание, что одно и то же) постоянного смещения (DC offset), нормализация (оптимизация), постепенное нарастание/затухание, расширение панорамы и т. п.

Что касается звуковых эффектов, они добавляют звучанию особый колорит и иногда могут изменить звук очень сильно. К ним относятся задержка, реверберация, амплитудная модуляция (вибрато), эффект флэнджера, фазовые сдвиги, изменение высоты и/или времени звучания, построение амплитудных и/или высотных огибающих, особые эффекты (например, вставка в волновую форму звука кратких зон молчания - gapper, или искажение, имитирующее аналоговые перегрузки - distortion) и т. п. Дополнительные возможности включают использование фильтров, спектральный анализ, систему обмена данными с самплером, а также систему шумопонижения.


7. Формирование нового звучания


Итак, программы обработки звука предоставляют музыканту целый мир новых возможностей. Однако все они предполагают, что имеется некий звук-источник, который можно подвергать дальнейшей обработке. Откуда же он берется?

Есть три различных способа получения такого источника. Во-первых, можно записать с микрофона "живое" звучание какого-либо инструмента, голоса или любой другой звук. Этот способ часто используется, если нужно получить на MIDI-инструменте звучание реальных инструментов. Другой способ заключается в "рисовании" волновой формы - программы обработки часто позволяют это делать, переключившись в "карандашный" режим (который так зовется потому, что курсор мыши принимает вид карандаша). Этот способ иногда бывает, хорош при создании звуков ударного характера, в то время как периодический сигнал создать таким способом практически невозможно. Но наиболее эффективным методом создания звука "с нуля" является его синтез.

При синтезе звука программа использует математические функции, генерирующие простейшие периодические сигналы - синусоидальные, треугольные, пилообразные, импульсные, прямоугольные, а также шумы. Эти простейшие сигналы могут тем или иным образом трансформироваться в процессе синтеза. Синусоидальные сигналы (они же чистые тоны) имеют особое значение, поскольку спектр такого сигнала содержит только одну частоту.

При аддитивном синтезе используются синусоидальные сигналы с различной частотой и амплитудой, из которых складывается сложный спектр. Количество его составляющих будет в точности равно количеству исходных чистых тонов.

При субтрактивном синтезе, напротив, используется шумовой сигнал, из которого при помощи фильтров вычитаются ненужные частотные составляющие. Как правило, звук, полученный в результате субтрактивного синтеза, имеет ярко выраженный "шумовой" колорит.

FM cсинтез звука, о котором мы говорили в первой главе, был разработан Дж. Чоунингом в своей дипломной работе так же с успехом применялся и применяется в синтезаторах.

При синтезе методом модуляции используется, как правило, небольшое количество простейших сигналов, обычно синусоидальных, которые, влияя друг на друга, могут дать в результате спектр с большим количеством составляющих. Метод частотной модуляции (FM, то есть Frequency Modulation) интересен тем, что с его помощью можно даже из двух синусоидальных сигналов получить спектр с каким угодно количеством составляющих. Амплитудная и кольцевая модуляция, а также нелинейное изменение волновой формы хотя и не дают таких "сногсшибательных" результатов, как FM, но тоже по-своему интересны. Существуют и другие методы синтеза, на которых мы здесь, я думаю, останавливаться не будем.

В профессиональных программах обработки звука, таких, как Sound Forge или Cool Edit, обычно имеются модули и для синтеза звука. В Sound Forge, например, предусмотрена возможность "простого синтеза" основных периодических сигналов, а также четырехоператорного FM-синтеза.

Но следует помнить, что синтез звука - мощное средство для создания, "сочинения" собственных тембров. И для того чтобы быстро и эффективно добиться реального воплощения тембрального замысла, нужно иметь, помимо некоторого навыка работы с программами синтеза, четкое представление о том, какие изменения в спектре звука вызовет изменение того или иного параметра. Подробное теоретическое изложение различных методов синтеза звука четко описано в книге Ч. Доджа и Т. Джерса "Компьютерная музыка: синтез, композиция и исполнение".


8. Об интерактивных исполнительских системах


Хотя, в электронной музыке нет разделения между функциями композитора и исполнителя. Все таки, отсутствие необходимости в исполнителях, является большим преимуществом, которое освобождает композиторов от многих проблем. Например, нет необходимости искать и/или подбирать исполнителей, платить им деньги (что бывает не всегда, но часто), организовывать репетиции и т. п. Но, пожалуй, самое главное, что композитор не имеет более нужды передать исполнителю авторский замысел, собственную интерпретацию, - короче говоря, то, что не опишешь словами и не обозначишь нотами.

Как следует из названия, интерактивная музыка предполагает взаимодействие исполнителя и его "электронного партнера" в процессе исполнения. Например, существует и широко используется такая схема: исполнитель начинает играть на каком-либо инструменте; компьютер "реагирует" на его исполнение, исполняя соответствующие звуки; исполнитель, в свою очередь, отвечает на сыгранное компьютером и т. д. Таким образом, имея возможность выбора первоначальных звуков пьесы (которые могут быть, разумеется, до некоторой степени регламентированы композитором), исполнитель фактически строит композицию в соответствии со своим творческим видением. Каждый вариант исполнения такой пьесы может сильно отличаться от остальных, причем не только традиционными параметрами темпа, громкости отдельных звуков и т. п., но также и расположением и количеством звуков. В этом случае "твердую основу" композиции составляет не зафиксированный нотный текст, а алгоритм взаимодействия компьютера и исполнителя. Точнее, это обычно даже совокупность двух алгоритмов: одного для компьютера и одного для исполнителя.

Алгоритм взаимодействия для исполнителя может быть написан обычным "человеческим" языком, пояснен нотными фрагментами и т. д. А алгоритм для компьютера составляется различными способами. Например, может быть использована последовательность условных операций типа "если прозвучал звук в диапазоне от 300 до 367 Гц с амплитудой от 7000 до 9500 условных единиц20 во временном промежутке от 7 до 9 секунд от начала пьесы, то исполнять звуки случайной частоты в диапазоне от 150 до 170 Гц длиной 0,02 секунды с частотой появления, линейно уменьшающейся от 47 до 6 Гц с постоянным затуханием в течение 11,4 секунды".

Для облегчения процесса создания таких интерактивных композиций были разработаны различные программные средства. Например, в парижском центре электронной музыки IRCAM была разработана программа MAX, коммерческую версию которой (для Macintosh) выпускает американская компания Opcode.

Программа MAX - это, по сути, целый язык программирования, предназначенный для создания алгоритмов интерактивного исполнения и реализованный в виде программного приложения с объектно-ориентированным интерфейсом пользователя. MAX работает на уровне MIDI-событий, так что если композитор желает работать с акустическим инструментом, ему необходимо использовать какие-либо конверторы (Pitch-to-MIDI21 и т. п.).

В MAX имеются объекты (операторы), обеспечивающие ввод/вывод MIDI-информации. Между входными и выходными параметрами помещаются модули преобразования. Возможно, использовать арифметические и логические операции, ветвления, различные специальные возможности и т. п. Всего в программе более ста типов объектов. Имеется даже небольшой встроенный секвенцер.

Программу MAX использовали многие крупные композиторы, такие, как Ричард Буланже (Richard Boulanger) и Дрор Файлер (Dror Feiler).

Описанная концепция интерактивной исполнительской системы не является единственно возможной. Существуют и другие концепции, и среди них необходимо выделить концепцию системы управления партитурой.

Вначале американский инженер, программист и музыкант Макс Мэтьюз (Max Matthews) заметил противоречие между "музыкантством" и "музыкальностью". Оно выражается в том, что зачастую музыкант-профессионал, вложивший уйму времени и сил в овладение техникой исполнения на каком-либо инструменте и действительно овладевший этой техникой в совершенстве, испытывает затруднения в вопросе художественной интерпретации музыкального произведения. И наоборот, человек, не владеющий тем или иным инструментом в достаточной степени или вовсе не умеющий на нем играть, иной раз способен на собственную интересную интерпретационную концепцию, свое неординарное видение музыки. Только вот беда: донести свою исполнительскую концепцию до слушателей он никак не может из-за технических трудностей исполнения.

