Курсовая

Курсовая Биогеохимические круговороты вещества и энергии как основной механизм поддержания организован

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.1.2025



Федеральное агентство по рыболовству

ФГОУ ВПО «Астраханский государственный технический университет»
Институт рыбного хозяйства, биологии и природопользования

Кафедра гидробиологии

и общей экологии

курсовая работа

по дисциплине «Учение о биосфере»


Биогеохимические круговороты вещества и энергии как основной механизм поддержания организованности и устойчивости биосферы.
Студентка группы ДБК-21

Толстова Ольга Викторовна
Проверил:

док.биол.наук, доц.

Грушко Мария Павловна
Старший преподаватель

Юрченко Вера Витальевна
_______________2011 г.

Астрахань

2011


Содержание

Стр.

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I. Превращение энергии в биосфере . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II. Биогеохимические круговороты . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Круговорот воды . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Круговорот кислорода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Круговорот углерода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Круговорот азота . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Круговорот фосфора . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Круговорот серы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III.Факторы влияющие на круговорот веществ в природе . . . . . . . . . . 18

IV. Влияние человека на круговороты веществ в природе . . . . . . . . . . 23

Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Список используемых источников литературы . . . . . . . . . . . . . . . . . . . 29

Введение
Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

Экосистемы – это сообщества организмов, связанные с неорганической средой теснейшими материально – энергетическими связями. Растения могут существовать только за счёт постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. В любом конкретном местообитании запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течении жизни организмов, так и после их смерти, в результате разложения трупов и растительных остатков. Таким образом, сообщество обретает с неорганической средой определённую систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Любую совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ, называют экосистемой. Такой термин был предложен в 1935 году английским экологом А. Тенсли, который подчёркивал, что при таком подходе неорганические и органические факторы выступают как равноправные компоненты, и мы не можем отделить организмы от конкретной окружающей среды. А. Тенсли рассматривал экосистемы как основные единицы природы и поверхности Земли, хотя они и не имеют определённого объёма и могут охватывать пространство любой протяжённости.

Большинство веществ земной коры проходит через живые организмы и вовлечено в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, то есть циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами (Криксунов Е.А., Пасечник В.В., Сидорин А.П., 1995).

Цель работы: изучить основные механизмы поддержания организации и устойчивости биосферы за счёт биогеохимических круговоротов веществ и потока энергии.

Задачи работы:

  1. Оценить влияние потока энергии на биосферу.

  2. Проанализировать основные биогеохимические круговороты.

  3. Выявить основные факторы, влияющие на круговорот вещества в биосфере.

I. Превращение энергии в биосфере
Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (СО2 и Н2О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей.

Образованные в процессе фотосинтеза органические вещества могут служить источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим: от растения к растительноядным животным, от них – к плотоядным и т.д. Высвобождение заключенной в органических соединениях энергии происходит в процессе дыхания или брожения. Разрушение использованных или отмерших остатков биомассы осуществляют разнообразные организмы, относящиеся к числу сапрофитов (гетеротрофные бактерии, грибы, некоторые животные и растения). Они разлагают остатки биомассы на неорганические составные части (минерализация), способствуя вовлечению в биологический круговорот соединений и химических элементов, что обеспечивает очередные циклы и продуцирования органического вещества. Однако содержащаяся в пище энергия не совершает круговорота, а постепенно превращается в тепловую энергию. В конечном итоге вся поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения, поэтому биосфере необходим приток энергии извне (Криксунов Е. А., 1995).

В отличие от веществ, которые непрерывно циркулируют по разным блокам экосистемы и всегда могут вновь входить в круговорот, энергия может быть использована только один раз.

Односторонний приток энергии как универсальное явление природы происходит в результате действия законов термодинамики, относящимся к основам физики. Первый закон утверждает, что энергия может переходить из одной формы (например, энергия света) в другую (например, потенциальную энергию пищи), но она никогда не создается вновь и не исчезает.

Второй закон термодинамики гласит, что не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой ее части. В таких превращениях определенное количество энергии рассеивается в недоступную тепловую энергию, и, следовательно, теряется. По этой причине не может быть превращений, например пищевых веществ в вещество, из которого состоит тело организма, идущих со 100-процентной эффективностью.

Существование всех экосистем зависит от постоянного притока энергии, которая необходима всем организмам для поддержания их жизнедеятельности и самовоспроизведения.

