Реферат

Реферат на тему Технологии в производстве мониторов

Работа добавлена на сайт bukvasha.net: 2014-07-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025


Министерство общего и профессионального образования
Российской Федерации
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)
Кафедра промышленной электроники (ПрЭ)
                                                   

РЕФЕРАТ

По дисциплине: «Электроныые средства сбора и
обработки информации».
на тему: «Технологии в производстве мониторов».

                                                                          Выполнил студент

                                                                   ______________

                                                                            Проверил доцент кафедры ПрЭ:                                                      

                                                                              ______________.
 
ТОМСК 

Содержание

 

Предисловие

1.                CRT Monitors

                        Shadow mask

                        Slot mask

                        Aperture grille

2.                LCD Monitors

                        STN

                        Dual Scan Screens

                        Thin Film Transistor (TFT)

3.                Plasma

4.                FED

5.                LEP

                        Технология

                        Применение

                        LEP–дисплеи: день сегодняшний

                        LEP-дисплеи: день завтрашний

6.                Sizes-Resolutions-Refresh Rate

7.                Максимальная разрешающая способность в цифрах

8.                Настройка и проблемы

Cписок используемых источников.

 


Предисловие

Когда кто-то обращается ко мне за советом по поводу того, какой компьютер купить, то я всегда подчеркиваю, что ни в коем случае не следует экономить на мониторе. Монитор нельзя модернизировать. Он покупается один раз для долговременного использования. Именно через монитор мы воспринимаем всю визуальную информацию от компьютера. Не важно, работаете ли вы с бухгалтерской программой, пишете письма, играете в игры, управляете сервером – вы всегда используете монитор. От качества и безопасности монитора напрямую зависит ваше здоровье - прежде всего зрение. Так как же выбрать монитор? Так, чтобы было удобно и безопасно работать, чтобы голова не болела, а глаза не уставали, чтобы было комфортно играть и работать? На все эти вопросы я и попытаюсь дать ответ в данном реферате.
Понятно, что критериев, определяющих правильный выбор монитора, очень много. Более того, для разных целей выбираются разные мониторы. Стоимость мониторов может очень существенно отличаться, их возможности и технические параметры тоже различны. Мы постараемся рассказать о видах мониторов и дать рекомендации, как выбрать монитор именно для ваших нужд.
Если вы собрались покупать новый компьютер или решились на модернизацию, то прежде, чем выбрать самую современную видеокарту, или самый скоростной жесткий диск, или... да что угодно, прежде всего подумайте о мониторе. Именно за монитором вы будете проводить много времени, развлекаясь или работая. Лучше купить видеоускоритель попроще, чтобы модернизировать его позднее, но монитор вы не сможете модернизировать. Вы можете его только выкинуть и купить новый. Или продать за смешные деньги. Именно поэтому нельзя экономить на мониторе, потому что вы экономите на своем здоровье.
Разумеется, при выборе монитора мы, волей-неволей, ориентируемся на рекламу. Но, по понятным причинам, в рекламе производители делают акцент на тех характеристиках монитора, которые выгодны именно производителям. Я постараюсь дать рекомендации, на что следует обратить особое внимание и о каких характеристиках следует знать точно. Также рассмотрю преимущества и недостатки разных типов мониторов, начиная с традиционных CRT-мониторов и заканчивая ультрасовременными LCD-мониторами. Уделю особое внимание таким параметрам, как поддерживаемые разрешения и частоты обновления, соответствие стандартам безопасности и поддержка режимов энергосбережения. И многое другое.

1. CRT Monitors

Сегодня самый распространенный тип мониторов - это CRT (Cathode Ray Tube)-мониторы. Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить "электронно-лучевая трубка" (ЭЛТ). Используемая в этом типе мониторов технология была создана много лет назад и первоначально создавалась в качестве специального инструментария для измерения переменного тока, проще говоря, для осциллографа. Развитие этой технологии, применительно к созданию мониторов, за последние годы привело к производству все больших по размеру экранов с высоким качеством и при низкой стоимости. Сегодня найти в магазине 14" монитор очень сложно, а ведь года три-четыре назад это был стандарт. Сегодня стандартными являются 15" мониторы, и наблюдается явная тенденция в сторону 17" экранов. Скоро 17" мониторы станут стандартным устройством, особенно в свете существенного снижения цен на них, а на горизонте уже 19" мониторы и более.  
Рассмотрим принципы работы CRT-мониторов. CRT- или ЭЛТ-монитор имеет стеклянную трубку, внутри которой вакуум, т.е. весь воздух удален. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (Luminofor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Заметим, что иногда люминофор называют фосфором, но это не верно, т.к. люминофор, используемый в покрытии CRT, ничего не имеет общего с фосфором. Более того, фосфор "светится" в результате взаимодействия с кислородом воздуха при окислении до P2O5 и мало по времени (кстати, белый фосфор - сильный яд). Для создания изображения в CRT-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате, электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся и мало кому интересны.
Все мы знаем (а лично я из лекций по ЭССОИ  в моём родном ТУСУРе) или слышали о том, что наши глаза реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов.
Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз их не всегда может различить). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов – триады).
Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные частицы люминофор, чье свечение основными цветами с различной интенсивностью комбинируется, и, в результате, формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно разница в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев, определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой. Итак, повторимся: каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково, и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.
Итак, самые распространенные типы масок - это теневые, а они бывают двух типов: "Shadow Mask" (теневая маска) и "Slot Mask" (щелевая маска).

 


1.1. SHADOW MASK

Теневая маска (shadow mask) - это самый распространенный тип масок для CRT-мониторов. Теневая маска состоит из металлической сетки перед частью стеклянной трубки с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара (invar, сплав железа и никеля). Отверстия в металлической сетке работают, как прицел (хотя и не точный) , именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы, и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофрных элементов основных цветов - зеленого, красного и синего – которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Минимальное расстояние между люминофорными элементами одинакового цвета называется dot pitch (или шаг точки) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах (мм). Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изображения.
Теневая маска применяется в большинстве современных мониторов - Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, Viewsonic.