Макс Мэтьюз предложил решение, позволяющее такому музыкальному человеку, не имеющему достаточной техники, реализовать себя как исполнителя. (Именно как живого исполнителя, а не MIDI-аранжировщика.) Для этого Мэтьюз создал специальное устройство, называющееся в последней модификации "радиобатон". Визуально радиобатон представляет собой небольшой прямоугольный ящичек с MIDI-входом и выходом. Под верхней крышкой этого "ящичка" находятся пять датчиков (четыре - по углам и один в центре), которые следят за перемещением двух специальных палочек. С компьютера в радиобатон загружается MIDI-партитура, в которой в особом формате определены параметры, которыми можно будет управлять в реальном времени. С помощью двух палочек можно произвольно изменять во время исполнения шесть любых заранее заданных параметров: каждая палочка регулирует одновременно три параметра, перемещаясь в пространстве по трем осям, обозначаемым как x, y и z. Например, в многотембральном произведении логично регулировать, таким образом, громкости различных партий. Перемещения в плоскости поверхности радиобатона ограничены размерами устройства; перемещение по оси z также имеет как нижнюю, так и верхнюю границу: существует некоторое критическое расстояние, вне пределов которого радиобатон вообще не распознает палочку. Темп исполнения может регулироваться, помимо простого перемещения палочки вдоль одной из осей, специальным образом - с помощью "дирижирования" правой рукой.

Развитием идеи Мэтьюза является "управляющая перчатка" (PowerGlove) Ричарда Буланже. Здесь параметры MIDI-партитур можно регулировать не только перемещением руки в пространстве, но и сгибанием пальцев, причем каждый палец может контролировать отдельный параметр.

И радиобатон, и управляющая перчатка, однако, не так просты в обращении, как может показаться. Для полного использования их возможностей необходимы определенные "исполнительские" навыки, как и при игре на каком-либо традиционном инструменте. С другой стороны, эти навыки можно приобрести довольно быстро (за 2-3 месяца регулярных занятий), что делает его доступным для широкого круга музыкантов-любителей.


9. Компьютер "сочиняет" музыку


Конечно, для простых любителей и ленивых музыкантов, было бы весьма удобно, чтобы компьютер сам "сочинял" музыку. Но, строго говоря, компьютеры сами никакой музыки до сих пор не сочинили. В основном, используются уже с середины 50-х годов так называемые программы алгоритмической композиции. При этом разрабатывались два в корне различных метода. Первый метод - это анализ того или иного музыкального стиля и составление композиции на основе полученных данных. Второй же метод предполагает вероятностные распределения звуков в партитуре.

Сочинения, написанные с использованием обоих методов, как правило, допускают "живое" исполнение - ведь результатом работы программ алгоритмической композиции является обычно нотный текст (или, по крайней мере, некоторые данные, подготовленные для последующего преобразования в нотный текст.

Еще в 1956 году были опубликованы опыты Кляйна и Болито по синтезированию песенных мелодий на компьютере Datatron. Мелодии носили название "Push Button Bertha". Они рассматривались, правда, скорее как эксперимент, а не творчество. Однако уже в следующем, 1957 году была опубликована (и впоследствии не раз исполнялась) сюита для струнного квартета, "сочиненная" в лаборатории электронной музыки Иллинойского университета с помощью компьютера "Иллиак" (ее так и назвали - "Иллиак-сюита"). Кроме компьютера, ее "авторами" являлись Лейярен Хиллер (Lejaren Hiller) и Леонард Айзексон (Leonard Isaacson).

Сюита состояла из четырех частей, причем первые две были написаны в диатоническом до-мажоре по правилам, близким к правилам музыки строгого стиля. Источником третьей части, напротив, была случайная хроматическая музыка, "профильтрованная", однако, по тем же правилам. Несмотря на фильтрацию, ее музыка очень похожа на атональные композиции. В четвертой же части авторы применили математические формулы, никак не связанные с музыкальными стилями. По их замыслу, четвертая часть должна была быть написана в совершенно особом, "машинном" стиле, хотя на слух, как ни странно, этот стиль мало отличался от стиля третьей части. "Иллиак-сюита" издавалась несколько раз и приобрела мировую известность.

В 1959 году Рудольф Зарипов, советский математик, "сочинял" одноголосные музыкальные пьесы на машине "Урал" (опять-таки в до-мажоре). Они назывались "Уральские напевы" и опять носили характер эксперимента. При их сочинении использовались различные случайные процессы для различных элементов музыкальной фактуры (форма, ритм, звуковысотность и т. д.). А Р. Бухараев и М. Рытвинская на том же "Урале" программировали "сочинение" алгоритмических мелодий на стихотворный текст.

Правда, "Урал" предоставил на выходе неуклюжую, абсолютно не вокальную мелодию (даже с точки зрения авангарда нашего столетия). Виноват был, конечно, не "Урал", а очень несовершенные алгоритмы синтеза музыкальной фактуры.

С тех пор появилось очень много программ для алгоритмической композиции. Часто такие программы разрабатывались, что называется, "на один раз", для личного использования. В отличие от подобных программ 50-х годов некоторые современные разработки позволяют достичь довольно хороших результатов. В качестве примера можно привести программу, которую разработал московский музыкант и программист Д. Жалнин.

Иногда средства алгоритмической композиции, так или иначе, смешиваются с другими творческими направлениями. Например, Cubase существует встроенное средство под названием "интерактивный синтезатор фраз" (Interactive Phrase Synthesizer, IPS). Здесь смешиваются средства интерактивной и алгоритмической систем. На вход системы подается некая "фраза", то есть последовательность MIDI-событий. Затем эта последовательность проходит через специальные "алгоритмические процессоры" - подпрограммы упорядоченного преобразования ритма, громкости и звуковысотности. Таким образом, с одной стороны, исполнитель имеет возможность все время взаимодействовать с системой, вводя различные стартовые ноты и даже меняя саму исходную последовательность; с другой стороны, для изменения звуковой ткани используются строгие алгоритмы.

Еще один яркий пример интеграции алгоритмической музыки с другими направлениями - класс программ перевода графики в звучание. Таких программ тоже существует не одна и не две. Однако особо хочется отметить программу Kandinsky Music Painter (KMP) для Atari, от компании Keys. Эта программа предоставляет довольно-таки развитые средства для создания рисунка. Отдельно можно создать рисунки для звуковысотной фактуры и для громкости инструментов. В программе используется монохромная графика, которая транслируется в MIDI-события. В начале проигрывания экран очищается, и по ходу проигрывания рисунок постепенно прорисовывается по горизонтали, что дает ощущение слияния звуковой и визуальной композиций.

Похожим образом, но не на уровне MIDI, а на уровне звука работает система Яниса Ксенакиса U-Pic. А вообще-то эта идея уже была реализована гораздо раньше аналоговыми методами.
Рождение компьютерной музыки

В 1957 году М. Мэтьюз и Н. Гутман посетили концерт одного малоизвестного пианиста. Концерт им обоим не понравился, и, в процессе обмена впечатлениями после концерта, М. Мэтьюз заявил, что компьютер может сыграть лучше. Но поскольку на дворе был 1957 год, компьютеры еще не умели играть музыку. Придя, домой, М. Мэтьюз тут же стал писать программу, играющую музыку. Первая компьютерная пьеса неизменно производит на окружающих ужасающее впечатление. Но идея Мэтьюза, развиваясь, породила целый класс музыкальных языков программирования, которые вначале назывались "MUSIC" с номером версии. Язык C-Sound произошел как раз из этих программ. А отделение Стэндфордского института исследований, где работал тогда М. Мэтьюз, выросло в музыкальный исследовательский центр под названием CCRMA (читается "карма").
Конечно, программы алгоритмической композиции не способны заменить собой творческий процесс сочинения музыки. Однако в качестве вспомогательного средства при создании музыкальных пьес они могут быть применены с большим успехом.


10. Универсальная система "программирования" музыки


Компьютерная музыка как таковая начиналась когда-то с музыкальных языков программирования. Несмотря на то, что с тех пор разработчики музыкального программного обеспечения уделяли все большее и большее внимание развитию пользовательского интерфейса, музыкальный язык программирования в чистом виде - язык C-Sound - сохранился и успешно применяется по сей день. Дело в том, что C-Sound, в отличие от других музыкальных программ, является, по сути, универсальной системой, позволяющей создавать любые звучания. Ведь развитый пользовательский интерфейс при всех своих достоинствах обладает очень существенным недостатком: он всегда ограничивает возможности.