Солнце – практически единственный источник всей энергии на Земле. Однако далеко не вся энергия солнечного излучения может усваиваться и использоваться организмами. Лишь около половины обычного солнечного потока, падающего на зеленые растения (то есть на продуценты), поглощается фотосинтетическими элементами и лишь малая доля поглощенной энергии (от 1/100 до 1/20 части) запасается в виде биохимической энергии (энергии пищи).

Таким образом, большая часть солнечной энергии теряется в виде тепла на испарение. В целом поддержание жизни требует постоянного притока энергии. И где бы ни находились живые растения и животные, мы всегда найдем здесь источник их энергии (Криксунов Е. А., 1995).

II. Биогеохимические круговороты
Химические элементы, входящие в состав живого, обычно циркулируют в биосфере по характерным путям: из внешней среды в организмы и опять во внешнюю среду. Для биогенной миграции свойственно накопление химических элементов в организмах (аккумуляция) и их высвобождение в результате минерализации отмершей биомассы (детрита). Такие пути циркуляции химических веществ (в большей или меньшей степени замкнутые), протекающие с использованием солнечной энергии через растительные и животные организмы, называют биогеохимическими круговоротами (био относится к живым организмам, а гео – к почве, воздуху, воде на земной поверхности).

Различают круговороты газового типа с резервуарами неорганических соединений в атмосфере или океанах (N2, О2, СО22О) и круговороты осадочного типа с менее обширными резервуарами в земной коре (Р, Са, Fе).

Необходимые для жизни элементы и растворенные соли условно называют биогенными элементами (дающими жизнь), или питательными веществами. Среди биогенных элементов различают две группы: макротрофные вещества и микротрофные вещества.

Первые охватывают элементы, которые составляют химическую основу тканей живых организмов. Сюда относятся: углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера.

Вторые включают в себя элементы и их соединения, также необходимые для существования живых систем, но в исключительно малых количествах. Такие вещества часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт. Хотя микротрофные элементы необходимы для организмов в очень малых количествах, их недостаток может сильно ограничить продуктивность, так же как и нехватка биогенных элементов.

Циркуляция биогенных элементов сопровождается обычно их химическими превращениями. Нитратный азот, например, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В процессах денитрификации и фиксации азота принимают участие различные механизмы, как биологические, так и химические.

Углерод, содержащийся в атмосфере в виде СО2, является одним из исходных компонентов для фотосинтеза, а затем вместе с органическим веществом потребляется консументами. При дыхании растений и животных, а также за счет редуцентов углерод в виде СО2 возвращается в атмосферу.

В отличие от азота и углерода резервуар фосфора находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами (образование гуано). Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.

В отличие от энергии биогенные элементы могут использоваться неоднократно: круговорот их характерная черта. Другое отличие от энергии состоит в том, что запасы биогенных элементов непостоянны. Процесс связывания некоторой их части в виде живой биомассы снижает количество, остающееся в среде экосистемы. И если бы растения и другие организмы, в конечном счете, не разлагались бы, запас биогенов исчерпался бы и жизнь на Земле прекратилась. Отсюда можно сделать вывод, что активность гетеротрофов, и в первую очередь организмов, функционирующих в детритных цепях, - решающий фактор сохранения круговорота биогенных элементов и образования продукции.

Рассмотрим подробнее биогеохимические круговороты некоторых веществ (Фримантл М., 1999).

    1. Круговорот воды

Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы - это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути. Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища - так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.

В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре (Мустафин А. Г., Лагкуева Ф.К., 1998)

    1. Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5* 1015 m, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых «построены» организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (Рудзидис Г., Фельдман Ф., 2001)

    1. Круговорот углерода

Углерод по распространенности на Земле занимает шестнадцатое место среди всех элементов и составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в ФРГ, Шри-Ланка и СССР). Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например кальцит и доломит, а также в состав всех биологических веществ. В форме диоксида углерода он входит в состав земной атмосферы, в которой на его долю приходится 0,046% массы.

Углерод имеет исключительное значение для живого вещества (живым веществом в геологии называют совокупность всех организмов, населяющих Землю). Из углерода в биосфере создаются миллионы органических соединений. Углекислота из атмосферы в процессе фотосинтеза, осуществляемого зелеными растениями, ассимилируется и превращается в разнообразные органические соединения растений. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения, продуцируют в год около 1,5*1011m углерода в виде органической массы. Растения частично поедаются животными (при этом образуются пищевые цепи). В конечном счете, органическая масса в результате дыхания, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим другим соединениям – каменным углям, нефти. В процессах распада органических веществ, их минерализации, огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые). В активном круговороте углекислый газ  живое вещество участвует очень небольшая часть всей массы углерода. Огромное количество углекислоты законсервировано в виде ископаемых известняков и других пород.

Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Атмосфера пополняется углекислым газом благодаря процессам разложения органических веществ, карбонатов и т.д. Особенно мощным источником являются вулканы, газы которых состоят главным образом из паров воды и углекислого газа.

Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

Содержание СО2 в воздухе медленно, но неуклонно повышается (Рудзидис Г., Фельдман Ф., 2001).

    1. Круговорот азота

Азот входит в состав земной атмосферы в несвязанном виде в форме двухатомных молекул. Приблизительно 78% всего объема атмосферы приходится на долю азота. Кроме того, азот входит в состав растений и животных организмов в форме белков. Растения синтезируют белки, используя нитраты из почвы. Нитраты образуются там из атмосферного азота и аммонийных соединений, имеющихся в почве. Процесс превращения атмосферного азота в форму, усвояемую растениями и животными, называется связыванием (или фиксацией) азота.

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:
2HN0з + СаСОз = Са(NОз)2 + СОС + Н0Н
Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий — «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений. В основном используются нитрат кальция Ca(NO3)2, нитрат аммония NH4NO3, нитрат натрия NаNO3, и нитрат калия KNO3. Например, в Таиланде используются листья лейкаены как органическое удобрение. Лейкаена принадлежит к бобовым растениям и, как и все они, содержит очень много азота. Поэтому ее можно использовать вместо химического удобрения.

В последнее время наблюдается повышения содержания нитратов в питьевой воде, главным образом за счет усилившегося использования искусственных азотных удобрений в сельском хозяйстве. Хотя сами нитраты не так уж опасны для взрослых людей, в организме человека они могут превращаться в нитриты. Кроме того, нитраты и нитриты используются для обработки и консервирования многих пищевых продуктов, в том числе ветчины, бекона, солонины, а также некоторых сортов сыра и рыбы. Отдельные ученые полагают, что в организме человека нитраты могут превращаться в нитрозамины:

Известно, что нитрозамины способны вызывать онкологические заболевания у животных. Большинство из нас уже подвержено воздействию нитрозаминов, которые в небольшом количестве находятся в загрязненном воздухе, сигаретном дыму и некоторых пестицидах. Полагают, что нитрозамины могут быть причиной 70-90% случаев онкологических заболеваний, возникновение которых приписывают действию факторов окружающей среды (Фримантл М., 1999).

    1. Круговорот фосфора

Источником фосфора биосферы является главным образом апатит, встречающийся во всех магматических породах. В превращениях фосфора большую роль играет живое вещество. Организмы извлекают фосфор из почв, водных растворов. Усвоение фосфора растениями во многом зависит от кислотности почвы. Фосфор входит в многочисленные соединения в организмах: белки, нуклеиновые кислоты, костная ткань, лецитины, фитин и другие соединения; особенно много фосфора входит в состав костей. Фосфор жизненно необходим животным в процессах обмена веществ для накопления энергии. С гибелью организмов фосфор возвращается в почву и в илы морей. Он концентрируется в виде морских фосфатных конкреций, отложений костей рыб, что создает условия для создания богатых фосфором пород, которые в свою очередь являются источником фосфора в биогенном цикле.

Содержание фосфора в земной коре составляет 8*10-20 % (по весу). В свободном состоянии фосфор в природе не встречается вследствие его легкой окисляемости. В земной коре он находится в виде минералов (фторапатит, хлорапатит, вивианит и др.), которые входят в состав природных фосфатов – апатитов и фосфоритов. Фосфор имеет исключительное значение для жизни животных и растений.

Так как растения уносят из почвы значительное количество фосфора, а естественное пополнение фосфорными соединениями почвы крайне незначительно, то внесение в почву фосфорных удобрений является одним из важнейших мероприятий по повышению урожайности. Ежегодно в мире добывают приблизительно 125 млн. т. фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений (Фримантл М., 1999).