 

1.2. SLOT MASK

Щелевая маска (slot mask) - это технология, широко применяемая компанией NEC, под именем "CromaClear". Это решение на практике представляет собой комбинацию двух технологий, описанных выше. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически, вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Минимальное расстояние между двумя ячейками называется slot pitch (щелевой шаг). Чем меньше значение slot pitch, тем выше качество изображения на мониторе. Щелевая маска используется, помимо мониторов от NEC (где ячейки эллиптические), в мониторах Panasonic с трубкой PureFlat (ранее называвшейся PanaFlat). Кстати, самым первым монитором с плоской трубкой был именно Panasonic с трубкой PanaFlat. Вообще, тема мониторов с плоскими трубками заслуживает отдельной статьи. В данном материале мы лишь немного затронем эту тему:
LG использует плоскую щелевую трубку Flatron с шагом 0.24 в своих мониторах. Никакого отношения к Trinitron эта технология не имеет. Более подробную информацию об этой трубке можно найти на специальном сайте: http://flatron.lge.co.kr/
Замечу, что в плоских трубках Infinite Flat Tube (серия DynaFlat) от Samsung используется не щелевая маска, а обычная теневая. Дополнительную информацию можно посмотреть http://www.sdd.samsung.co.kr/sddhome/webdriver?MIval=index_temp&num1=82&lang=E
Компания Sony разработала свою собственную технологию создания плоских трубок - FD Trinitron. Разумеется, с использованием апертурной решётки, но не обычной, а с постоянным шагом.
Компания Mitsubishi разработала технологию DiamondTron NF. Судя по всему, никакой связи с FD Trinitron от Sony нет. При этом в трубках DiamondTron NF применяется апертурная решетка с переменным шагом.
Есть и еще один вид трубок, в которых используется "Aperture Grill" (апертурная, или теневая решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony еще в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка. Иногда в технической литературе говорится, что пушка всего одна. Однако вопрос о числе электронных пушек не столь принципиален. Мы будем придерживаться мнения, что электронных пушек три, поскольку есть возможность управлять током всех трех лучей независимо. С другой стороны, можно сказать, что электронная пушка одна, но трехпучковая. Сама Sony использует термин "unitized gun" (объединенная пушка), но связано это лишь с катодной структурой.
Замечу, что есть ошибочное мнение о том, что в трубках с апертурной решеткой применяется одна электронно-лучевая пушка, а цвет создается методом временного мультиплексирования. На самом деле это не так, а объяснение я привели выше.
Другое ошибочное мнение, иногда встречающееся, состоит в том, что в трубках с апертурной решеткой используется однолучевой хроматрон. То есть имеется одна пушка с переменной энергией пучка и двухслойный люминофор. Пока энергия пучка мала, светится один люминофор (например, красный). По мере повышения энергии начинает светиться другой слой (например, зеленый), что дает желтый цвет. Если энергия станет еще больше, то электроны пролетают первый слой не возбуждая его и получается зеленый цвет. Такие трубки использовались лет 20-30 назад и теперь практически вымерли.

 

1.3. APERTURE GRILLE

Апертурная решетка (aperture grill) - это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но имеющих одинаковую суть, например, технология Trinitron от Sony или Diamondtron от Mitsubishi. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной(ых) (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой Вы и видите на экране. Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же, наоборот, довольны и используют их в качестве горизонтальной линейки.
Минимальное расстояние между полосами люминофора одинакового цвета называется strip pitch (или шагом полосы) и измеряется в миллиметрах (мм). Чем меньше значение strip pitch, тем выше качество изображения на мониторе.
Апертурная решётка используется в мониторах от Viewsonic, Radius, Nokia, LG, CTX, Mitsubishi, во всех мониторах от SONY.
Замечу, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера: 0.25 мм strip pitch приблизительно эквивалентно 0.27 мм dot pitch.
Оба типа трубок имеют свои преимущества и своих сторонников. Трубки с теневой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими краями. Поэтому мониторы с такими CRT хорошо использовать при интенсивной и длительной работе с текстами и мелкими элементами графики, например в CAD/CAM-приложениях. Трубки с апертурной решеткой имеют более ажурную маску, она меньше заслоняет экран, и позволяет получить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями. В CAD-системах мониторы с трубкой, в которой используется апертурная решетка, недолюбливают не потому, что они хуже воспроизводят мелкие детали, чем трубки с теневой маской, а потому что экран монитора типа Trinitron - плоский по вертикали и выпуклый по горизонтали, т.е. имеет выделенное направление.
Как я уже упоминал, кроме электронно-лучевой трубки внутри монитора есть еще и управляющая электроника, которая обрабатывает сигнал, поступающий напрямую от видеокарты вашего PC. Эта электроника должна оптимизировать усиление сигнала и управлять работой электронных пушек, которые инициируют свечение люминофора, создающего изображение на экране. Выводимое на экране монитора изображение выглядит стабильным, хотя, на самом деле, таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом, проходящим последовательно по строкам в следующем порядке: слева направо и сверху вниз на экране монитора. Этот процесс происходит очень быстро, поэтому нам кажется, что экран светится постоянно. В сетчатке наших глаз изображение хранится около 1/20 секунды. Это означает, что если электронный луч будет двигаться по экрану медленно, мы можем видеть это движение как отдельную движущуюся яркую точку, но когда луч начинает двигаться, быстро прочерчивая на экране строку хотя бы 20 раз в секунду, наши глаза не увидят движущейся точки, а увидят лишь равномерную линию на экране. Если теперь заставить луч последовательно пробегать по многим горизонтальным линиям сверху вниз за время меньшее 1/25 секунды, мы увидим равномерно освещенный экран с небольшим мерцанием. Движение самого луча будет происходить настолько быстро, что наш глаз не будет в состоянии его заметить. Чем быстрее электронный луч проходит по всему экрану, тем меньше будет заметно и мерцание картинки. Считается, что такое мерцание становится практически незаметным при частоте повторения кадров (проходов луча по всем элемента изображения) примерно 75 в секунду. Однако, эта величина в некоторой степени зависит от размера монитора. Дело в том, что периферийные области сетчатки глаза содержат светочувствительные элементы с меньшей инерционностью. Поэтому мерцание мониторов с большими углами обзора становится заметным при больших частотах кадров. Способность управляющей электроники формировать на экране мелкие элементы изображения зависит от ширины полосы пропускания (bandwidth). Ширина полосы пропускания монитора пропорциональна числу пикселей, из которых формирует изображение видеокарта вашего компьютера. К ширине полосы пропускания монитора мы еще вернемся.
Теперь перейдем к другому типу мониторов – LCD.

