Лекция

Лекция Строение и функции белков

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


Карагандинская государственная медицинская академия

Кафедра биохимии


Лекция «Введение  Строение и функции белков»
Дисциплина Биологическая химия

Специальность 051301 - Общая медицина

Курс II

Время (продолжительность) 50 минут




 
Караганда 2008г.
Утверждена на методическом совещании кафедры

«______»________________2008,  Протокол №_____

Зав.кафедрой, профессор                 ______________  Л.Е. Муравлева
Тема: Введение. Строение и функции белков.

Цель: ознакомить студентов с особенностями структурной организации и физико-химическими свойствами белков

План лекции:

1.Представление о белках как важнейшем классе органических веществ и структурно-функциональном компоненте организма человека.

2.Первичная, вторичная и третичная  структура белков. Понятие об активном центре белков.

3.Общая характеристика олигомерных белков.

4.Физико-химические свойства белков. Денатурация белков. Факторы, вызывающие денатурацию белков. Понятие о шаперонах. Медицинское значение

1.Представление о белках как важнейшем классе органических веществ и структурно-функциональном компоненте организма человека.



БЕЛКИ или ПРОТЕИНЫ - это высокомолекулярные азотсодержащие органические вещества, линейные гетерополимеры, структурным компонентом которых являются аминокислоты, связанные пептидными связями.

                В природе встречаются десятки тысяч различных белков. И все они отличаются друг от друга по пяти основным признаком.

Основные различия в строении белковых молекул


1.        По количеству аминокислот

2.        По соотношению количества различных аминокислот. Например, в белке соединительной ткани коллагене 33% от общего количества аминокислот составляет глицин, а в молекуле белкового гормона инсулина, вырабатываемого в поджелудочной железе, содержание глицина гораздо меньше – всего 8%.

3.        Различная последовательность чередования аминокислот. Это означает, что даже при одинаковом соотношении разных аминокислот в каких-нибудь двух белках порядок их расположения этих аминокислот различен, то это будут разные белки.

4.        Количество полипептидных цепей в различных белках может варьировать от 1 до 12, но если больше единицы, то обычно четное (2, 4, 6 и т.п.)

5.        По наличию небелкового компонента, который называется «ПРОСТЕТИЧЕСКАЯ ГРУППА». Если ее нет, то это – простой белок, если есть – сложный белок

2.Первичная, вторичная и третичная  структура белков. Понятие об активном центре белков

                Формируется за  счет  COOH-группы  одной  аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил». Например, тетрапептид: валил-аспарагил-лизил-серин

                ПЕПТИДНАЯ СВЯЗЬ формируется ТОЛЬКО ЗА СЧЕТ АЛЬФА-АМИНОГРУППЫ И СОСЕДНЕЙ  COOH-ГРУППЫ ОБЩЕГО ДЛЯ ВСЕХ АМИНОКИСЛОТ ФРАГМЕНТА МОЛЕКУЛЫ. Если  карбоксильные и аминогруппы входят в состав радикала, то они никогда не участвуют в формировании пептидной связи в молекуле белка.  Аминокислоты, соединенные пептидной связью в полипептидную цепь, называются первичной структурой белка.

Архитектуры белков сложны и разнообразны. Однако и в белках прослеживается набор "стандартных" структур. Прежде всего здесь речь идет о регулярных вторичных структурах белка: об a-спирали и b-структуре; a-спирали часто изображаются спиральными лентами ( Рис.1) или цилиндрами, а вытянутые b-структурные участки (слипаясь, они образуют листы) стрелками ( Рис.1). Беспорядочный клубок - это участки, не имеющие правильной, периодической пространственной организации.



Слайд - рисунок. 1. Регулярные вторичные структуры белков

a -спираль - образуется внутрицепочечными водородными связями между NH-группой одного остатка аминокислоты и CO-группой четвертого от нее остатка; b -структура (складчатый лист) - образуется межцепочечными водородными связями или связями между участками одной полипептидной цепи изогнутой в обратном направлении; Но конформация этих участков также строго обусловлена аминокислотной последовательностью.

Содержание a -спиралей и b -структур в разных белках различно: у фибриллярных белков - только a -спираль или только b -складчатый лист; а у глобулярных белков - отдельные фрагменты полипептидной цепи: либо a -спираль, либо b -складчатый лист, либо беспорядочный клубок. В одном и том же белке могут присутствовать все три способа укладки полипептидной цепи.

Третичная структура глобулярных белков представляет ориентацию в пространстве полипептидной цепи, содержащей a -спирали, b -структуры и участки без периодической структуры (беспорядочный клубок). Дополнительное складывание скрученной полипептидной цепи образует компактную структуру. Это происходит, прежде всего, в результате взаимодействия между боковыми цепями аминокислотных остатков. Существует несколько видов взаимодействия между R-группами, в основном нековалентного характера (рис.2):

Связи, стабилизирующие третичную структуру:

1.                    электростатические силы притяжения между R-группами, несущими противоположно заряженные ионогенные группы (ионные связи);

2.                    водородные связи между полярными (гидрофильными) R-группами;

3.                    гидрофобные взаимодействия между неполярными (гидрофобными) R-группами;

4.                    дисульфидные связи между радикалами двух молекул цистеина. Эти связи ковалентные. Они повышают стабильность третичной структуры, но не всегда являются обязательными для правильного скручивания молекулы. В ряде белков они могут вообще отсутствовать.