Язык C-Sound свободен от этого. Он существует в виде компилятора, который транслирует текст программы в звуковой файл. При этом основные операторы его реализуют основные средства создания электронной музыки. Если композитору не хватает операторов C-Sound (которые сами по себе позволяют проделывать гораздо больше, чем все описанные выше программы, вместе взятые [исключая, разумеется, нотную графику]), он может написать нужные ему фрагменты текста программы на языке Си или Ассемблере.

C-Sound позволяет работать как с синтезированным звуком, так и со звуком из внешнего источника. Широкий выбор операторов генерации и модификации сигналов делает работу очень удобной, а система меток и ссылок на них - привычной для хоть сколько-нибудь знакомого с программированием человека. Поначалу, правда, некоторые мои знакомые (да и я тоже) испытали некоторое разочарование при знакомстве с C-Sound, потому что надеялись (а напрасно), что это просто что-то вроде расширения классического Си или Си++. Но по мере знакомства с языком разочарование довольно быстро сменилось признанием его широких возможностей, простоты и удобства работы со звуком.

В любом синтезаторе содержится некоторый набор алгоритмов, реализующих звуковой синтез. Иногда эти алгоритмы поддаются редактированию, но, как правило, очень ограниченному. В самплерах также есть набор определенных алгоритмов плюс записанные образцы волновых форм. Любое устройство для обработки звука включает в себя алгоритмы обработки, и лишь немногие их параметры открыты для редактирования. Это перечисление можно продолжить. В C-Sound мы имеем такие же наборы алгоритмов, полностью открытые (ибо они существуют в виде простого текста) для изменения по нашему вкусу. Кроме того, можно самому создавать все эти алгоритмы "с нуля".

В настоящее время C-Sound не может работать в реальном времени на обычных компьютерах. Для компиляции звукового файла помимо описания инструментов необходим еще файл партитуры (.sco), в котором расположены звуки и их индивидуальные параметры. С одной стороны, это может показаться неудобным, однако, с другой, - заставляет музыканта проявлять большее внимание к каждому звуку в отдельности, что, несомненно, способствует повышению качества результата.

Программа C-Sound распространяется свободно. Она существует в модификациях для DOS, Windows, Macintosh, Atari и других платформ. Компилятор C-Sound с полным описанием языка и учебными примерами довольно легко можно найти в Сети.


11. Другие применения компьютера музыкантами


Все перечисленные выше музыкальные приложения компьютеров предполагают работу с нотным либо звуковым материалом. Однако есть и другие возможности применения компьютеров музыкантами.

Среди них следует выделить, прежде всего, организацию музыкально-теоретического или исторического материала с помощью баз данных. Такая система позволяет быстро и оперативно получать музыковедческую информацию.

Другая интересная идея состоит в открытии электронных нотных библиотек, как локальных, так и общедоступных (например, через тот же Интернет). О преимуществах здесь говорить излишне, поскольку существующие виртуальные книжные библиотеки иллюстрируют их лучше всяких объяснений. Правда, на сегодняшний день не существует единого стандарта на формат нотного текста, но имеющиеся форматы файлов программ профессионального нотного набора (прежде всего, Enigma Binary File - .mus, использующийся в программе Finale) уже становятся стандартом de facto. Тем не менее, многие нотные примеры в Интернете, выполнены в виде графических файлов.

Еще одна интересная область применения компьютеров музыкантами - это использование обучающих программ в музыкальном образовании. В настоящее время существует довольно много музыкальных обучающих программ, но, к сожалению, они в большинстве своем достаточно примитивны и не могут по-настоящему заинтересовать учащегося. Причиной этого является, как мне кажется, вовсе не отсутствие специальных методик, а несколько формальный подход к алгоритмизации педагогического процесса. Здесь довольно-таки приятным исключением является симпатичная программка Play It By Ear, которая, несмотря на внешнюю простоту, зачастую бывает, способна "завести" учащегося.


4. Технология создания позиционируемого 3D звука




Звуковое сопровождение компьютера всегда находилось несколько на втором плане. Большинство пользователей более охотно потратят деньги на новейший акселератор 3D графики, нежели на новую звуковую карту. Однако за последний год производители звуковых чипов и разработчики технологий 3D звука приложили немало усилий, чтобы убедить пользователей и разработчиков приложений в том, что хороший 3D звук является неотъемлемой частью современного мультимедиа компьютера. Пользователей убедить в пользе 3D звука несколько легче, чем разработчиков приложений. Достаточно расписать пользователю то, как источники звука будет располагаться в пространстве вокруг него, т.е. звук будет окружать слушателя со всех сторон и динамично изменяться, как многие потянутся за кошельком. С разработчиками игр и приложений сложнее. Их надо убедить потратить время и средства на реализацию качественного звука. А если звуковых интерфейсов несколько, то перед разработчиком игры встает проблема выбора. Сегодня есть два основных звуковых интерфейса, это DirectSound3D от Microsoft и A3D от Aureal. При этом если разработчик приложения предпочтет A3D, то на всем аппаратном обеспечении DS3D будет воспроизводиться 3D позиционируемый звук, причем такой же, как если бы изначально использовался интерфейс DS3D. Само понятие "трехмерный звук" подразумевает, что источники звука располагаются в трехмерном пространстве вокруг слушателя. Это основа. Далее, что бы придать звуковой модели реализм и усилить восприятие звука слушателем, используются различные технологии, обеспечивающие воспроизведение реверберации, отраженных звуков, окклюзии (звук, прошедший через препятствие), обструкции (звук не прошел через препятствие), дистанционное моделирование (вводится параметр удаленности источника звука от слушателя) и масса других интересных эффектов. Цель всего этого, создать у пользователя реальность звука и усилить впечатления от видео ряда в игре или приложении. Не секрет, что слух это второстепенное чувство человека, именно поэтому, каждый индивидуальный пользователь воспринимает звук по-своему. Никогда не будет однозначного мнения о звучании той или иной звуковой карты или эффективности той или иной технологии 3D звука. Сколько будет слушателей, столько будет мнений. В данной главе мы попытаемся собрать и обобщить информацию о принципах создания 3D звука, а также рассказать о текущем состоянии звуковой компьютерной индустрии и о перспективах развития. Мы уделим отдельное внимание необходимым составляющим хорошего восприятия и воспроизведения 3D звука, а также расскажем о некоторых перспективных разработках.

Для позиционирования источников звука в виртуальном 3D пространстве используются HRTF функции. Попробуем разобраться в том, что такое HRTF и действительно ли их использование так эффективно.
Сколько раз происходило следующее: команда, отвечающая за звук, только что закончила встраивание 3D звукового интерфейса на базе HRTF в новейшую игру; все комфортно расселись, готовясь услышать "звук окружающий вас со всех сторон" и "свист пуль над вашей головой"; запускается демо версия игры и... и ничего подобного вы просто не слышите!

HRTF (Head Related Transfer Function) это процесс посредством которого наши два уха определяют слышимое местоположение источника звука; наши голова и туловище являются в некоторой степени препятствием, задерживающим и фильтрующим звук, поэтому ухо, скрытое от источника звука головой воспринимает измененные звуковые сигналы, которые при "декодировании" мозгом интерпретируются соответствующим образом для правильного определения местоположения источника звука. Звук, улавливаемый нашим ухом, создает давление на барабанную перепонку. Для определения создаваемого звукового давления необходимо определить характеристику импульса сигнала от источника звука, попадающего на барабанную перепонку, т.е. силу, с которой звуковая волна от источника звука воздействует на барабанную перепонку. Эту зависимость называют Head Related Impulse Response (HRIR), а ее интегральное преобразование по Фурье называется HRTF.

Правильнее характеризовать акустические источники скоростью распространяемых ими звуковых волн V(t), нежели давлением P(t) распространяемой звуковой волны. Теоретически, давление, создаваемой идеальным точечным источником звука бесконечно, но ускорение распространяемой звуковой волны есть конечная величина. Если вы достаточно удалены от источника звука и если вы находитесь в состоянии "free field" (что означает, что в окружающей среде нет ничего кроме, источника звука и среды распространения звуковой волны), тогда давление "free field" (ff) на расстоянии "r" от источника звука определяется по формуле

Pff(t) = Zo V(t - r/c) / r

где Zo это постоянная называемая волновым сопротивлением среды (characteristic impedance of the medium), а "c" это скорость распространения звука в среде. Итак, давление ff пропорционально скорости в начальный период времени (происходит "сдвиг" по времени, обусловленный конечной скоростью распространения сигнала. То есть возмущение в этой точке описывается скоростью источника в момент времени, отстоящий на r/c - время которое затрачено на то, чтобы сигнал дошел до наблюдателя. В принципе не зная V(t) нельзя утверждать характера изменения скорости при сдвиге, т.е. произойдет замедление или ускорение) и давление уменьшается обратно пропорционально расстоянию от источника звука до пункта наблюдения.