2. LCD Monitors

LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически, это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул. Жидкие кристаллы были открыты давным-давно, но изначально они использовались для других целей. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-мониторы для настольных компьютеров. Далее речь пойдет только о традиционных LCD-мониторах, так называемых Nematic LCD.
Экран LCD-монитора представляет собой массив маленьких сегментов (называемых пикселями), которые могут манипулироваться для отображения информации. LCD-монитор имеет несколько слоев, где ключевую роль играют две панели сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) в отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в такой световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковые повороты плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля молекулы жидких кристаллов частично выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90 градусов.
Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна вот по какой причине: первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем. В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность, при правильном управлении потенциалами этих электродов, отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно, на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветки монитора сзади, так, чтобы свет порождался в задней части LCD-дисплея. Это необходимо для того, чтобы можно было наблюдать изображение хорошего качества, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинация трех основных цветов для каждой точки или пикселя экрана дает возможность воспроизвести любой цвет.
Вообще-то, в случае с цветом есть несколько возможностей: можно сделать несколько фильтров друг за другом (что приводит к малой доле проходящего излучения), можно воспользоваться свойством жидко-кристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.
Первые LCD-дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD-мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.
2.1. Технология STN
STN - это акроним, означающий "Super Twisted Nematic". Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора. Часто STN-ячейки используются в паре. Это называется DSTN (Double Super Twisted Nematic), и этот метод очень популярен среди мониторов для портативных компьютеров, использующих дисплеи с пассивной матрицей, где DSTN обеспечивает улучшение контрастности при отображении изображений в цвете. Две STN-ячейки располагаются вместе так, чтобы при вращении они двигались в разных направлениях. Также STN-ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя пластиковой пленки (полимерной пленки) добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов. Я упомянул термин "пассивная матрица", сделаю пояснение. Термин "пассивная матрица" (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD-дисплеев, которую я только что описал, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Только что описанный дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения. Мы также должны принимать во внимание тот факт, что между соседними электродами возникает некоторое взаимное влияние, которое может проявляться в виде колец на экране.
2.2. Dual Scan Screens
Для решения части вышеописанных проблем применяют специальные хитрости, например, разделение экрана на две части и применение двойного сканирования в одно и тоже время обоих частей, в результате экран дважды регенерируется, и изображение не дрожит и плавно отображается.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже. В активной матрице используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (т.е. при угле обзора 120°-140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD-мониторов с активной матрицей обеспечивают угол обзора в 160°, и есть все основания предполагать, что технология будет и дальше совершенствоваться. В случае с активной матрицей вы можете отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 ms против 300 ms для пассивной матрицы, и качество контрастности лучше, чем у CRT-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофора CRT-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD-мониторов достаточной является частота регенерации 60 Гц. Благодаря лучшему качеству изображений эта технология также используется и в мониторах для настольных компьютеров, что позволяет создавать компактные мониторы, менее опасные для нашего здоровья.
В будущем следует ожидать расширения вторжения LCD-мониторов на рынок благодаря тому факту, что с развитием технологии конечная цена устройств снижается, что дает возможность большему числу пользователей покупать новые продукты. Функциональные возможности LCD-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчной регенерации дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1), и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц, появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые "Thin Film Transistor" (или просто TFT).
2.3. Thin Film Transistor (TFT),
Thin Film Transistor (TFT), т.е. тонкопленочный транзистор, действительно очень тонкий, его толщина - в пределах от 1/10 до 1/100 микрона. Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами, имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD-дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов может не работать.
Вкратце расскажу о разрешении LCD-мониторов. Это разрешение одно, и его еще называют native, оно соответствует максимальному физическому разрешению CRT-мониторов. Именно в native разрешении LCD-монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD-монитора фиксирован. Например, если LCD-монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай: пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение. Для этого есть два способа. Первый называется "Centering" (центрирование); суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка. Второй метод называется "Expansion" (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако, из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость. Поэтому при выборе LCD-монитора важно четко знать, какое именно разрешение вам нужно.
Отдельно стоит упомянуть о яркости LCD-мониторов, так как пока нет никаких стандартов для определения того, достаточной ли яркостью обладает LCD-монитор. При этом в центре яркость LCD-монитора может быть на 25% выше, чем у краев экрана. Единственный способ определить, подходит ли вам яркость конкретного LCD-монитора, это сравнить его яркость с другими LCD-мониторами.
И последний параметр, о котором нужно упомянуть, это контрастность. Контрастность LCD-монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов. Но, как и в случае с яркостью, пока нет никаких стандартов, поэтому главным определяющим фактором являются ваши глаза.
Стоит отметить и такую особенность части LCD-мониторов, как возможность поворота самого экрана на 90°, с одновременным автоматическим разворотом изображения. В результате, например, если вы занимаетесь версткой, то теперь лист формата A4 можно полностью уместить на экране без необходимости использовать вертикальную прокрутку, чтобы увидеть весь текст на странице. Правда, среди CRT-мониторов тоже есть модели с такой возможностью, но они крайне редки. В случае с LCD-мониторами эта функция становиться почти стандартной.
К преимуществам LCD-мониторов можно отнести то, что они действительно плоские в буквальном смысле этого слова, а создаваемое на их экранах изображение отличается четкостью и насыщенностью цветов. Отсутствие искажений на экране и массы других проблем, свойственных традиционным CRT-мониторам. Добавим, что потребляемая и рассеиваемая мощность у LCD-мониторов существенно ниже, чем у CRT-мониторов. Ниже я привожу сводную таблицу сравнения LCD-мониторов с активной матрицей и CRT-мониторов:
Параметры
Active Matrix LCD monitor
CRT monitor
Разрешение
Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны.
Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации.
Частота регенерации
Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания.
Только при частотах свыше 75 Гц отсутствует явно заметное мерцание.
Точность отображения цвета
Поддерживается True Color и имитируется требуемая цветовая температура.
Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом.
Формирование изображения
Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD-панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким.
Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате, четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества CRT.
Угол обзора
В настоящее время стандартным является угол обзора 120o и выше; с дальнейшим развитием технологий следует ожидать увеличения угла обзора.
Отличный обзор под любым углом.
Энергопотребление и излучения
Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT-мониторов.
Всегда присутствует электромагнитное излучение, однако его уровень зависит от того, соответствует ли CRT d какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 80 Вт.
Интерфейс монитора
Цифровой интерфейс, однако большинство LCD-мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров.
Аналоговый интерфейс.
Сфера применения
Стандартный дисплей для мобильных систем. В последнее время начинает завоевывать место и в качестве монитора для настольных компьютеров. Идеально подходит в качестве дисплея для компьютеров, т.е. для работы в интернет, с текстовыми процессорами и т.д.
Стандартный монитор для настольных компьютеров. Крайне редко используются в мобильном виде. Идеально подходит для отображения видео и анимации.
Главной проблемой развития технологий LCD для сектора настольных компьютеров, похоже, является размер монитора, который влияет на его стоимость. С ростом размеров дисплеев снижаются производственные возможности. В настоящее время максимальная диагональ LCD-монитора, пригодного к массовому производству, достигает 20", а недавно некоторые разработчики представили 43" модели и даже 64" модели TFT-LCD-мониторов, готовых к началу коммерческого производства.
Но похоже, что исход битвы между CRT и LCD-мониторами за место на рынке уже предрешен. Причем не в пользу CRT-мониторов. Будущее, судя по всему, все же за LCD-мониторами с активной матрицей. Исход битвы стал ясен после того, как IBM объявила о выпуска монитора с матрицей, имеющей 200 пикселей на дюйм, то есть, с плотностью в два раза больше, чем у CRT-мониторов. Как утверждают эксперты, качество картинки отличается так же, как при печати на матричном и лазерном принтерах. Поэтому вопрос перехода к повсеместному использованию LCD-мониторов лишь в их цене.
Тем не менее, существуют и другие технологии, которые создают и развивают разные производители, и некоторые из этих технологий носят название PDP (Plasma Display Panels), или просто "plasma", и FED (Field Emission Display). Расскажем немного об этих технологиях.

