Практическая работа на тему Изучение твердофазных реакций протекающих при высокотемпературном окусковании тонкоизмельч нных железорудных
Работа добавлена на сайт bukvasha.net: 2014-07-27Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Практическая работа №1
Изучение твердофазных реакций, протекающих при высокотемпературном окусковании тонкоизмельчённых железорудных материалов
В процессе термообработки шихты при производстве агломерата и обжиге окатышей значительное развитие получают реакции между твёрдыми компонентами обрабатываемого материала, которые существенно влияют на протекание процессов спекания и упрочнения.
Реакции между твёрдыми реагентами сильно отличаются от реакций в растворах и расплавах. Первое отличие: природа первичного продукта реакции не зависит от соотношений количеств реагирующих веществ. Так, при соотношении твёрдых реагентов СаО и SiO2 от 3:1 до 1:1, первичным продуктом реакции во всех случаях будет 2СаО SiO2. Только при последующей многочасовой выдержке появляются конечные продукты реакции, состав которых соответствует составу исходной смеси. При агломерации время пребывания шихты в зоне высоких температур исчисляется несколькими минутами, а при обжиге окатышей - несколькими десятками минут. В этих условиях природа окончательных и даже вторичных продуктов твердофазных реакций не играет никакой роли. Таким образом, между любой парой реагирующих веществ в общем случае может возникнуть лишь вполне определённое соединение (табл. 1).
Таблица 1
Первичные продукты реакции между твёрдыми фазами
Изучение твердофазных реакций, протекающих при высокотемпературном окусковании тонкоизмельчённых железорудных материалов
В процессе термообработки шихты при производстве агломерата и обжиге окатышей значительное развитие получают реакции между твёрдыми компонентами обрабатываемого материала, которые существенно влияют на протекание процессов спекания и упрочнения.
Реакции между твёрдыми реагентами сильно отличаются от реакций в растворах и расплавах. Первое отличие: природа первичного продукта реакции не зависит от соотношений количеств реагирующих веществ. Так, при соотношении твёрдых реагентов СаО и SiO2 от 3:1 до 1:1, первичным продуктом реакции во всех случаях будет 2СаО
Таблица 1
Первичные продукты реакции между твёрдыми фазами
Реагирующие твёрдые вещества | Молекулярные соотношения в смеси | Первичный продукт реакции |
СаО+SiO2 | 3:1; 2:1; 3:2; 1:1 | 2СаО |
МgО+SiO2 | 2:1; 1:1 | 2МgО |
СаО+А12О3 | 3:1; 5:3; 1:1; 1:2; 1:6 | СаО |
МgО+А12Оз | 1.1; 1:6 | МgО |
СаО+Fе2Оз | 2:1; 1:1 | СаО |
Fе3О4+SiO2 | 2Fе3О4+3 SiO2=ЗFе | 2FеО |
Первым продуктом твердофазной реакции, независимо от исходного соотношения реагентов, является вещество с наименьшей молярной теплотой плавления и минимальной поверхностной энергией (чаще всего это вещество с наиболее простым строением решётки).
Второе отличие твердофазных реакций - решающим фактором протекания реакций является не химическое сродство реагентов, а наличие непосредственного контакта реагирующих веществ. При спекании офлюсованной шихты (окатышей) эта особенность реакций в твёрдой фазе приводит к тому, что, несмотря на большее химическое сродство СаО и SiO2 , чем СаО и Fе2Оз, из-за малого их количества (СаО и SiO2), в твёрдой фазе образуются главным образом ферриты кальция.
Важной характеристикой процессов в твёрдой фазе является температура начала взаимодействия реагентов (табл. 2).
Таблица 2
Температура начала взаимодействия между твёрдыми компонентами
Среди компонентов окусковываемых шихт есть такие вещества, которые совсем не реагируют между собой при сколь угодно продолжительной выдержке. Например, гематит Fе2Оз не реагирует с кремнезёмом, магнетит FезО4 не взаимодействует с известью СаО.
Механизм и кинетика взаимодействия твёрдых веществ чрезвычайно сложны.