С точки зрения частоты давление звуковой волны можно выразить так:

Pff(f) = Zo V(f) exp(- i 2 pi r/c) / r

где "f" это частота в герцах (Hz), i = sqrt(-1), а V(f) получается в результате применения преобразования Фурье к скорости распространения звуковой волны V(t). Таким образом, задержки при распространении звуковой волны можно охарактеризовать "phase factor", т.е. фазовым коэффициентом exp(- i 2 pi r /c). Или, иначе, это означает, что функция преобразования в "free field" Pff(f) просто является результатом произведения масштабирующего коэффициента Zo, фазового коэффициента exp(- i 2 pi r /c) и обратно пропорциональна расстоянию 1/r. Заметим, что возможно более рационально использовать традиционную циклическую частоту, равную 2*pi*f чем просто частоту.

Если поместить в среду распространения звуковых волн человека, тогда

звуковое поле вокруг человека искажается за счет дифракции (рассеивания или, иначе говоря, различие скоростей распространения волн разной длины), отражения и дисперсии (рассредоточения) при контакте человека со звуковыми волнами. Теперь все тот же источник звука будет создавать несколько другое давление звука P(t) на барабанную перепонку в ухе человека. С точки зрения частоты это давление обозначим как P(f). Теперь, P(f), как и Pff(f) также содержит фазовый коэффициент, чтобы учесть задержки при распространении звуковой волны и вновь давление ослабевает обратно пропорционально расстоянию. Для исключения этих концептуально незначимых эффектов HRTF функция H определяется как соотношение P(f) и Pff(f). Итак, строго говоря, H это функция, определяющая коэффициент умножения для значение давления звука, которое будет присутствовать в центре головы слушателя, если нет никаких объектов на пути распространения волны, в давление на барабанную перепонку в ухе слушателя.

Обратным преобразованием Фурье функции H(f) является функция H(t), представляющая собой HRIR (Head-Related Impulse Response). Таким образом, строго говоря, HRIR это коэффициент (он же есть отношение давлений, т.е. безразмерен; это просто удобный способ загнать в одну букву в формуле очень сложный параметр), который определяет воздействие на барабанную перепонку, когда звуковой импульс испускается источником звука, за исключением того, что мы сдвинули временную ось так, что t=0 соответствует времени, когда звуковая волна в "free field" достигнет центра головы слушателя. Также мы масштабировали результаты таким образом, что они не зависят от того, как далеко источник звука расположен от человека, относительно которого производятся все измерения.

Проще можно сказать, что HRIR это давление, воздействующее на барабанную перепонку, когда источник звука является импульсным.

Напомним, что интегральным преобразованием Фурье функции HRIR является HRTF функция. Если известно значение HRTF для каждого уха, мы можем точно синтезировать бинауральные сигналы от монофонического источника звука (monaural sound source).

С
оответственно, для разного положения головы относительно источника звука задействуются разные HRTF фильтры. Библиотека HRTF фильтров создается в результате лабораторных измерений, производимых с использованием манекена, носящего название KEMAR (Knowles Electronics Manikin for Auditory Research, т.е. манекен Knowles Electronics для слуховых исследований) или с помощью специального "цифрового уха" (digital ear), разработанного в лаборатории Sensaura, располагаемого на голове манекена. Понятно, что измеряется именно HRIR, а значение HRTF получается путем преобразования Фурье. На голове манекена располагаются микрофоны, закрепленные в его ушах. Звуки воспроизводятся через акустические колонки, расположенные вокруг манекена и происходит запись того, что слышит каждое "ухо".


HRTF представляет собой необычайно сложную функцию с четырьмя переменными: три пространственных координаты и частота. При использовании сферических координат для определения расстояния до источников звука больших, чем один метр, считается, что источники звука находятся в дальнем поле (far field) и значение HRTF уменьшается обратно пропорционально расстоянию. Большинство измерений HRTF производится именно в дальнем поле, что существенным образом упрощает HRTF до функции азимута (azimuth), высоты (elevation) и частоты (frequency), т.е. происходит упрощение, за счет избавления от четвертой переменной. Затем при записи используются полученные значения измерений и в результате, при проигрывании звук (например, оркестра) воспроизводится с таким же пространственным расположением, как и при естественном прослушивании. Техника HRTF используется уже несколько десятков лет для обеспечения высокого качества стерео записей. Лучшие результаты получаются при прослушивании записей одним слушателем в наушниках.

Наушники, конечно, упрощают решение проблемы доставки одного звука к одному уху и другого звука к другому уху. Тем не менее, использование наушников имеет и недостатки. Например:

* Многие люди просто не любят использовать наушники. Даже легкие беспроводные наушники могут быть обременительны. Наушники, обеспечивающие наилучшую акустику, могут быть чрезвычайно неудобными при длительном прослушивании.

* Наушники могут иметь провалы и пики в своих частотных характеристиках, которые соответствуют характеристикам ушной раковины. Если такого соответствия нет, то восприятие звука, источник которого находится в вертикальной плоскости, может быть ухудшено. Иначе говоря, мы будем слышать преимущественно только звук, источники которого находится в горизонтальной плоскости.

* При прослушивании в наушниках, создается ощущение, что источник звука находится очень близко. И действительно, физический источник звука находится очень близко к уху, поэтому необходимая компенсация для избавления от акустических сигналов влияющих на определение местоположения физических источников звука зависит от расположения самих наушников.

Использование акустических колонок позволяет обойти большинство из этих проблем, но при этом не совсем понятно, как можно использовать колонки для воспроизведения бинаурального звука (т.е. звука, предназначенного для прослушивания в наушниках, когда часть сигнала предназначена для одного уха, а другая часть для другого уха). Как только мы подключим вместо наушников колонки, наше правое ухо начнет слышать не только звук, предназначенный для него, но и часть звука, предназначенную для левого уха. Одним из решений такой проблемы является использование техники cross-talk-cancelled stereo или transaural stereo, чаще называемой просто алгоритм crosstalk cancellation (для краткости CC).



Идея CC просто выражается в терминах частот. На схемы выше сигналы S1 и

S2 воспроизводятся колонками. Сигнал Y1 достигающий левого уха представляет собой смесь из S1 и "crosstalk" (части) сигнала S2. Чтобы быть более точными, Y1=H11 S1 + H12 S2, где H11 является HRTF между левой колонкой и левым ухом, а H12 это HRTF между правой колонкой и левым ухом. Аналогично Y2=H21 S1 + H22 S2. Если мы решим использовать наушники, то мы явно будем знать искомые сигналы Y1 и Y2 воспринимаемые ушами. Проблема в том, что необходимо правильно определить сигналы S1 и S2, чтобы получить искомый результат. Математически для этого просто надо обратить уравнение:



На практике, обратное преобразование матрицы не является тривиальной задачей.

* При очень низкой частоте звука, все функции HRTF одинаковы и поэтому матрица является вырожденной, т.е. матрицей с нулевым детерминантом (это единственная помеха для тривиального обращения любой квадратной матрицы). На западе такие матрицы называют сингулярными. (К счастью, в среде отражающей звук, т.е. где присутствует реверберация, низкочастотная информация не являются важной для определения местоположения источника звука).

* Точное решение стремиться к результату с очень длинными импульсными характеристиками. Эта проблема становится все более и более сложной, если в дальнейшем искомый источник звука располагается вне линии между двумя колонками, т.е. так называемый фантомный источник звука.

* Результат будет зависеть от того, где находится слушатель по отношению к колонкам. Правильное восприятие звучания достигается только в районе так называемого "sweet spot", предполагаемого месторасположения слушателя при обращении уравнения. Поэтому, то, как мы слышим звук, зависит не только от того, как была сделана запись, но и от того, из какого места между колонками мы слушаем звук.

При грамотном использовании алгоритмов CC получаются весьма хорошие результаты, обеспечивающие воспроизведение звука, источники которого расположены в вертикальной и горизонтальной плоскости. Фантомный источник звука может располагаться далеко вне пределов линейного сегмента между двумя колонками.