3. Plasma

Такие крупнейшие производители, как Fujitsu, Matsushita, Mitsubishi, NEC, Pioneer и другие, уже начали производство плазменных мониторов с диагональю 40" и более, причем некоторые модели уже готовы для массового производства. Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном. Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком. Фактически, каждый пиксель на экране работает, как обычная флуоресцентная лампа (иначе говоря, лампа дневного света). Высокая яркость и контрастность наряду с отсутствием дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к нормали, под которым можно увидеть нормальное изображение на плазменных мониторах, существенно больше 45°, чем  в случае с LCD-мониторами. Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора, и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким, поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений такие мониторы используются пока только для конференций, презентаций, информационных щитов, т.е. там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров. Подобные телевизоры уже есть, они имеют большую диагональ, очень тонкие (по сравнению со стандартными телевизорами) и стоят бешеных денег - $10000 и выше.
Ряд ведущих разработчиков в области LCD и Plasma-экранов совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD-экранов с активной матрицей.

4. FED

Технологии, которые применяются при создании мониторов, могут быть разделены на две группы: 1) мониторы, основанные на излучении света, например, традиционные CRT-мониторы и плазменные, т.е. это устройства, элементы экрана которых излучают свет во внешний мир и 2) мониторы трансляционного типа, такие, как LCD-мониторы. Одним из лучших технологических направлений в области создания мониторов, которое совмещает в себе особенности обеих технологий, описанных нами выше, является технология FED (Field Emission Display). Мониторы FED основаны на процессе, который немного похож на тот, что применяется в CRT-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. Главное отличие между CRT и FED мониторами состоит в том, что CRT-мониторы имеют три пушки, которые испускают три электронных луча, последовательно сканирующих панель, покрытую люминофорным слоем, а в FED-мониторе используется множество маленьких источников электронов, расположенных за каждым элементом экрана, и все они размещаются в пространстве, по глубине меньшем, чем требуется для CRT. Каждый источник электронов управляется отдельным электронным элементом, так же, как это происходит в LCD-мониторах, и каждый пиксель затем излучает свет, благодаря воздействию электронов на люминофорные элементы, как и в традиционных CRT-мониторах. При этом FED-мониторы очень тонкие.
Есть и еще одна новая и, на мой взгляд, перспективная технология, это LEP (Light Emission Plastics), или светящий пластик.