Скорость твердофазных реакции является функцией поверхностного натяжения. Объединение двух частиц одинакового размера происходит в том случае, если поверхностная энергия новой фазы, образующейся на границе раздела фаз, будет меньше суммы поверхностных энергий исходных составляющих: ав< а+ в, где а, В, АВ -поверхностные энергии соответственно исходных составляющих, А и В и новой фазы АВ.
Объединение частиц протекает двухступенчато: 1) образование мостика продуктов реакции между частицами; 2) диффузия ионов через плёнку продуктов реакции.
Образование мостиков в твёрдом состоянии обеспечивается с помощью диффузии, ионов сквозь кристаллическую решётку (рис.1), которая может происходить только в том случае, если ионы преодолевают силы связи в решетке и оставят узлы, в которых они находились при более низких температурах.
На границах зёрен кристаллов, где решётка менее упорядочена, диффузия протекает с большей скоростью, чем внутри кристалла. Поэтому при низких температурах преобладают диффузия на поверхности и на границе раздела зёрен.
Мелкие частицы имеют большую поверхность, чем крупные, и обладают более значительной диффузионной способностью.
Согласно теории Вагнера, о раздельном перемещении, ионов и электронов через продукт реакции, устойчивое течение твердофазной реакции возможно лишь при наличии компактных слоев продуктов реакции, разделяющих исходные вещества. Если диффузия ионов через плёнку продуктов реакции затруднена, то реакция затухает.
В смеси СаО и SiO при 100 . С за 1' реагировало до 60% исходных веществ. В тех же условиях в смеси СаО и Fе2Оз реагировало 70% исходных веществ. То есть скорость образования ферритов кальция выше, чем скорость образования силикатов кальция.
По Тамману процессы массообмена в твёрдом теле, главным образом в оксидах, происходят с измеримой скоростью только после достижения температуры, составляющей 2/3 температуры плавления соответствующего твердого тела. Поэтому при низких и умеренных температурах твердофазные реакции протекают крайне медленно.
Суммарная скорость процессов в твёрдой фазе определяется не только свойствами слоя (плёнки) продуктов реакции, но и величиной поверхности соприкосновения,
которая, в свою очередь зависит в большой мере от тонкости измельчения реагирующих веществ.
Практические выводы из теории твердофазных реакций для процессов окускования
1. При окусковании неофлюсованой шихты в твёрдой фазе идёт образование фаялита. Если спекается (агломерируется) гематитовая шихта, то образование фаялита невозможно до тех пор, пока не произойдёт восстановление части Fе2Оз до FезО4, то есть этой реакции способствует восстановительная атмосфера.
2. В офлюсованной шихте наибольшее развитие получает реакция между СаО и Fe2O3 (то есть ниже температура начала реакции, выше скорость реакции, наибольшее число контактов). Реакции способствует окислительная атмосфера, так как Fе3О4 не реагирует с СаО при обычном давлении.
3. Твердофазные реакции не определяют конечную структуру агломерата и не всегда определяют конечную структуру окатышей, так как большая часть продуктов этих реакций при плавлении диссоциируют на более простые составляющие.
Контрольные вопросы
1. В чем заключается одно из отличий твердофазных реакций, касающееся первичного продукта реакции? Как эта особенность влияет на процессы спекания при окусковании железорудных материалов? Какие первичные продукты твердофазных реакций характерны для окускованых железорудных материалов? Каковы особенности первичного продукта?
2. В чем заключается особенность твердофазных реакций, связанная с поверхностью контакта реагирующих веществ, и как эта особенность влияет на состав продуктов реакции при спекании различных шихт?
3. Каковы температуры начала взаимодействия реагентов при спекании железорудных материалов (и продукты)?
Каков механизм твердофазных реакций: 1) условие образования новой фазы; 2)ступени процесса; 3) типы диффузии.
4. От чего зависит скорость твердофазных реакций?
5. Каковы практические выводы из теории твердофазных реакций для процессов окускования?
Второе отличие твердофазных реакций - решающим фактором протекания реакций является не химическое сродство реагентов, а наличие непосредственного контакта реагирующих веществ. При спекании офлюсованной шихты (окатышей) эта особенность реакций в твёрдой фазе приводит к тому, что, несмотря на большее химическое сродство СаО и SiO2 , чем СаО и Fе2Оз, из-за малого их количества (СаО и SiO2), в твёрдой фазе образуются главным образом ферриты кальция.
