Лабораторная работа

Лабораторная работа Имитационное моделирование работы систем массового обслуживания

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.12.2024





Лабораторная работа №3
Имитационное моделирование работы систем массового обслуживания
Цель работы: научиться определять функциональные характеристики системы массового обслуживания на основе имитационного моделирования; приобрести опыт синтеза систем массового обслуживания с заданными характеристиками.
Задание

1. Разработать программу на языке SIMNET II, для моделирования описанной ситуации согласно своему варианту.

2. Загрузить среду SIMNET II (файл SIMEDIT.BAT). В редакторе системы набрать текст разработанной программы или прочитать созданную в другом текстовом редакторе имитационную модель (клавиша F2).

3. Выполнить имитацию процесса работы СМО. Подбирая требуемый параметр, получить СМО с требуемыми характеристиками.

4. Рассчитайте основные функциональные характеристики работы оптимальной СМО на основе полученных результатов имитационного моделирования. Запишите полученные результаты в таблицу 3.1. Завершите сеанс работы с системой (сочетание клавиш Alt-X).

5. Оформите отчет о проделанной работе.
Вариант 1
Определить оптимальное число телефонных номеров, необходимых для установки на коммерческом предприятии при 8 часовом рабочем дне при условии, что заявки на переговоры поступают с интенсивностью 90 заявок/час, а средняя продолжительность разговора по телефону составляет 2 мин. Статистические наблюдения показали, что сделкой заканчивается только 10% разговоров. Средний доход от одной сделки составляет 25 ден. ед., а стоимость использования одной телефонной линии — 0,9 ден. ед./час.

Программа, моделирующая работу системы массового обслуживания, имеет вид.
$PROJECT;Model 2.1;Lera I Yulia:

$DIMENSION;ENTITY(700):

$BEGIN:

S1 *S;EX(0.67):

Q1 *Q:

F1 *F;;EX(2);3;*TERM:

$END:

$RUN-LENGTH=600:

$
RUNS
=365:


$
STOP
:

По условию задачи требуется найти такое количество каналов обслуживания, при котором прибыль предприятия будет максимальной. В модели будем подбирать второй параметр строки F
1
(выделен курсивом).
При с=5:П = 816*0,1*25 – 5*0,9 = 2235,5 ден.ед.

При с=4:П = 835*0,1*25 – 4*0,9 = 2251,4 ден.ед.

При с=2:П = 860*0,1*25 – 2*0,9 = 2379,8 ден.ед.

При с=1:П = 824*0,1*25 – 1*,09 = 2148,2 ден.ед.
Таким образом, максимальная прибыль достигается при установлении трех телефонных линий. Программа имитационного моделирования для оптимального режима работы примет вид:

имитационный моделирование массовый обслуживание



Результаты расчетов функциональных характеристик СМО:



Характеристика

Значение

l

1/0,67 = 1,5 зв./мин.

m

60/2=30 зв./мин.

с

3

время моделирования

599,5 мин.

общее количество заявок

860 зв.

количество отказов в обслуживании

0 зв.

количество обслуженных заявок

860-0=860 = 2240

pотк

0/860=0%

q

1 – 0 = 1%

эфф

860/599,5 = 1,43 зв./мин.

Lq

2,14 зв.

Wq

0,58 мин.



Контрольные вопросы
1. Какие задачи принятия решений могут быть сформулированы применительно к системам массового обслуживания?

Среди основных моделей принятия решений можно выделить:

1. Модели со стоимостными характеристиками (определение требуемой интенсивности обслуживания или оптимального количества параллельных сервисов). Требуется найти компромисс между затратами на обслуживание и потерями, связанными с задержками в предоставлении услуг или отказами в обслуживании.

2. Модели предпочтительного уровня обслуживания. Необходимо уравновесить два конфликтующих показателя: среднее время нахождения заявки в системе (в очереди) и коэффициент простоя каналов обслуживания.

2. Как рассчитать функциональные характеристики работы СМО на основе результатов имитационного моделирования?