5. LEP

 

5.1. Технология

В течении последних 30 лет внимание многих ученых было приковано к полимерным материалам (проще говоря - пластикам), обладающим свойствами проводимости и полупроводимости. Тем, кого интересует, как и почему они этим свойством обладают, крайне рекомендую посетить сайт компании CDT - там это описано на хорошем научном уровне. Для нормального человека достаточно знать, что такие полимеры, во-первых, существуют, а во-вторых, обладают рядом преимуществ по сравнению с традиционными материалами. Главными преимуществами являются простота и дешевизна производства, а также возможность синтеза новых материалов с заданными свойствами. Главными недостатками - непродолжительный срок службы и низкая мобильность зарядов вследствие аморфной структуры пластика. Однако, в последнее время недостатки постепенно удается преодолеть, в частности, за счет применения многослойных материалов.

 

5.2. Применение

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Глобальной целью в этом направлении компания CDT считает ни много, ни мало - вытеснение меди в качестве материала для изготовления проводящих дорожек печатных плат. Правда, для этого необходимо еще увеличить срок службы и повысить проводимость пластика.
Однако наиболее интересным применением пластиковых полупроводников на данный момент является создание разного рода устройств отображения информации на их базе. О том, что полупроводящий пластик под действием электрического тока может испускать фотоны (то есть, светиться), знали давно. Но крайне низкая (0.01%) квантовая эффективность этого процесса (отношение числа испущенных фотонов к числу пропущенных через пластик зарядов) делала практическое применение этого эффекта невозможным. За последние 5 лет компания CDT совершила прорыв в этом направлении, доведя квантовую эффективность двуслойного пластика до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Помимо повышения эффективности удалось расширить и спектр излучения. Теперь пластик может испускать свет в диапазоне от синего до ближнего инфракрасного с эффективностью порядка 1%.
По заявлению технического директора CDT Ltd. Пола Мея (Paul May), компании удалось достичь срока службы более 7000 часов при 20Со и около 1100 часов при 80Со без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, и срока хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности (shell-life) более 18 месяцев. С использованием "инкапсуляции", то есть помещения устройств в специальный защитный корпус, "срок хранения" возрастает до 5 лет, что на данный момент является фактическим стандартом. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.    О том, что промышленный мир серьезно относится к LEP-технологии, свидетельствует покупка компанией Philips Components B.V. лицензии на использование этой технологии и инвестиции Intel в компанию CDT. Итак, что же есть у компании на сегодняшний день.

 

5.3. LEP-дисплеи: день сегодняшний

На сегодняшний день компания может представить монохромные (желтого свечения) LEP-дисплеи, приближающиеся по эффективности к жидкокристаллическим дисплеям LCD (Liquid Crystal Display), уступающие им по сроку службы, но имеющие ряд существенных преимуществ.
·                     Поскольку многие стадии процесса производства LEP- дисплеев совпадают с аналогичными стадиями производства LCD, производство легко переоборудовать. Кроме того, технология LEP позволяет наносить пластик на гибкую подложку большой площади, что невозможно для неорганического светодиода (там приходится использовать матрицу диодов).
·                     Поскольку пластик сам излучает свет, не нужна подсветка и прочие хитрости, необходимые для получения цветного изображения на LCD-мониторе. Больше того, LEP-монитор обеспечивает 180-градусный угол обзора.
·                     Поскольку устройство дисплея предельно просто: вертикальные электроды с одной стороны пластика, горизонтальные - с другой, изменением числа электродов на единицу протяженности по горизонтали или вертикали можно добиваться любого необходимого разрешения, а также, при необходимости, различной формы пиксела.
·                     Поскольку LEP-дисплей работает при низком напряжении питания (менее 3 V) и имеет малый вес, его можно использовать в портативных устройствах, питающихся от батарей.
·                     Поскольку LEP-дисплей обладает крайне малым временем переключения (менее 1 микросекунды), его можно использовать для воспроизведения видеоинформации.
·                     Поскольку слой пластика очень тонок, можно использовать специальные поляризующие покрытия для достижения высокой контрастности изображения даже при сильной внешней засветке.
Эти преимущества плюс дешевизна привели к возникновению у LEP-технологии достаточно радужных перспектив.

 

5.4. LEP-дисплеи: день завтрашний

День 16 февраля 1998 года стал историческим для LEP-технологии: компании CDT и Seiko-Epson продемонстрировали первый в мире пластиковый телевизионный экран.Правда, он пока черно-белый (точнее - черно-желтый) и размером всего 50 мм2, но толщина в 2 мм впечатляет. Уже сейчас такие дисплеи могут найти применение в видеокамерах и цифровых фотоаппаратах, а к концу года компании планируют представить полноразмерный цветной дисплей (не уточняя, правда, что такое "полный размер").  Причины, по которым Seiko-Epson приняла участие в этом проекте, по словам Генерального менеджера по базовым исследованиям (General Manager of basic research) компании доктора Шимоды (Dr. Shimoda), заключаются в том, что сочетание LEP-технологии с многослойной TFT (Thin Film Transistor) технологией и технологией струйной печати, в которых Seiko-Epson является мировым лидером, а также возможность использования для производства LEP-дисплеев большей части уже имеющегося оборудования позволит достичь быстрого прогресса в данной программе. "LEP-дисплеи, - считает доктор Шимода, - станут конкурентоспособными не только по сравнению с LCD, но и по сравнению с обычными дисплеями на базе CRT (Catod Ray Tube, или электронно-лучевая трубка) как по качеству, так и по цене.