Слайд-рисунок 2. Типы связей, возникающие между радикалами аминокислот при формировании третичной структуры белка. 1 — ионная связь; 2 — водородная связь; 3 — гидрофобные взаимодействия; 4 — дисульфидная связь.

Гидрофобные радикалы аминокислот имеют тенденцию к объединению внутри глобулярной структуры белков, образуя плотное гидро­фобное ядро. Гидрофильные ионизированные и неионизированные радикалы аминокислот в основном расположены на поверхности белка и оп­ределяют его растворимость в воде.

Конформационная лабильность белков — это спо­собность белков к небольшим изменениям кон-формации за счет разрыва одних и образования других слабых связей.

На поверхности глобулы образуется участок, который может присоединять к себе другие молекулы, называемые лигандами. Например, лиганд белка-фермента – субстрат; лиганд транспортного белка – транспортируемое вещество;  лиганд антитела (иммуноглобулина) – антиген; лиганд рецептора гормона или нейромедиатора – гормон или нейромедиатор.

Центр связывания с лигандом, или активный центр, формируется из радикалов аминокислотных остатков, сближенных на уровне третичной структуры. В линейной пептидной цепи они могут находиться на расстоянии, значительно удаленном друг от друга. 

Белки проявляют высокую специфичность (избирательность) при взаимодействии с лигандом. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда.

Комплементарность — это пространственное и химическое соответствие взаимодействующих поверхностей.

Длинные полипептидные цепи часто склады­ваются в несколько компактных, относительно не­зависимых областей. Они имеют самостоятельную третичную структуру, напоминающую таковую глобулярных белков, и называются доменами.

Благодаря доменной структуре белков легче фор­мируется их трехмерная структура. Центры связывания белка с лигандом часто рас­полагаются между доменами. Разные домены в белке могут перемещаться отно­сительно друг друга при взаимодействии с лигандом. В некоторых белках домены выполняют самостоятельные функции, связываясь с различными лигандами. Такие белки называются многофункциональными.

3.Общая характеристика олигомерных белков.


Многие белки имеют в своем составе несколь­ко полипептидных цепей. Такие белки называют олигомерными. а отдельные цепи — протомерами. Протомеры в олигомерном белке соединены мно­жеством слабых, нековалентных связей (гидрофобных, ионных, водородных). Взаимодействие протомеров осуществляется благодаря комплементарности их контактирующих поверхностей. Количество протомеров в белках может сильно варьировать: гемоглобин содержит 4 протомера, фермент аспартаттранскарбамоилаза — 12 протомеров, в белок вируса табачной мозаики входит 2120 протоме­ров, соединенных нековалентными связями. Следо­вательно, белки с четвертичной структурой могут иметь очень большую молекулярную массу. Каждый протомер служит лигандом для других протомеров.


Слайд-рисунок 3. Уровни организации белков


Количество и порядок соединения протомеров в белке называется четвертичной структурой.

Олигомерные белки могут содержать разное количество протомеров (например, димеры, тетрамеры, гексамеры и т. д.). В состав олигомерных белков могут входить одинаковые или разные протомеры, например гомодимеры — белки содержащие 2 одинаковых протомера, гетеродимеры — белки, содержащие 2 раз­ных протомера.  Различные по структуре протомеры могут свя­зывать разные лиганды. 

Взаимодействие одного протомера со специ­фическим лигандом вызывает конформационные изменения всего олигомерного белка и изменяет сродство других протомеров к лигандам. Это явление носит название кооперативных изменений конформации протомеров. У олигомерных белков появляется новое по сравнению с одноцепочечными белками свойст­во — способность к аллостерической регуляции их функций.

4.Физико-химические свойства белков. Денатурация белков. Факторы, вызывающие денатурацию белков. Понятие о шаперонах. Медицинское значение

Индивидуальные белки различаются по физико-химическим свойствам: 1) форме молекул; 2) молекулярной массе; 3) суммарному заряду, величина которого зависит от соотношения анионных и катионных групп аминокислот; 4) соотношению полярных и неполярных радика­лов аминокислот на поверхности молекул; 5) степени устойчивости к воздействию различных денатурирующих агентов. Растворимость белков зависит: от перечисленных выше свойств белков; от состава среды, в которой растворяется белок (величины рН, солевого состава, температуры, на­личия других органических веществ, способных взаимодействовать с белком). Величина заряда белков — один из факторов, уве­личивающий их растворимость. При потере заряда в изоэлектрической точке белки легче агрегируют и выпадают в осадок. Это особенно характерно для де­натурированных белков, у которых на поверхности появляются гидрофобные радикалы аминокислот.