    1. Круговорот серы

Круговорот серы тесно связан с живым веществом. Сера в виде SO2, SO3, H2S и элементарной серы выбрасывается вулканами в атмосферу. С другой стороны, в природе в большом количестве известны различные сульфиды металлов: железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере при участи многочисленных микроорганизмов до сульфатной серы SO42 почв и водоемов. Сульфаты поглощаются растениями. В организмах сера входит в состав аминокислот и белков, а у растений, кроме того, - в состав эфирных масел и т.д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются очень сложными превращениями серы. При разрушении белков при участии микроорганизмов образуется сероводород. Далее сероводород окисляется либо до элементарной серы, либо до сульфатов. В этом процессе участвуют разнообразные микроорганизмы, создающие многочисленные промежуточные соединения серы. Известны месторождения серы биогенного происхождения. Сероводород может вновь образовать «вторичные» сульфиды, а сульфатная сера создает гипс. В свою очередь сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию (Рудзидис Г., Фельдман Ф., 2001).

III. ФАКТОРЫ ВЛИЯЮЩИЕ НА КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ
Значительную роль в эволюции неживой природы играют живые организмы. Их деятельность существенно влияет на формирование состава атмосферы и земной коры. Большой вклад в понимание взаимосвязей между живой и неживой природой внёс выдающийся советский учёный В.И.Вернадский. Он выявил геологическую роль живых организмов и показал, что их деятельность представляет собой важнейший фактор преобразования минеральных оболочек планеты.

Таким образом, живые организмы, испытывая на себе влияние факторов неживой природы, своей деятельностью изменяют условия окружающей среды, т.е. среды своего обитания. Это приводит к изменению структуры всего сообщества - биоценоза.

Установлено, что азот, фосфор и калий могут оказывать наибольшее положительное влияние на урожаи культурных растений, и потому эти три элемента в наибольших количествах вносят в почву с удобрениями, применяемыми в сельском хозяйстве. Поэтому азот и фосфор оказались главной причиной ускоренной эвтрофизации озёр в странах с интенсивным земледелием. Эвтрофизация - это процесс обогащения водоёмов питательными веществами. Она представляет собой естественное явление в озёрах, так как реки приносят питательные вещества с окружающих дренажных площадей. Однако этот процесс обычно идёт очень медленно, в течение тысяч лет. Неестественная эвтрофизация, ведущая к стремительному увеличению продуктивности озёр, происходит в результате стока с сельскохозяйственных угодий, которые могут быть обогащены питательными веществами удобрений.

Существуют также два других важных источника фосфора - сточные воды и моющие средства. Сточные воды, как в своём первоначальном виде, так и обработанные, обогащены фосфатами. Бытовые детергенты содержат от 15% до 60% биологически разрушаемого фосфата. Кратко можно резюмировать, что эвтрофизация, в конце концов, приводит к истощению ресурсов кислорода и к гибели большинства живых организмов в озёрах, а в крайних ситуациях - и в реках (Болин Б., Десс Б. Р., Дж. Ягер, Уоррик Р., 1998).

Организмы в экосистеме связаны общностью энергии и питательных веществ, и необходимо чётко разграничить эти два понятия. Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который, в конце концов, и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом, в экосистеме происходит постоянный круговорот питательных веществ, в котором участвуют и живой и неживой компоненты. Такие круговороты называются биогеохимическими циклами (Криксунов Е.А., Пасечник В.В., Сидорин А.П., 1995).

На глубине в десятки километров горные породы и минералы подвергаются воздействию высоких давлений и температур. В результате происходит метаморфизм (изменение) их структуры, минерального, а иногда и химического состава, что приводит к образованию метаморфических пород.

Опускаясь ещё дальше в глубь Земли, метаморфические породы могут расплавиться и образовать магму. Внутренняя энергия Земли (т.е. эндогенные силы) поднимает магму к поверхности. С расплавленными горными породами, т.е. магмой, химические элементы выносятся на поверхность Земли во время извержений вулканов, застывают в толще земной коры в виде интрузий. Процессы горообразования поднимают глубинные горные породы и минералы на поверхность Земли. Здесь горные породы подвергаются воздействию солнца, воды, животных и растений, т.е. разрушаются, переносятся и отлагаются в виде осадков в новом месте. В результате образуются осадочные горные породы. Они накапливаются в подвижных зонах земной коры и при пригибании снова опускаются на большие глубины (Болин Б., Десс Б. Р., Дж. Ягер, Уоррик Р., 1989).

Вновь начинаются процессы метаморфизма, переправления, кристаллизации, и химические элементы возвращаются на поверхность Земли. Такой "маршрут" химических элементов называется большим геологическим круговоротом. Геологический круговорот не замкнут, т.к. часть химических элементов выходит из круговорота: уносится в космос, закрепляется прочными связями на земной поверхности, а часть поступает извне, из космоса, с метеоритами.