Давно известно, что для создания убедительного 3D звучания достаточно двух звуковых каналов. Главное это воссоздать давление звука на барабанные перепонки в левом и правом ушах таким же, как если бы слушатель находился в реальной звуковой среде.

Из-за того, что расчет HRTF функций сложная задача, во многих системах пространственного звука (spatial audio systems) разработчики полагаются на использование данных, полученных экспериментальным путем, например, данные получаются с помощью KEMAR, о чем мы говорили выше. Тем не менее, основной причиной использования HRTF является желание воспроизвести эффект elevation (звук в вертикальной плоскости), наряду с азимутальными звуковыми эффектами. При этом восприятие звуковых сигналов, источники которых расположены в вертикальной плоскости, чрезвычайно чувствительно к особенностям каждого конкретного слушателя. В результате сложились четыре различных метода расчета HRTF:

* Использование компромиссных, стандартных HRTF функций. Такой метод обеспечивает посредственные результаты при воспроизведении эффектов elevation для некоторого процента слушателей, но это самый распространенный метод в недорогих системах. На сегодня, ни IEEE, ни ACM, ни AES не определили стандарт на HRTF, но похоже, что компании типа Microsoft и Intel создадут стандарт де-факто.

* Использование одной типа HRTF функций из набора стандартных функций. В этом случае необходимо определить HRTF для небольшого числа людей, которые представляют все различные типы слушателей, и предоставить пользователю простой способ выбрать именно тот набор HRTF функций, который наилучшим образом соответствует ему (имеются в виду рост, форма головы, расположение ушей и т.д.). Несмотря на то, что такой метод предложен, пока никаких стандартных наборов HRTF функций не существует.

* Использование индивидуализированных HRTF функций. В этом случае необходимо производить определение HRTF исходя из параметров конкретного слушателя, что само по себе сложная и требующая массы времени процедура. Тем не менее, эта процедура обеспечивает наилучшие результаты.

* Использование метода моделирования параметров определяющих HRTF, которые могут быть адаптированы к каждому конкретному слушателю. Именно этот метод сейчас применяется повсеместно в технологиях 3D звука.

На практике существуют некоторые проблемы, связанные с созданием базы HRTF функций при помощи манекена. Результат будет соответствовать ожиданиям, если манекен и слушатель имеют головы одинакового размера и формы, а также ушные раковины одинакового размера и формы. Только при этих условиях можно корректно воссоздать эффект звучания в вертикальной плоскости и гарантировать правильное определение местоположения источников звука в пространстве. Записи, сделанные с использованием HRTF называются binaural recordings, и они обеспечивают высококачественный 3D звук. Слушать такие записи надо в наушниках, причем желательно в специальных наушниках. Компакт диски с такими записями стоят существенно дороже стандартных музыкальных CD. Чтобы корректно воспроизводить такие записи через колонки необходимо дополнительно использовать технику CC. Но главный недостаток подобного метода - это отсутствие интерактивности. Без дополнительных механизмов, отслеживающих положение головы пользователя, обеспечить интерактивность при использовании HRTF нельзя. Бытует даже поговорка, что использовать HRTF для интерактивного 3D звука, это все равно, что использовать ложку вместо отвертки: инструмент не соответствует задаче.
Sweet Spot

На самом деле значения HRTF можно получить не только с помощью установленных в ушах манекена специальных внутриканальных микрофонов (inter-canal microphones). Используется еще и так называемая искусственная ушная раковина. В этом случае прослушивать записи нужно в специальных внутриканальных (inter-canal) наушниках, которые представляют собой маленькие шишечки, размещаемые в ушном канале, так как искусственная ушная раковина уже перевела всю информацию о позиционировании в волновую форму. Однако нам гораздо удобнее слушать звук в наушниках или через колонки. При этом стоит помнить о том, что при записи через inter-canal микрофоны вокруг них, над ними и под ними происходит искажение звука. Аналогично, при прослушивании звук искажается вокруг головы слушателя. Поэтому и появилось понятие sweet spot, т.е. области, при расположении внутри которой слушатель будет слышать все эффекты, которые он должен слышать. Соответственно, если голова слушателя расположена в таком же положении, как и голова манекена при записи (и на той же высоте), тогда будет получен лучший результат при прослушивании. Во всех остальных случаях будут возникать искажения звука, как между ушами, так и между колонками. Понятно, что необходимость выбора правильного положения при прослушивании, т.е. расположение слушателя в sweet spot, накладывает дополнительные ограничения и создает новые проблемы. Понятно, что чем больше область sweet spot, тем большую свободу действий имеет слушатель. Поэтому разработчики постоянно ищут способы увеличить область действия sweet spot.
Частотная характеристика

Действие HRTF зависит от частоты звука; только звуки со значениями частотных компонентов в пределах от 3 kHz до 10 kHz могут успешно интерпретироваться с помощью функций HRTF. Определение местоположения источников звуков с частотой ниже 1 kHz основывается на определении времени задержки прибытия разных по фазе сигналов до ушей, что дает возможность определить только общее расположение слева/справа источников звука и не помогает пространственному восприятию звучания. Восприятие звука с частотой выше 10 kHz почти полностью зависит от ушной раковины, поэтому далеко не каждый слушатель может различать звуки с такой частотой. Определить местоположение источников звука с частотой от 1 kHz до 3 kHz очень сложно. Число ошибок при определении местоположения источников звука возрастает при снижении разницы между соотношениями амплитуд (чем выше пиковое значение амплитуды звукового сигнала, тем труднее определить местоположение источника). Это означает, что нужно использовать частоту дискретизации (которая должна быть вдвое больше значения частоты звука) соответствующей как минимум 22050 Hz при 16 бит для реальной действенности HRTF. Дискретизация 8 бит не обеспечивает достаточной разницы амплитуд (всего 256 вместо 65536), а частота 11025 Hz не обеспечивает достаточной частотной характеристики (так как при этом максимальная частота звука соответствует 5512 Hz). Итак, чтобы применение HRTF было эффективным, необходимо использовать частоту 22050 Hz при 16 битной дискретизации.


Ушная раковина (Pinna)

Мозг человека анализирует разницу амплитуд, как звука, достигшего внешнего уха, так и разницу амплитуд в слуховом канале после ушной раковины для определения местоположения источника звука. Ушная раковина создает нулевую и пиковую модель звучания между ушами; эта модель совершенно разная в каждом слуховом канале и эта разница между сигналами в ушах представляет собой очень эффективную функцию

для определения, как частоты, так и местоположения источника звука. Но это же явление является причиной того, что с помощью HRTF нельзя создать корректного восприятия звука через колонки, так как по теории ни один из звуков, предназначенный для одного уха не должен быть слышимым вторым ухом.

Мы вновь вернулись к необходимости использования дополнительных алгоритмов CC. Однако, даже при использовании кодирования звука с помощью HRTF источники звука являются неподвижными (хотя при этом амплитуда звука может увеличиваться). Это происходит из-за того, что ушная раковина плохо воспринимает тыловой звук, т.е. когда источники звука находятся за спиной слушателя. Определение местоположения источника звука представляет собой процесс наложения звуковых сигналов с частотой, отфильтрованной головой слушателя и ушными раковинами на мозг с использованием соответствующих координат в пространстве. Так как происходит наложение координат только известных характеристик, т.е. слышимых сигналов, ассоциируемых с визуальным восприятием местоположения источников звука, то с течением времени мозг "записывает" координаты источников звука и в дальнейшем определение их местоположения может происходить лишь на основе слышимых сигналов. Но видим мы только впереди. Соответственно, мозг не может правильно расположить координаты источников звука, расположенных за спиной слушателя при восприятии слышимых сигналов ушной раковиной, так как эта характеристика является неизвестной. В результате, мозг может располагать координаты источников звука совсем не там, где они должны быть. Подобную проблему можно решить только при использовании вспомогательных сигналов, которые бы помогли мозгу правильно располагать в пространстве координаты источников звуков, находящихся за спиной слушателя.
Неподвижные источники звука

Все выше сказанное подвело нас к еще одной проблеме:

Если источники звука неподвижны, они не могут быть точно локализованы, как "статические" при моделировании, т.к. мозгу для определения местоположения источника звука необходимо наличие перемещения (либо самого источника звука, либо подсознательных микро перемещений головы слушателя), которое помогает определить расположение источника звука в геометрическом пространстве. Нет никаких оснований, ожидать, что какая-либо система на базе HRTF функций будет корректно воспроизводить звучание, если один из основных сигналов, используемый для определения местоположения источника звука, отсутствует. Врожденной реакцией человека на неожидаемый звук является повернуть голову в его сторону (за счет движения головы мозг получает дополнительную информацию для локализации в пространстве источника звука). Если сигнал от источника звука не содержит особую частоту, влияющую на разницу между фронтальными и тыловыми HRTF функциями, то такого сигнала для мозга просто не существует; вместо него мозг использует данные из памяти и сопоставляет информацию о местоположении известных источников звука в полусферической области.
Каково же будет решение?