Важной характеристикой процессов в твёрдой фазе является температура начала взаимодействия реагентов (табл. 2).
Таблица 2
Температура начала взаимодействия между твёрдыми компонентами
Реагирующие вещества | Твёрдый продукт реакции | Температура начала взаимодействия, °С |
СаО+Fe2Оз | СаО | 500 - 650 |
2СаО+SiO2 | 2СаО | 500 - 690 |
SiO2+Fe2Oз | ограниченный тв. раствор | 575 |
2МgО+ SiO2 | 2МgО | 680 |
МgО+Fе2О3 | МgО | 600 |
Fе3О4+ SiO2 | 2FеО | 990 |
Механизм и кинетика взаимодействия твёрдых веществ чрезвычайно сложны.
Скорость твердофазных реакции является функцией поверхностного натяжения. Объединение двух частиц одинакового размера происходит в том случае, если поверхностная энергия новой фазы, образующейся на границе раздела фаз, будет меньше суммы поверхностных энергий исходных составляющих:
|
Рис. 1. Схема диффузии: 1 -поверхностная диффузия; 2 - диффузия через решётку; 4 - диффузия на границах зёрен. |
На границах зёрен кристаллов, где решётка менее упорядочена, диффузия протекает с большей скоростью, чем внутри кристалла. Поэтому при низких температурах преобладают диффузия на поверхности и на границе раздела зёрен.
Мелкие частицы имеют большую поверхность, чем крупные, и обладают более значительной диффузионной способностью.
Согласно теории Вагнера, о раздельном перемещении, ионов и электронов через продукт реакции, устойчивое течение твердофазной реакции возможно лишь при наличии компактных слоев продуктов реакции, разделяющих исходные вещества. Если диффузия ионов через плёнку продуктов реакции затруднена, то реакция затухает.
В смеси СаО и SiO
По Тамману процессы массообмена в твёрдом теле, главным образом в оксидах, происходят с измеримой скоростью только после достижения температуры, составляющей 2/3 температуры плавления соответствующего твердого тела. Поэтому при низких и умеренных температурах твердофазные реакции протекают крайне медленно.
Суммарная скорость процессов в твёрдой фазе определяется не только свойствами слоя (плёнки) продуктов реакции, но и величиной поверхности соприкосновения,
которая, в свою очередь зависит в большой мере от тонкости измельчения реагирующих веществ.
Практические выводы из теории твердофазных реакций для процессов окускования
1. При окусковании неофлюсованой шихты в твёрдой фазе идёт образование фаялита. Если спекается (агломерируется) гематитовая шихта, то образование фаялита невозможно до тех пор, пока не произойдёт восстановление части Fе2Оз до FезО4, то есть этой реакции способствует восстановительная атмосфера.
2. В офлюсованной шихте наибольшее развитие получает реакция между СаО и Fe2O3 (то есть ниже температура начала реакции, выше скорость реакции, наибольшее число контактов). Реакции способствует окислительная атмосфера, так как Fе3О4 не реагирует с СаО при обычном давлении.
3. Твердофазные реакции не определяют конечную структуру агломерата и не всегда определяют конечную структуру окатышей, так как большая часть продуктов этих реакций при плавлении диссоциируют на более простые составляющие.
Контрольные вопросы
1. В чем заключается одно из отличий твердофазных реакций, касающееся первичного продукта реакции? Как эта особенность влияет на процессы спекания при окусковании железорудных материалов? Какие первичные продукты твердофазных реакций характерны для окускованых железорудных материалов? Каковы особенности первичного продукта?
2. В чем заключается особенность твердофазных реакций, связанная с поверхностью контакта реагирующих веществ, и как эта особенность влияет на состав продуктов реакции при спекании различных шихт?
3. Каковы температуры начала взаимодействия реагентов при спекании железорудных материалов (и продукты)?
Каков механизм твердофазных реакций: 1) условие образования новой фазы; 2)ступени процесса; 3) типы диффузии.
4. От чего зависит скорость твердофазных реакций?
5. Каковы практические выводы из теории твердофазных реакций для процессов окускования?