Геологический круговорот - это глобальное путешествие химических элементов внутри планеты. Более короткие путешествия они совершают на Земле в пределах отдельных её участков. Главный инициатор - живое вещество. Организмы интенсивно поглощают химические элементы из почвы, воздуха воды. Но одновременно и возвращают их. Химические элементы вымываются из растений дождевыми водами, выделяются в атмосферу при дыхании и отлагаются в почве после смерти организмов. Возвращённые химические элементы снова и снова вовлекаются живым веществом в "путешествия". Всё вместе и составляет биологический, или малый, круговорот химических элементов. Он тоже не замкнут.

Часть элементов-"путешественников" уносится за его пределы с поверхностными и грунтовыми водами, часть - на разное время "выключается" из круговорота и задерживается в деревьях, почве, торфе.

Ещё один маршрут химических элементов проходит сверху вниз от вершин и водоразделов к долинам и руслам рек, впадинам, западинам. На водоразделы химические элементы поступают только с атмосферными осадками, а выносятся вниз и с водою, и под действием силы тяжести. Расход вещества преобладает над поступлением, о чём говорит само название ландшафтов водоразделов - элювиальные.

На склонах жизнь химических элементов изменяется. Скорость их передвижения резко увеличивается, и они "проезжают" склоны, как пассажиры, удобно устроившиеся в купе поезда. Ландшафты склонов так и называются - транзитными.

"Отдохнуть" от дороги химическим элементам удаётся лишь в аккумулятивных (накапливающих) ландшафтах, расположенных в понижениях рельефа. В этих местах они часто и остаются, создавая для растительности хорошие условия питания. В некоторых случаях растительности приходится бороться уже с избытком химических элементов (Фримантл М., 1999).

Уже много лет назад в распределение химических элементов вмешался человек. С начала ХХ столетия деятельность человека стала главным способом их путешествия. При добыче полезных ископаемых огромное количество веществ изымается из земной коры. Их промышленная переработка сопровождается выбросами химических элементов с отходами производства в атмосферу, воды, почвы. Это загрязняет среду обитания живых организмов. На земле появляются новые участки с высокой концентрацией химических элементов - рукотворные геохимические аномалии. Они распространены вокруг рудников цветных металлов (меди, свинца). Эти участки иногда напоминают лунные пейзажи, потому что практически лишены жизни из-за высоких содержании вредных элементов в почвах и водах. Остановить научно-технический прогресс невозможно, но человек должен помнить, что существует порог в загрязнении природной среды, переходить который нельзя, за которым неизбежны болезни людей и даже вымирание цивилизации.

Создав биогеохимические "свалки", природа, возможно, хотела предостеречь человека от непродуманной, безнравственной деятельности, показать ему на наглядном примере, к чему приводит нарушение распределения химических элементов в земной коре и на её поверхности (Болин Б., Десс Б. Р., Дж. Ягер, Уоррик Р., 1989).

IV. ВЛИЯНИЕ ЧЕЛОВЕКА НА КРУГОВОРОТЫ ВЕЩЕСТВ В ПРИРОДЕ
В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день (Криксунов Е.А., Пасечник В.В., 1995).

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода, и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород, и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи (Мустафин А.Г., Лагкуева Ф.К., 1998).

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но, тем не менее, не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах – наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры, как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты (Болин Б., Десс Б. Р., Дж. Ягер, Уоррик Р., 1989).

З
АКЛЮЧЕНИЕ


Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами. В природе существует теснейшая взаимосвязь между всеми живыми организмами: зелеными растениями, животными, бактериями, грибами.

Круговорот веществ в биосфере поддерживается постоянным потоком энергии. Единственный источник внешней энергии на Земле – это излучение Солнца. Энергия, проходящая через биосферу нашей планеты, образует именно поток, а не круговорот.

Каждый живой организм получает энергию Солнца в прямом или измененном виде, а затем выделяет ее в окружающую среду или передает другим живым организмам. В обобщенной схеме энергия проходит сквозь живую оболочку и выделяется в среду в уже “отработанном” виде, в виде тепла, которое не может быть вновь усвоено живыми организмами.

Основную роль потребителей солнечной энергии выполняют зеленые растения, которые способны непосредственно усваивать световую энергию Солнца.

Если для круговорота веществ достаточно того запаса вещества, который имеется в биосфере, то поток энергии требует непрерывного поступления энергии извне – наша биосфера – открытая система.

Вместе с круговоротом веществ в биосфере осуществляется и круговорот (миграция) атомов конкретных химических элементов. Они переходят из организма в организм, затем — в неживую природу и снова в организм. Главенствующую роль в этом процессе играет вся масса живых организмов Земли.