6. Sizes-Resolutions-Refresh Rate
Теперь логично перейти к размерам, разрешениям и частоте обновления. В случае с мониторами, размер - один из ключевых параметров. Монитор требует пространства для своей установки, а пользователь хочет комфортно работать с требуемым разрешением. Кроме этого, необходимо, чтобы монитор поддерживал приемлемую частоту регенерации или обновления экрана (refresh rate). При этом все три параметра - размер (size), разрешение (resolution) и частота регенерации (refresh rate) - должны всегда рассматриваться вместе, если вы хотите убедиться в качестве монитора, который решили купить, потому что все эти параметры жестко связаны между собой, и их значения должны соответствовать друг другу.
Разрешение монитора (или разрешающая способность) связана с размером отображаемого изображения и выражается в количестве точек по ширине (по горизонтали) и высоте (по вертикали) отображаемого изображения. Например, если говорят, что монитор имеет разрешение 640x480, это означает, что изображение состоит из 640x480=307200 точек в прямоугольнике, чьи стороны соответствуют 640 точкам по ширине и 480 точкам по высоте. Это объясняет, почему более высокое разрешение соответствует отображению более содержательного (детального) изображения на экране. Понятно, что разрешение должно соответствовать размеру монитора, иначе изображение будет слишком маленьким, чтобы его разглядеть. Возможность использования конкретного разрешения зависит от различных факторов, среди которых возможности самого монитора, возможности видеокарты и объем доступной видеопамяти, которая ограничивает число отображаемых цветов.
Выбор размера монитора жестко связан с тем, как вы используете свой компьютер: выбор зависит от того, какие приложения вы обычно используете, например, играете, используете текстовый процессор, занимаетесь анимацией, используете CAD и т.д. Понятно, что, в зависимости от того, какое приложение вы используете, вам требуется отображение с большей или меньшей детализацией. На рынке традиционных CRT-мониторов под размером обычно понимают размер диагонали монитора, при этом размер видимой пользователем области экрана обычно несколько меньше, в среднем, на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагонали, при этом видимый размер обычно обозначается в скобках или с пометкой "Viewable size", но иногда указывается только один размер, размер диагонали трубки.
Обычно мониторы с большой диагональю трубки представляются в качестве лучшего решения, даже при наличии некоторых проблем, таких, как стоимость и требуемое пространство на рабочем столе. Как мы уже говорили, выбор размера, а, следовательно, и лучшего разрешения, зависит от того, как вы используете монитор: например, если вы крайне редко используете компьютер, лишь для того, чтобы написать письмо, то для вас лучшим решением может быть 14" монитор с разрешением 640x480; с другой стороны, если вам требуется больше рабочего пространства на экране при использовании текстового процессора, то для вас гораздо лучше подойдет 15" монитор с разрешением 800x600, который имеет еще и также преимущество над 14" монитором, как менее изогнутая поверхность экрана.
Если вы пользуетесь электронными таблицами, занимающими большую площадь, и вам требуется одновременное использование нескольких документов, то стоит остановить свой выбор на 17" мониторе с разрешением 1024x768, а лучше с разрешением 1280x1024. Если вы профессионально занимаетесь версткой (DTP, Desk Top Publishing) или дизайном и моделированием в CAD-системах, то вам потребуется монитор с диагональю от 17" до 24" для работы в разрешениях от 1280x1024 до 1600x1200 точек. Большой монитор с поддержкой высокого разрешения позволит вам более комфортно работать, так как вам не потребуется увеличивать картинку, или перемещать отдельные ее части, или использовать виртуальный десктоп, когда несколько мониторов подключены к одной или нескольким видеокартам. Наличие большого монитора - это все равно, что смотреть через окно на мир: чем больше окно, тем больше вы видите без необходимости выглядывать наружу.