Лучший метод воссоздания настоящего 3D звука это использование минимальной частоты дискретизации 22050 Hz при 16 битах и использования дополнительных тыловых колонок при прослушивании. Такая платформа обеспечит пользователю реалистичное воспроизведение звука за счет воспроизведение через достаточное количество колонок (минимум три) для создания настоящего surround звучания. Преимущество такой конфигурации заключается в том, что когда слушатель поворачивает голову для фокусировки на звуке какого-либо объекта, пространственное расположение источников звука остается неизменным по отношению к окружающей среде, т.е. отсутствует проблема sweet spot.

Есть и другой метод, более новый и судить о его эффективности пока сложно. Суть метода, который разработан Sensaura и называется MultiDrive, заключается в использовании HRTF функций на передней и на тыловой паре колонок (и даже больше) с применением алгоритмов CC. На самом деле Sensaura называет свои алгоритмы СС несколько иначе, а именно Transaural Cross-talk cancellation (TCC), заявляя, что они обеспечивают лучшие низкочастотные характеристики звука. Инженеры Sensaura взялись за решение проблемы восприятия звучания от источников звука, которые перемещаются по бокам от слушателя и по оси фронт/тыл. Заметим, что Sensaura для вычисления HRTF функций использует так называемое "цифровое ухо" (Digital Ear) и в их библиотеке уже хранится более 1100 функций. Использование специального цифрового уха должно обеспечивать более точное кодирование звука. Подчеркнем, что Sensaura создает технологии, а использует интерфейс DS3D от Microsoft.

Технология MultiDrive воспроизводит звук с использованием HRTF функций через четыре или более колонок. Каждая пара колонок создает фронтальную и тыловую полусферу соответственно.

Фронтальные и тыловые звуковые поля специальным образом смещены с целью взаимного дополнения друг друга и за счет применения специальных алгоритмов улучшает ощущения фронтального/тылового расположения источников звука. В каждом звуковом поле применяются собственный алгоритм cross-talk cancellation (CC). Исходя из этого, есть все основания предполагать, что вокруг слушателя будет плавное воспроизведение звука от динамично перемещающихся источников и эффективное расположение тыловых виртуальных источников звука. Так как воспроизводимые звуковые поля основаны на применении HRTF функций, каждое из создаваемых sweet spot (мест, с наилучшим восприятием звучания) способствует хорошему восприятию звучания от источников по сторонам от слушателя, а также от движущихся источников по оси фронт/тыл. Благодаря большому углу перекрытия результирующее место с наилучшим восприятием звука (sweet spot) покрывает область с гораздо большей площадью, чем конкурирующие четырех колоночные системы воспроизведения. В результате качество воспроизводимого 3D звука должно существенно повысится.

Если бы не применялись алгоритмы cross-talk cancellation (CC) никакого позиционирования источников звука не происходило бы. Вследствие использования HRTF функций на четырех колонках для технологии MultiDrive необходимо использовать алгоритмы CC для четырех колонок, требующие чудовищных вычислительных ресурсов. Из-за того, что обеспечить работу алгоритмов CC на всех частотах очень сложная задача, в некоторых системах применяются высокочастотные фильтры, которые срезают компоненты высокой частоты. В случае с технологией MultiDrive Sensaura заявляет, что они применяют специальные фильтры собственной разработки, которые позволяют обеспечить позиционирование источников звука, насыщенными высокочастотными компонентами, в тыловой полусфере. Хотя sweet spot должен расшириться и восприятие звука от источников в вертикальной плоскости также улучшается, у такого подхода есть и минусы. Главный минус это необходимость точного позиционирования тыловых колонок относительно фронтальных. В противном случае никакого толка от HRTF на четырех колонках не будет.

Стоит упомянуть и другие инновации Sensaura, а именно технологии ZoomFX и MacroFX, которые призваны улучшить восприятие трехмерного звука. Расскажем о них подробнее, тем более что это того стоит.
MacroFX

Как мы уже говорили выше, большинство измерений HRTF производятся в так называемом дальнем поле (far field), что существенным образом упрощает вычисления. Но при этом, если источники звука располагаются на расстоянии до 1 метра от слушателя, т.е. в ближнем поле (near field), тогда функции HRTF плохо справляются со своей работой. Именно для воспроизведения звука от источников в ближнем поле с помощью HRTF функций и создана технология MacroFX. Идея в том, что алгоритмы MacroFX обеспечивают воспроизведение звуковых эффектов в near-field, в результате можно создать ощущение, что источник звука расположен очень близко к слушателю, так, будто источник звука перемещается от колонок вплотную к голове слушателя, вплоть до шепота внутри уха слушателя. Достигается такой эффект за счет очень точного моделирования распространения звуковой энергии в трехмерном пространстве вокруг головы слушателя из всех позиций в пространстве и преобразование этих данных с помощью высокоэффективного алгоритма. Особое внимание при моделировании уделяется управлению уровнями громкости и модифицированной системе расчета задержек по времени при восприятии ушами человека звуковых волн от одного источника звука (ITD, Interaural Time Delay). Для примера, если источник звука находится примерно посередине между ушами слушателя, то разница по времени при достижении звуковой волны обоих ушей будет минимальна, а вот если источник звука сильно смещен вправо, эта разница будет существенной. Только MacroFX принимает такую разницу во внимание при расчете акустической модели. MacroFX предусматривает 6 зон, где зона 0 (это дистанция удаления) и зона 1 (режим удаления) будут работать точно так же, как работает дистанционная модель DS3D. Другие 4 зоны это и есть near field (ближнее поле), покрывающие левое ухо, правое ухо и пространство внутри головы слушателя.

Этот алгоритм интегрирован в движок Sensaura и управляется DirectSound3D, т.е. является прозрачным для разработчиков приложений, которые теперь могут создавать массу новых эффектов. Например, в авиа симуляторах можно создать эффект, когда пользователь в роли пилота будет слышать переговоры авиа диспетчеров так, как если бы он слышал эти переговоры в наушниках. В играх с боевыми действиями может потребоваться воспроизвести звук пролетающих пуль и ракет очень близко от головы слушателя. Такие эффекты, как писк комара рядом с ухом теперь вполне реальны и доступны. Но самое интересное в том, что если у вас установлена звуковая карта с поддержкой технологии Sensaura и с драйверами, поддерживающими MacroFX, то пользователь получит возможность слышать эффекты MacroFX даже в уже существующих DirectSound3D играх, разумеется, в зависимости от игры эффект будет воспроизводиться лучше или хуже. Зато в игре, созданной с учетом возможности использования MacroFX. Можно добиться очень впечатляющих эффектов.

Поддержка MacroFX будет включена в драйверы для карт, которые поддерживают технологию Sensaura.
ZoomFX

Современные системы воспроизведения позиционируемого 3D звука используют HRTF функции для создания виртуальных источников звука, но эти синтезированные виртуальные источники звука являются точечными. В реальной жизни звук зачастую исходит от больших по размеру источников или от композитных источников, которые могут состоять из нескольких индивидуальных генераторов звука. Большие по размерам и композитные источники звука позволяют использовать более реалистичные звуковые эффекты, по сравнению с возможностями точечных источников звука. Так, точечный источник звука хорошо применим при моделировании звука от большого объекта удаленного на большое расстояние (например, движущийся поезд). Но в реальной жизни, как только поезд приближается к слушателю, он перестает быть точечным источником звука. Однако в модели DS3D поезд все равно представляется, как точечный источник звука, а значит, страдает реализм воспроизводимого звука (т.е. мы слышим звук скорее от маленького поезда, нежели от огромного состава громыхающего рядом). Технология ZoomFX решает эту проблему, а также вносит представление о большом объекте, например поезде как собрание нескольких источников звука (композитный источник, состоящий из шума колес, шума двигателя, шума сцепок вагонов и т.д.).