Положение о круговороте атомов является одним из основных законов геохимии биосферы. Этот закон сводится к следующему: в сфере атомы участвуют в биологических круговоротах, в ходе которых они поглощаются живым веществом и заряжаются энергией, затем покидают живое вещество, отдавая накопленную энергию во внешнюю среду.

Все процессы природы находятся в закономерной связи и развитии. Любое нарушение этих связей, разрыв их порождают негативные явления, с которыми сталкивается как отдельный человек, так и все общество в целом.

С появлением человечества возникло сложное взаимодействие общества и природы, одним из проявлений которого является сдвиг в биосфере в сторону возникновения особых биогеоценозов антропогенного характера.

В настоящее время в связи с ростом народонаселения и технической революцией воздействие человека на биосферу стало необычайно сильным, качественно отличным от прежнего (Пономарева И. Н., 2001).


Выводы

  1. Существование биосферы зависит от постоянного притока энергии, которая необходима всем организмам для поддержания их жизнедеятельности и самовоспроизведения. Солнечная энергия является практически единственным источником всей энергии на Земле. Однако далеко не вся энергия солнечного излучения может усваиваться и использоваться организмами. Большая часть солнечной энергии теряется в виде тепла на испарение. И где бы ни находились живые растения и животные, мы всегда найдем здесь источник их энергии.

  2. В отличие от энергии биогенные элементы могут использоваться неоднократно: круговорот их характерная черта. Другое отличие от энергии состоит в том, что запасы биогенных элементов непостоянны. Процесс связывания некоторой их части в виде живой биомассы снижает количество, остающееся в среде экосистемы. И если бы растения и другие организмы, в конечном счете, не разлагались бы, запас биогенов исчерпался бы и жизнь на Земле прекратилась. Отсюда можно сделать вывод, что активность гетеротрофов, и в первую очередь организмов, функционирующих в детритных цепях, - решающий фактор сохранения круговорота биогенных элементов и образования продукции.

  3. В настоящее время окружающей средой для человечества стала практически вся биосфера, для деятельности в которой человеку требуется все больше и больше энергии. Человек активно использует в сельском и лесном хозяйстве почти все наземные и многие водные биогеоценозы. Но в настоящее время его деятельность отражается практически на всех остальных естественных экосистемах. Антропогенные воздействия (загрязнение нефтью океанов, «парниковый эффект» вследствие увеличения СО2 в атмосфере, «кислотные дожди», разрушение озонового экрана и др.) могут привести к значительным отклонениям в равновесии экосистем, делают прерывным биотический круговорот и отрицательно сказываются на биосфере в целом. Сбалансированность биологического круговорота, т.е. его уравновешенность, а, следовательно, и устойчивость экосистемы определяется максимально возможным числом связей между видами в пищевой сети. Поэтому все настойчивее выдвигаются требования создать промышленность, безвредную для природы.

Список исп
ользуемых источников литературы


  1. Болин Б., Десс Б. Р., Дж. Ягер, Уоррик Р. Парниковый эффект, изменение климата и экосистемы. – Ленинград: Гидрометеоиздат, 1989

  2. Криксунов Е.А., Пасечник В.В., Сидорин А.П. «Экология» - М.: Дрофа, 1995.

  3. Мустафин А.Г., Лагкуева Ф.К., Быстренина Н.Г. и дрю; Под ред. В.Н. Ярыгина Биология. Для поступающих в вузы – Мю: Высшая школа, 1998.

  4. Пономарева И.Н. Экология – М.: Вентана-Графф, 2001.

  5. Рудзидис Г., Фельдман Ф. Химия 11 – М.: Просвещение, 2001.

  6. Фримантл М. Химия в действии – М.: Просвещение, 1999.

1. Реферат Анализ и виды инвестиций
2. Курсовая на тему Становление политических партий Российской Федерации Единая Россия - партия-гегемон
3. Реферат на тему Religion Versus Common Sense Essay Research Paper
4. Реферат Охрана труда и безопастность
5. Реферат на тему Individualism In Farenheit 451 Essay Research Paper
6. Курсовая на тему Формирование объявленного уставного фонда с иностранными инвестици
7. Реферат на тему Анализ производственнохозяйственной деятельности РУПП БелАЗ
8. Реферат на тему Franklins Road To Humility Essay Research Paper
9. Курсовая Проектирование аналоговой системы передачи АСП
10. Реферат Управления качеством медицинской помощи