7. Максимальная разрешающая способность в цифрах
Максимальная разрешающая способность - одна из основных характеристик монитора, которую указывает каждый изготовитель. Однако реальную максимальную разрешающую способность монитора вы можете определить сами. Для этого надо иметь три числа: шаг точки (шаг триад для трубок с теневой маской или горизонтальный шаг полосок для трубок с апертурной решеткой) и габаритные размеры используемой области экрана в миллиметрах. Последние можно узнать из описания устройства либо измерить самостоятельно. Если вы пойдете вторым путем, то максимально расширьте границы изображения и проводите измерения через центр экрана. Подставьте полученные числа в соответствующие формулы для определения реальной максимальной разрешающей способности.
Примем сокращения:
·                    максимальное разрешение по горизонтали = MRH
·                    максимальное разрешение по вертикали = MRV
Для мониторов с теневой маской:
·                    MRH = горизонтальный размер/(0,866 x шаг триад);
·                    MRV = вертикальный размер/(0,866 x шаг триад).
Так, для 17-дюймового монитора с шагом точек 0,25 мм и размером используемой области экрана 320x240 мм мы получим максимальную действительную разрешающую способность 1478x1109 точек: 320 /(0,866x0,25) = 1478 MRH; 240 /(0,866x0,25) = 1109 MRV.
Для мониторов с трубкой, использующей апертурную решетку:
·                    MRH = горизонтальный размер/горизонтальный шаг полосок;
·                    MRV = вертикальный размер/вертикальный шаг полосок.
Так, для 17-дюймового монитора с трубкой, использующей апертурную решетку, и шагом полосок 0,25 мм по горизонтали и размером используемой области экрана 320x240 мм получим максимальную действительную разрешающую способность 1280x600 точек: 320/0,25 = 1280 MRH; Апертурная решетка не имеет шага по вертикали, и разрешающая способность по вертикали такой трубки ограничена только фокусировкой луча
На величину максимально поддерживаемого монитором разрешения напрямую влияет частота горизонтальной развертки электронного луча, измеряемая в kHz (Килогерцах, кГц). Значение горизонтальной развертки монитора показывает, какое предельное число горизонтальных строк на экране монитора может прочертить электронный луч за одну секунду. Соответственно, чем выше это значение (а именно оно, как правило, указывается на коробке для монитора), тем выше разрешение может поддерживать монитор при приемлемой частоте кадров. Предельная частота строк является критичным параметром при разработке CRT-монитора. В таких мониторах используются магнитные системы отклонения электронного луча, представляющие собой обмотки с довольно большой индуктивностью. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов, учитываемых при проектировании мониторов.
Частота регенерации или обновления (кадровой развертки для CRT мониторов) экрана - это параметр, определяющий, как часто изображение на экране заново перерисовывается. Частота регенерации измеряется в Hz (Герцах, Гц), где один Гц соответствует одному циклу в секунду. Например, частота регенерации монитора в 100 Hz означает, что изображение обновляется 100 раз в секунду. Как мы уже говорили выше, в случае с традиционными CRT-мониторами время свечения люминофорных элементов очень мало, поэтому электронный луч должен проходить через каждый элемент люминофорного слоя достаточно часто, чтобы не было заметно мерцания изображения. Если частота такого обхода экрана становится меньше 70 Hz, то инерционности зрительного восприятия будет недостаточно для того, чтобы изображение не мерцало. Чем выше частота регенерации, тем более устойчивым выглядит изображение на экране. Мерцание изображения (flicker) приводит к утомлению глаз, головным болям и даже к ухудшению зрения. Заметим, что чем больше экран монитора, тем более заметно мерцание, особенно периферийным (боковым) зрением, так как угол обзора изображения увеличивается. Значение частоты регенерации зависит от используемого разрешения, от электрических параметров монитора и от возможностей видеоадаптера. Минимально безопасной частотой кадров считается 75 Hz, при этом существуют стандарты, определяющие значение минимально допустимой частоты регенерации. Считается, что чем выше значение частоты регенерации, тем лучше, однако исследования показали, что при частоте вертикальной развертки выше 110 Hz глаз человека уже не может заметить никакого мерцания. Ниже мы приводим таблицу с минимально допустимыми частотами регенерации мониторов по новому стандарту TCO’99 для разных разрешений:
Диагональ монитора
Частота регенерации
Разрешение
14" - 15"
>= 85 Hz
>= 800x600
17"
>= 85 Hz
>= 1024x768
19"-21"
>= 85 Hz
>= 1280x1024
> 21"
>= 85 Hz
>= 1280x1024
Если вместо размера CRT используется видимый размер экрана, то данные в таблице выше также применимы. Заметим, что приведены минимально допустимые параметры, а рекомендованная частота регенерации >= 100 Hz.
Далее, мы предлагаем вашему вниманию справочную таблицу, в которой указаны физический и видимый размеры трубок CRT-мониторов, максимально поддерживаемое разрешение, рекомендуемое разрешение, а также необходимые объемы видеопамяти для отображения с 256, 65К и 16М цветов. Заметим, что мы не ведем речь о представлении 3D-графики, так как в этом случае необходимы дополнительные объемы памяти для Z-буферизации и для хранения текстур.
Физический размер диагонали монитора
Видимый размер диагонали монитора
Максимальное разрешение
Рекомендуемое разрешение
Объем локальной памяти для 256 цветов
Объем локальной памяти для 65K цветов
Объем локальной памяти для 16М цветов
14"
12,5" - 13"
1024x768
640x480
0,5
1
2
15"
13,5" - 14"
1280x1024
800x600
1
2
2
17"
15,5" - 16"
1600x1200
1024x768
1
2
4
19"
17,5" - 18"
1600x1200
1280x1024
2
4
4
21"
19,5" - 20"
1600x1200
1280x1024
2
4
4
24"
21,5" - 22"
1900x1200
1600x1200
2
4
8
Понятно, что данные в таблице чисто справочные, и никто не запрещает вам работать на 15" мониторе с разрешением 1024x768. Все зависит от возможностей вашего монитора, ваших предпочтений и вашего зрения.