На поверхности белковой молекулы имеются как положительно, так и отрицательно заряженные ра­дикалы аминокислот. Количество этих групп, а следовательно, и сум­марный заряд белков зависят от рН среды. Значение рН, при котором белок имеет суммарный нулевой заряд, называется изоэлектрической точ­кой (ИЭТ). В ИЭТ количество положительно и отрицатель­но заряженных групп одинаково, т.е. белок нахо­дится в изоэлектрическом состоянии.

Денатурация белков — это разрушение их нативной конформации, вызванное разрывом слабых связей, ста­билизирующих пространственные структуры, при дей­ствии денатурирующих агентов.

                Факторы, которые вызывают денатурацию белков, можно разделить на   физические и химические.

Физические факторы


                1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-500С. Такие белки называют термолабильными. Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными.

                2. Ультрафиолетовое облучение

                3. Рентгеновское и радиоактивное облучение

                4. Ультразвук

                5. Механическое воздействие (например, вибрация).

5.Денатурация белков. Факторы, вызывающие денатурацию белков. Ренативация белка.

Химические факторы


                1. Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).

                2. Соли тяжелых металлов (например, CuSO4).

                3. Органические растворители (этиловый спирт, ацетон)

                4. Растительные алкалоиды.

                5. Мочевина в высоких концентрациях

Денатурация сопро­вождается потерей биологической активности белка.

1. Уникальная трехмерная структура каждого белка разрушается, и все молекулы одного белка приобретают случайную конформацию, т.е. отлич­ную от других таких же молекул.

2. Радикалы аминокислот, формирующие ак­тивный центр белка, оказываются пространст­венно удаленными друг от друга, т.е. разруша­ется специфический центр связывания белка с лигандом.

3. Гидрофобные радикалы, обычно находящиеся в гидрофобном ядре глобулярных белков, при де­натурации оказываются на поверхности молекулы, тем самым создаются условия для агрегации бел­ков. Агрегаты белков выпадают в осадок. При денатурации белков не происходит разру­шения их первичной структуры. Удаление денатурирующих агентов диализом приводит к восстановлению конформации и функ­ции белка, т.е. к ренативации (ренатурации).

В клетке обнаружены семейства белков – шаперонов. Шапероны принадлежат к трем белковым семействам, так называемым белкам теплового шока (hsp60, hsp70, hsp90). Свое название эти белки получили потому, что и к синтез возрастает при повышении температуры и других формах стресса. При этом они выполняют функцию защиты белков клетки от денатурации. Белки — представители семейства hsp70 связываются на начальной фазе образования растущего пептида. Одни из них контролируют процесс сворачивания белка в цитоплазме, другие — участвуют в переносе белков в митохондрии. Белки hsp60 охватывают синтезированный полипептид наподобие бочонка, тем самым обеспечивая условия для принятия правильной конформации. Также шапероны участвуют в таких фундаментальных про­цессах, как: ренативация частично денатурированных белков; 2) узнавание денатурированных белков и транспорт их в лизосомы; 3) формирование трехмерной структуры белков; 4) сборка олигомерных белков; 5) транспорт белков через мембраны.

Молекулярные шапероны предотвращают денатурацию белков.  Частично денатурированный белок попадает в полость шаперонинового комплекса. В специфической среде этой поло­сти в условиях изолированности от других молекул цитозоля клетки выбор возможных конформаций белка происходит до тех пор, пока не будет найдена энергетически наиболее выгодная конформация. . Шаперонзависимое формирование нативной конформаций связано с расходованием значитель­ного количества энергии, источником которой служит АТР (рис.4).

Иллюстративный материал

Слайд-рисунок   1. Регулярные вторичные структуры белков

Слайд-рисунок 2. Типы связей, возникающие между радикалами аминокислот при формировании третичной структуры белка.

Слайд-рисунок 3. Уровни организации белков

Анимация:   Функции шаперонов

Литература:


1.Биохимия. Учебник /под редакцией член – корр РАН, проф. Е.С. Северина – М.: ГЭОТАР-МЕД, 2004.- 784 с

2. Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека: В  2-х томах. Т. 2. Пер. с англ: - М.: Мир, 1993. - 384с.

Контрольные вопросы (обратная связь):


Применение явления денатурации белков  в медицине

Применение белков как лекарственных препаратов




1. Реферат Сущность, основные принципы, цели и задачи системы финансирования научно-технической и инновац
2. Реферат на тему Value Of Education Essay Research Paper A
3. Диплом Мотивация профессионального самосовершенствования у студентов педвуза
4. Реферат на тему Never Cry Wolf By Farley Mowat Essay
5. Реферат Понятие инвестиций и инвестиционной деятельности
6. Реферат на тему Badminton Essay Research Paper Badminton is a
7. Реферат на тему The Power Of Memory Essay Research Paper
8. Курсовая Фильтр нижних частот
9. Реферат на тему Interpretation Of The Aeneid Essay Research Paper
10. Реферат на тему Психоактивные растения как феномен в культуре