Рассмотрим следующий пример:

Функциональные характеристики работы СМО на основе результатов имитационного моделирования рассчитываются следующим образом:

В области QUEUES представлены показатели моделирования изменения очереди. Очередь Q
1
имеет максимально допустимую емкость (CAPACITY), равную 4. Средняя длина очереди (AV
.
LENGTH
) составила 2,14 заявки. В столбце MIN
/
MAX
/
LAST

LEN
отображены соответственно минимальная (0), максимальная (4) и последняя (3) длины очереди. Среднее время ожидания заявкой своего обслуживания (AV
.
DELAY

(
ALL
)
) составило 0,58 мин. Этот показатель относится ко всем заявкам, включая те, которые не стояли в очереди. Для тех же заявок, которые стояли в очереди, среднее время ожидания (AV
.
DELAY

(+
VE

WAIT
)
) составило 0,69 мин. Доля заявок, которым не пришлось стоять в очереди, указана в последнем столбце (%ZERO

WAIT

TRANSACTION
) и составляет 17%. Приведены также среднекрадратичные отклонения описанные параметров и 95% доверительный интервал.

В области FACILITIES отражены свойства узлов обслуживания. В моделируемой СМО имеется 2 параллельно работающих сервиса (NBR

SRVRS
). Количество занятых каналов изменялось от 0 до 2, а в момент окончания имитации оба канала также были заняты (столбец MIN
/
MAX
/
LAST

UTILZ
). Столбец AV
.
UTILIZ
показывает среднее количество занятых средств обслуживания (1,8453). Два последних столбца отражают информацию о средней продолжительности периодов простоя (AV
.
IDLE

TIME
) и занятости (AV
.
BUSY

TIME
) сервиса. Средняя продолжительность занятости не может быть меньше продолжительности обслуживания. Поскольку среднее время обслуживания одной заявки составляет 0,5 мин., а среднее время занятости 3,11 мин., то получаем, что каждый сервис обслуживает приблизительно 3,11 / 0,5 = 6,22 клиента, а затем простаивает 0,26 мин.

В области TRANSACTION

COUNT
приведена информация о движении потока заявок в имитационной модели. В нашем случае за 599,6 мин., в систему поступило 3003 заявки на обслуживание. Из них 763 были удалены из системы по причине отказа в обслуживании (исчерпана максимально допустимая емкость очереди). Из оставшихся 2240 заявок 380 избежали ожидания в очереди, а 1860 были вынуждены ожидать начала обслуживания в силу занятости средств обслуживания. В момент окончания сеанса моделирования в очереди оставалось еще 3 заявки. На вход узла обслуживания F
1
поступило 2237 заявок. Из них 2235 были полностью обслужены, а 2 остались в процессе обслуживания на момент окончания имитации.

Таким образом, среди основных характеристик описываемой СМО можно выделить следующие.
Таблица 3.1

Характеристика

Значение

l

1/0,2 = 5 пок./мин.

m

1/0,5 = 2 пок./мин.

с

2

время моделирования

599,6 мин.

общее количество заявок

3003 пок.

количество отказов в обслуживании

763 пок.

количество обслуженных заявок

3003 – 763 = 2240

pотк

763/3003 = 0,254 (25,4%)

q

1 – 0,254 = 0,746 (74,6%)

эфф

2240/599,6 = 3,74 пок./мин.

Lq

2,14 пок.

Wq

0,58 мин.



Вывод: я научилась определять функциональные характеристики системы массового обслуживания на основе имитационного моделирования; приобрела опыт синтеза систем массового обслуживания с заданными характеристиками.

Размещено на Allbest.ru

1. Доклад Опера С В Рахманинова Алеко
2. Контрольная_работа на тему Введение в медицинскую информатику
3. Реферат Способы финансирования дефицита бюджета
4. Реферат Дворцовые перевороты 5
5. Реферат на тему Latin American Independence Essay Research Paper Latin
6. Реферат Васпуракан
7. Реферат на тему Richard Cory Miniver Cheevy Essay Research Paper
8. Доклад на тему Понятия и виды рабочего времени
9. Курсовая Износ основных средств фирмы
10. Реферат Процесс доказывания