8. Настройка и проблемы

Существует много проблем связанных с монитором, даже если он только что куплен. Что это за проблемы? Вот самые распространенные из них:
·                     фокусировка изображения
·                     несведение
·                     дрожание изображения
·                     проблемы с геометрией видимого на экране изображения
·                     проблемы с равномерным отображением изображения на экране
Возникают эти проблемы из-за сложной структуры монитора, и бывает так, что даже если все электронные компоненты работают правильно, проблему нельзя устранить изменением регулировок монитора. На практике, большинство проблем возникают все же из-за неисправности компонентов, проблем с калибровкой, связанных с несоответствием монитора и видеоадаптера и т.д. Настройка монитора требует времени, и зачастую конечный результат бывает неудовлетворительным. Если есть возможность, всегда лучше обратиться к специалистам из сервисного центра.
Как мы уже знаем из теоретической части данной статьи, одними из важнейших компонентов монитора являются электронные пушки, маска и поверхность с люминофором. Начнем с луча электронов, который испускается тремя пушками.
Пушки, которые излучают электроны, по одной для каждого из основных цветов (красного, зеленого и синего), посылают луч на экран. Этот луч электронов, попадая в середину экрана, образует окружность, в то время как при перемещении на остальные части экрана, луч образует эллипс, в результате чего изображение искажается, этот процесс называется астигматизмом. Причем проблема становится все большей при увеличении размеров монитора. Разумеется, ничего хорошего для нашего здоровья в этом нет.
Другая проблема, также небезопасная для здоровья, - это мерцание изображения. Причиной мерцания изображения является недостаточная частота регенерации экрана. Эффект мерцания был обычным явлением в устаревших интерлейсных мониторах с низкой частотой кадров и чересстрочной разверткой (interlaced). В них каждый кадр изображения формируется из двух полей, содержащих либо четные, либо нечетные строки, на смену которым пришли мониторы с прогрессивной разверткой (non-interlaced, в них каждый кадр изображения формируется всеми строками).
Другая проблема - это неправильное сведение лучей электронных прожекторов мониторов, которое приводит к размытию изображения и цветным окантовкам элементов изображения. Три луча электронов, испускаемых соответствующими пушками должны точно попадать на соответствующие им цветные элементы люминофора.
Еще одной проблемой является нечеткость изображения на границах экрана. Возникает эта проблема из-за того, что прожекторы пушек должны всегда фокусировать лучи на поверхности экрана. Так как длины путей электронного луча до центра экрана и его краев оказываются разными, в мониторах применяются цепи динамической фокусировки лучей, изменяющие фокусное расстояние прожектора в зависимости от угла отклонения луча. Так как такие цепи неизбежно имеют некоторую погрешность в работе, цепи динамической фокусировки настраиваются на обеспечение максимальной резкости в центральной части экрана. Поэтому на краях экрана может появиться размытость изображения. Степень такой размытости зависит от стараний производителя монитора.
Электронные лучи прожекторов отклоняются в магнитном поле специальных катушек горизонтальной и вертикальной разверток. Такие отклоняющие системы легко обеспечивают линейное изменение угла отклонения луча во времени при линейном изменении тока в катушках. На плоском экране монитора скорость движения луча будет возрастать при увеличении угла отклонения по закону 1/cos (a). Поэтому на экране будут заметны геометрические искажения в виде вытянутых углов (подушкообразные) границы растра. Для их компенсации в мониторах и телевизорах используют цепи коррекции искажений, формирующие в катушках отклоняющей системы токи сложной формы. Если эти устройства неправильно калиброваны, то на экране могут быть видны искажения изображения, например "barrel distortion" или "pincushion" (подушкообразность или бочкообразность). Возможны также искажения типа "trapezium distortion" или "trapezoid" (трапецевидность), когда боковые границы наклонены и имеют тенденцию схождения к одной точке, т.е. изображение имеет форму трапеции. Иногда подобные искажения могут возникать и в результате изменения геометрии или положения катушек и корректирующих элементов отклоняющей системы монитора со временем, вследствие чего изображение слегка поворачивается.
Довольно часто встречающейся проблемой являются цветные или темные пятна, которые вдруг появляются на экране монитора. Причем еще вчера все было отлично, а сегодня на экране радуга. В этом случае, скорее всего, произошло намагничивание теневой маски (или апертурной решетки, или щелевой маски) трубки монитора. Намагничивание происходит под влиянием магнитных полей: природных (скажем, магнитная аномалия) или созданных человеком (другой монитор, акустические колонки, трансформатор). Более того, намагничивание может возникнуть и в результате даже непродолжительной работы монитора в нестандартном положении (экраном вниз, или вверх, или на боку). Дело в том, что в мониторах встроена система компенсации влияния магнитных полей Земли, которые при нестандартном положении монитора лишь усиливают это влияние. Из-за намагничивания может нарушиться сведение лучей монитора и появятся геометрические искажения.
Для размагничивания маски электронно-лучевой трубки практически во всех современных мониторах предусмотрен специальный контур, по которому пропускается ток в момент включения питания. При этом монитор имеет, как правило, и дополнительную кнопку (или пункт OSD меню) принудительного размагничивания (Degauss). Если после включения вы обнаружили пятна на экране, то два раза нажмите кнопку размагничивания. Если пятна пропали не полностью, то убедитесь, что монитор стоит в стандартном положении :-) и через 25-30 минут повторите процесс размагничивания.
Если в вашем мониторе не предусмотрено такой функции, то просто несколько раз включите-выключите монитор, делая паузу в течение нескольких минут.
Тут стоит добавить важную деталь. Встроенное размагничивание включается только при подаче питания, т.е. после того, как монитор был полностью обесточен. Что приводит к интересному факту - блоки ATX не имеют разъема для питания монитора. А при постоянно включенном мониторе (если его не обесточивать, а так все и поступают) размагничивание не работает. Так что, о таком нюансе стоит помнить. Отметим, что такой проблемы нет у многих современных моделей мониторов, так как они размагничиваются при переходе из "Stanby" в нормальный режим, т.е. полного отключения питания не требуется.
Если все же размагнитить экран монитора не удалось, то вам следует обратиться в сервисный центр, так как использование кустарных методов может привести к плачевным результатам.
Кроме того, следует отметить, что многие проблемы, возникающие при использовании монитора, возникают из-за видеоадаптера компьютера или из-за интерфейсного кабеля между монитором и видео картой. Порой, каким бы это не показалось смешным, но некоторые проблемы с монитором могут быть решены в результате простого переворачивания интерфейсного кабеля, или в результате установки новых драйверов видеоадаптера, или после установки другого разрешения или другой частоты регенерации экрана.
Итак, ввиду того, что монитор является устройством, у которого могут возникнуть проблемы, отрицательно влияющие на комфортность вашей работы за компьютером, то при выборе нового монитора следует отдавать предпочтение как можно более качественному монитору, наилучшим образом отвечающего вашим нуждам. В зависимости от типа и марки монитора, набор функциональных настроек, позволяющих решать часть или большинство проблем, может существенно отличаться, поэтому при выборе монитора убедитесь, что у него есть достаточный набор изменяемых настроек, которые позволят вам решать часть проблем самостоятельно, без необходимости обращения в сервис центр. Тем более, что даже если при покупке у монитора отсутствовали недостатки, они могут проявиться впоследствии.
Рассказать обо всем, что связано с мониторами, в масштабе реферата, не представляется возможным, поэтому приветствуются вопросы и дополнения.

Список используемых источников:
1.                Luca Ruiu  с сайта Hardware    http://www.hwupgrade.com/
2.                http://www.monitorworld.com
3.                http://www.monitorbuyersguide.com/
4.                Компания CTD ltd.   www.cdtltd.co.uk

1. Реферат на тему Joseph Cebula Essay Research Paper Blessed Josef
2. Диплом Дидактические возможности учебных игр на уроках в начальных классах
3. Биография на тему Поперечный Анатолий Григорьевич
4. Реферат Организация, нормирование и оплатат труда
5. Реферат Инженерные коммуникации
6. Реферат на тему Old Messages Brought To Life Essay Research
7. Реферат на тему Descartes Mind And Body Essay Research Paper
8. Реферат на тему Aluminum Essay Research Paper Aluminum is one
9. Реферат на тему Handguns
10. Реферат Исламский консультативный совет