Для технологии ZoomFX будет создано расширение для DirectSound3D, подобно EAX, с помощью которого разработчики игр смогут воспроизводить новые звуковые эффекты и использовать такой параметр источника звука, как размер. Пока эта технология находится на стадии завершения.

Компания Creative реализовала аналогичный подход, как в MultiDrive от Sensaura, в своей технологии CMSS (Creative Multispeaker Surround Sound) для серии своих карт SB Live!. Поддержка этой версии технологии CMSS, с реализацией HRTF и CC на четырех колонках, встроена в программу обновления LiveWare 2.x. По своей сути, технология CMSS является близнецом MultiDrive, хотя на уровне алгоритмов CC и библиотек HRTF наверняка есть отличия. Главный недостаток CMSS такой же, как у MultiDrive - необходимость расположения тыловых колонок в строго определенном месте, а точнее параллельно фронтальным колонкам. В результате возникает ограничение, которое может не устроить многих пользователей. Не секрет, что место для фронтальных колонок давно зарезервировано около монитора. Место для сабвуфера можно выбрать любым, обычно это где-то в углу и на полу. А вот тыловые колонки пользователи располагают там, где считают удобным для себя. Не каждый захочет расположить их строго за спиной и далеко не у всех есть свободное место для такого расположения.

Заметим, что главный конкурент Creative на рынке 3D звука, компания Aureal, использует технику панорамирования на тыловых колонках. Объясняется это именно отсутствием строгих ограничений на расположение тыловых колонок в пространстве.

Не стоит забывать и о больших объемах вычислений при расчете HRTF и Cross-talk Cancellation для четырех колонок.


Еще один игрок на рынке 3D звука - компания QSound пока имеет сильные позиции только в области воспроизведения звука через наушники и две колонки. При этом свои алгоритмы для воспроизведения 3D звука через две колонки и наушники (в основе лежат HRTF) QSound создает исходя из результатов тестирования при прослушивании реальными людьми, т.е. не довольствуется математикой, а делает упор на восприятие звука конкретными людьми. И таких прослушиваний было проведено более 550000! Для воспроизведения звука через четыре колонки QSound использует панорамирование, т.е. тоже, что было в первой версии CMSS. Такая техника плохо показала себя в играх, обеспечивая слабое позиционирование источников звука в вертикальной плоскости.

Компания Aureal привнесла в технологии воспроизведения 3D звука свою технику Wavetracing. Мы уже писали об этой технологии, вкратце, это расчет распространения отраженных и прошедших через препятствия звуковых волн на основе геометрии среды. При этом обеспечивается полный динамизм восприятия звука, т.е. полная интерактивность.

Итак, подведем итоги. Однозначный вывод состоит в том, что если вы хотите получить наилучшее качество 3D звука, доступное на сегодняшний день, вам придется использовать звуковые карты, поддерживающие воспроизведение минимум через четыре колонки. Использование только двух фронтальных колонок - это конфигурация вчерашнего дня. Далее, если вы только собираетесь переходить на карты с поддержкой четырех и более колонок, то перед вами встает классическая проблема выбора. Как всегда единственная рекомендация состоит в том, чтобы вы основывали свой выбор на собственных ощущениях. Послушайте максимально возможно число разных систем и сделайте именно свой выбор.

Теперь посмотрим, с каким багажом подошли ведущие игроки 3D звукового рынка к сегодняшнему дню и что нас ждет в ближайшем будущем.
EAR

EAR - в текущей версии IAS 1.0 реализована поддержка воспроизведения DS3D, A3D 1.0 и EAX 1.0 через четыре и более колонок. За счет воспроизведения через четыре и более колонок, мозг слушателя получает дополнительные сигналы для правильного определения местоположения источников звука в пространстве.

Этой осенью ожидается выход IAS 2.0 с поддержкой DirectMusic, YellowBook, EAX 2.0

и A3D 2.0, force-feed back (мы сможем чувствовать звук, а именно давление звука, громкость и т.д.), декодирование в реальном времени MP3 и Dolby/DTS, будет реализована поддержка ".1" канала (сабвуфера). Кроме того, в IAS 2.0 будет реализовано звуковое решение, не требующее наличие звуковой карты (cardless audio solution) для использования с полностью цифровой системой воспроизведения звука, например с USB колонками или в тандеме с домашней системой Dolby Digital.

Главные достоинства IAS от EAR:

* Один интерфейс для любой многоколоночной платформы, обеспечивающий одинаковый результат вне зависимости от того, как воспроизводится звук при использовании специального API.

* Имеется поддержка воспроизведения через две колонки (для старых систем),

если многоколоночная конфигурация недоступна.

* Пользователь может подключить свой компьютер к домашней звуковой системе (Dolby Digital и т.д.) и IAS будет воспроизводить звук без необходимости какой-либо модернизации.

Итак, по сравнению с конкурентами, IAS работает на любой платформе и не

требует специального аппаратного обеспечения. При этом IAS использует любое доступное аппаратное обеспечение и обеспечивает пользователю наилучшее качество звука, которое доступно на его системе. Только вот остановит ли свой выбор пользователь на этой технологии, это большой вопрос. С другой стороны, для использования IAS не нужно покупать специальных звуковых карт.
Sensaura

Sensaura - компания занимающаяся созданием технологий. Производители звуковых чипов лицензируют разработки Sensaura и воплощают их в жизнь. В чипе Canyon3D от ESS будет реализована поддержка современных технологий Sensaura, которые должны обеспечить слушателем 3D звук на современном уровне, т.е. позиционируемый в пространстве и с воспроизведением через четыре и более колонок. За воспроизведение через четыре и более колонок отвечает технология MultiDrive, которая реализует HRTF и алгоритмы Cross-talk cancellation. Многообещающе выглядят технологии ZoomFX и MacroFX. Кроме того, Sensaura поддерживает воспроизведение реверберации через EAX от Creative, равно как и через I3DL2, а также эмулирует поддержку A3D 1.х через DS3D.

Первым звуковым чипов, который реализует технологию MultiDrive на практике, является Canyon3D от ESS Technology, Inc. Более подробную информацию о чипе Canyon3D можно найти на официальном сайте www.canyon3d.com.

Первая карта на базе чипа Canyon3D называется DMX и производит ее компания Terratec.

Как только эта карта попадет к нам на испытания, мы представим на ваш суд обзор. Заметим только, что на этой карте будут сразу оба типа цифровых выходов S/PDIF коаксиальный (RCA) и оптический (Toslink), и один цифровой вход. Так что продукт обещает быть очень интересным.
Creative

Creative - занимается совершенствованием своего движка реверберации. В итоге в свет выйдет EAX 3.0, который должен добавить больше реализма в воспроизводимый звук. Никто не спорит, что реверберация это хорошо, что именно она обеспечивает насыщенное и живое звучание. При этом Creative упорно не собирается вести разработки в области геометрии акустики. Кстати, Microsoft объявила о намерении включить EAX в состав DirectSound3D 8.0. С другой стороны, есть неподтвержденные слухи, что EAX 3.0 будет закрытым стандартом. Интересно, изменит ли Creative свою позицию со временем? Пока же в новых версиях EAX нам обещают больше реализма и гибкости в настройках реверберации и моделировании звуковой среды для конкретных объектов и помещений, плюс плавные переходы от одной заранее созданной звуковой среды к другой при движении слушателя в 3D мире. Будут улучшения в области воспроизведения эффектов окклюзии и обструкции. Обещают и поддержку отраженных звуков, но без учета геометрии и более продвинутую дистанционную модель. Вообще, я не удивительно, если Creative лицензирует MacroFX и ZoomFX у Sensaura. Что касается моделирования звука на основе физической геометрии среды, то Creative очень усиленно отрицает для себя возможность поддержки такого метода. Хотя, если поднять архивы и посмотреть первый пресс-релиз о будущем чипе Emu10k1, то вы будете удивлены. Там говорится именно об использовании физической геометрии среды при моделировании звука. Потом планы изменились. Кто помешает Creative вновь изменить планы? Особенно если учесть появление в ближайшее время движка реверберации от Aureal. Вряд ли Creative не сделает ответного хода.
QSound

QSound ведет работы по созданию новой технологии воспроизведения 3D звука через четыре и более колонок. Зная пристрастия QSound, можно предположить, что в основу новой технологии опять лягут результаты реальных прослушиваний. QSound, как и Sensaura занимается именно технологиями, которые воплощают в виде чипов другие компании. Так, чип Thunderbird128 от VLSI воплощает в себе все последние достижения QSound в области 3D звука, при этом Thunderbird128 это DSP, а значит, есть все основания ожидать последующей модернизации. Стоит упомянуть, что QSound, подобно Creative считает, что главное в 3D звуке это восприятие слушателем окружающей атмосферы игры. Поэтому QEM (QSound Environmental Modeling) совместима с EAX 1.0 от Creative. Следует ожидать, что QEM 2.0 будет совместима с EAX 2.0. Отметим, что QSound славится очень эффективными алгоритмами и грамотным распределением доступных ресурсов, неслучайно именно их менеджер ресурсов был лицензирован Microsoft и включен в DirectX.
Aureal

С Aureal все более-менее понятно. В ближайшем будущем нам обещают дальнейшее улучшение функциональности A3D, мощный движок реверберации, поддержку HRTF на четырех и более колонках. Кроме того, есть вероятность, что Aureal начнет продавать свои карты под своей маркой. Кстати, осенью должны начаться продажи супер колонок под маркой Aureal.

Мы упомянули основные разработки в области 3D звука, которые применяются в компьютерном мире. Есть еще ряд фирм с интересными решениями, но они делают упор на рынок бытовой электроники, поэтому мы не стали в данном главе рассказывать о них.

С развитием компьютерной индустрии звука, можно в дальнейшем прогнозировать, что будущие звуковые карты и звуковые интерфейсы позволят разработчикам игр создавать потрясающие своей реальностью и производимым впечатлением эффекты. Библиотеки HRTF будут все дальше совершенствоваться. Возможно, чипы звуковых карт будут поддерживать декодирование AC-3 и других форматов цифрового звука. Звуковые карты будут поддерживать подключение более четырех колонок. Широкое распространение получат цифровые интерфейсы и цифровые подключения. Отдельной веткой будут развиваться дешевые решения на базе AMR. Пользователю лишь, остается самая сложная часть, выбрать именно тот продукт, который устроит его по всем параметрам. Не следует забывать, что звук каждый слышит по-своему, поэтому, только послушав самостоятельно, человек составит правильное мнение о звуковой карте и звуковых технологиях.

З А К Л Ю Ч Е Н И Е



Мы живем сейчас, именно в том времени, когда, ни одна прогрессивная технология не останавливается на промежуточном результате, а продолжает плодотворно развиваться. Особенно это касается разработки новых средств multimedia. Ведь, как мы уже выяснили, без них нельзя представить ни один крупный проект. Поэтому, разработчики, не боясь, вкладывают свои средства в их создание, а пользователи охотно приобретают, руководствуясь красочными "плодами" рекламы.

Так, например, развитие систем окружающего 3D-звука пока идет лишь по пути создания красивой акустической иллюзии, за счет более или менее удачного обмана физиологии нашего слуха. Следующим логическим шагом в этом направлении может стать интерактивное аудио, в основу которого положено адекватное реагирование на изменение акустических свойств помещения с целью имитации акустики всемирно знаменитых концертных залов. То есть, в будущем, неплохо будет иметь дома отдельную комнату для аудиовидеоланча, скроенную по принципу срезов золотых сечений, с натяжными звукокорректирующими гобеленами XVII века, скромными персидскими коврами и парочкой древнеримских статуй в качестве дробилки стоячих волн. Но подобное слегка не по карману, странствующему по мукам аудиофилу. Очевидно и то, что даже наличие идеальной звуковой камеры не всегда помогает ощутить атмосферу зала, близкую к реальной, а интерактивная цифровая модель (по крайней мере, теоретически) это сделать должна.

Что касается будущего цифровой музыки, то сейчас организация MPEG работает над стандартом MPEG-4, в котором используется принципиально новый подход, как к аудио-, так и к видеокомпрессии. MPEG-4, как и MIDI, позволяет не просто воспроизводить, а синтезировать музыку. Но в отличие от MIDI, звуки в программе MPEG-4 – не простые образцы. Этот способ синтеза музыки получил название "метода Колмогорова". Кроме того, MPEG-4, будет сочетать два языка программирования, используемых в цифровом аудио. Один из них SAOL, применяется для обычного компьютерного аудио, а другой, SASIL, поддерживает MIDI. В своей простейшей форме

MPEG-4 генерирует звук как файлы WAV, но файл MPEG-4 будет гораздо меньше.

Ну, и, наконец, применение звуковой карты будет заключаться не в обыденной записи/воспроизведении звука, а в чем нибудь более оригинальном, как например, в использовании ее в качестве элемента оптикоэлектронного измерительного прибора.

Звуковая карта, представляет собой высококачественный измеритель переменного напряжения, сопряженный с аналого-цифровым преобразователем. Игровой же порт, по определению, является устройством для измерения сопротивления переменных резисторов, находящихся в джойстике. На этом принципе и основано ее применение в качестве исследователя затвора фотокамеры. То есть, следует подключить первый попавшийся фотодиод к микрофонному входу звуковой карты и получится прибор для измерения светового потока, падающего на чувствительный элемент. Теперь, направив световой пучок, например, от проектора для диапозитивов, на объектив фотокамеры, можно откинуть заднюю крышку и, расположив фотодиод в фокальной плоскости объектива, измерить время срабатывания затвора. Для шторно-шелевого затвора удобнее объектив снять и расположить фотодиод вблизи шторки.

И, наверняка, таких моментов будет огромное множество. Нам остается только подождать…

Используемая литература



1. Занимательное путешествие в мир MP3/ CD КОМПЬЮТЕР ПРЕСС 4’99.

2 Звуковые карты/ CD КОМПЬЮТЕР ПРЕСС 1’99.

3. Программы для работы со звуком и музыкой/ CD КОМПЬЮТЕР ПРЕСС 11’99.

4. Cakewalk Pro Audio 8/ INTERNET:http//www.cit.org.by/ musicwarez

5. Sound Forge 4.0/ INTERNET:http//www.cit.org.by/ musicwarez

6. Как самому написать музыку/ INTERNET:http//www.cit.org.by/ musicwarez

7. Может ли владелец ПК со звуковой платой считаться композитором? /

INTERNET:http//www.cit.org.by/ musicwarez

8. Создание MIDI/ INTERNET:http//www.cit.org.by/ musicwarez

9. Характеристики MIDI/ INTERNET:http//www.iXBT.ru

10.Звуковая карта как элемент оптико-электронного измерительного прибора /

INTERNET:http//www.iXBT.ru

11.Описание интерфейса MIDI/ INTERNET:http//www.iXBT.ru

12.Тестирование программных MP3-проигрывателей /

INTERNET:http//www.iXBT.ru

13.Технология создания позиционируемого 3D звука/ INTERNET:http//www.iXBT.ru

14.Функционирование звуковых плат/ INTERNET:http//www.cit.org.by/ musicwarez

15.Вслушайтесь в завтрашний день// Компьютерра. 1999 №12.

16.Из аналога в цифру и обратно// Компьютерра. 1999 №30-31.

17.Цифра и звук// Компьютерра. 1999 №30-31.

18.Цифровая запись музыкальных CD// Компьютерра. 1999 №30-31.

19.Звуковое будущее// Компьютерра. 1999 №45.

20.Эффект виталия палыча или, первые миди впечатления// Компьютерра. 1997 №46.

21.MP3 - магия звуков//МИР ПК. 1999 №10

22.Музыкальные конструкторы// ПОДВОДНАЯ ЛОДКА. 1998 №12

23.Играй,музыкант!// Софт маркет. 1997 №23

24.Музыкальная шкатулка нашего времени// Софт маркет. 1997 №23

25.Фигурнов В.Э. IBM PC для пользователя. Изд.7-е, переработанное и дополненное.-М.:ИНФРА-М, 1999.

1. Реферат Формирование культа личности и режима личной власти И В Сталина Утверждение административно-командной
2. Реферат на тему Тривалість інсоляції з урахуванням протилежної будівлі
3. Реферат Перспективы развития ПК
4. Реферат Особенности экономического курса в 50-60-х годах ХХ века
5. Реферат на тему Americas Envlvement In Ww2 Essay Research Paper
6. Реферат Реализация продукции и формирование финансовых результатов
7. Реферат Автоматизированные системы управления и бронирования в средствах размещения
8. Реферат на тему Othello Essay Research Paper Irony in OthelloOne
9. Контрольная работа по дисциплине Римское право
10. Реферат на тему The Dark Realm Of The Valley Essay